Часы на Arduino без использования модуля RTC

Добрый день, сегодня я поделюсь инструкцией по изготовлению часов с комнатным термометром(Часы на ардуино своими руками ). Часы работают на Arduino UNO, для отображения времени и температуры служит графический экран WG12864B. В качестве датчика температуры - ds18b20. В отличие от большинства других часов я не буду использовать RTS (Real Time Clock), а попробую обойтись без этого дополнительного модуля.

Схемы на ардуино отличаются своей простотой, и может начать изучать ардуино-каждый. О том как подключать библиотеки и прошивать ардуино можно почитать в нашей статье .

Приступим.

Для создания данных часов нам понадобится:

Arduino UNO (Или любая другая Arduino совместимая плата)
- Графический экран WG12864B
- Датчик температуры ds18b20
- Резистор 4.7 Ком 0.25 Вт
- Резистор 100 ом 0.25 Вт
- Батарейный отсек для 4 батареек типа АА «пальчиковых»
- Подходящая коробка
- Мелкий напильник
- Лак для ногтей (черный или под цвет корпуса)
- Немного тонкого пластика или картона
- Изолента
- Соединительные провода
- Монтажная плата
- Кнопки
- Паяльник
- Припой, канифоль
- Двусторонний скотч

Подготовка графического экрана.
С подключение экрана, на первый взгляд, возникает много проблем и сложностей. Но если вначале разобраться с их видами, станет намного легче и понятнее. Существует много разновидностей и типов экранов на контролере ks0107/ks0108. Все экраны принято делить на 4 типа:
Вариант A: HDM64GS12L-4, Crystalfontz CFAG12864B, Sparkfun LCD-00710CM, NKC Electronics LCD-0022, WinStar WG12864B-TML-T
Вариант B: HDM64GS12L-5, Lumex LCM-S12864GSF, Futurlec BLUE128X64LCD, AZ Displays AGM1264F, Displaytech 64128A BC, Adafruit GLCD, DataVision DG12864-88, Topway LM12864LDW, Digitron SG12864J4, QY-12864F, TM12864L-2, 12864J-1
Вариант C: Shenzhen Jinghua Displays Co Ltd. JM12864
Вариант D: Wintek- Cascades WD-G1906G, Wintek - GEN/WD-G1906G/KS0108B, Wintek/WD-G1906G/S6B0108A, TECDIS/Y19061/HD61202, Varitronix/MGLS19264/HD61202

Список не полный, их очень много. Самый распространённый и, на мой взгляд, удобный WG12864B3 V2.0. Дисплей можно подключить к Arduino по последовательному или параллельному порту. При использовании с Arduino UNO лучше выбрать подключение по последовательному порту – тогда нам потребуется всего 3 выхода микроконтроллера, вместо минимум 13 линий при подключении по параллельному порту. Подключается все довольно просто. Есть еще один нюанс, в продаже можно встретить два варианта дисплеев, со встроенным потенциометром (для регулировки контраста) и без него. Я выбрал, и советую тоже сделать вам, со встроенным.


Это уменьшает количество деталей и время пайки. Также стоит поставить токоограничительный резистор номиналом 100 Ом для подсветки. Подключая напрямую 5 вольт, существует риск сжечь подсветку.
WG12864B – Arduino UNO
1 (GND) - GND
2 (VCC) - +5V
4 (RS) – 10
5 (R/W) – 11
6 (E) – 13
15 (PSB) – GND
19 (BLA) – через резистор - +5V
20 (BLK) – GND

Удобнее всего это все собрать сзади экрана и вывести от него 5 проводов подключения к Arduino UNO. В итоге должно получится примерно так:


Для тех кто все-таки выберет параллельное подключение приведу таблицу подключения.

И схема для экранов варианта B:



На одну линию связи может быть включено несколько датчиков. Для наших часов достаточно одного. Подключаем провод от контакта «DQ» ds18b20 к «pin 5» Arduino UNO.

Подготовка платы с кнопками.
Для установки времени и даты на часах будем использовать три кнопки. Для удобства спаиваем три кнопки на монтажной плате и выводим провода.


Подключаем следующим образом: общий для всех трех кнопок провод подключаем к «GND» Arduino. Первую кнопку, она служит для входа в режим установки времени и переключения по времени и дате, подключаем к «Pin 2». Вторая, кнопка увеличения значения, - к «Pin 3», а третья, кнопка уменьшения значения, - к «Pin 4».

Сборка всего воедино.
Чтобы избежать короткого замыкания, следует заизолировать экран. По кругу обматываем изолентой, а на заднюю часть крепим на двусторонний скотч, вырезанную по размеру, планку из изолирующего материала. Подойдет плотный картон или тонкий пластик. Я воспользовался пластиком от планшета для бумаги. Получилось следующее:


Спереди экрана по краю клеим двусторонний скотч на вспененной основе, желательно черный.


Подключаем экран к Arduino:


Плюс от батарейного отсека подключаем к «VIN» Arduino, минус к «GND». Размещаем его сзади Arduino. Перед установкой в корпус, не забудьте подключить датчик температуры и плату с кнопками.


Подготовка и заливка скетча.
Для датчика температуры нужна библиотека OneWire.

Вывод на экран осуществляется через библиотеку U8glib:

Для редактирования и заливки скетча надо установите эти две библиотеки. Сделать это можно двумя способами. Просто распаковать эти архивы и поместить распакованные файлы в папку «libraries», находящуюся в папке с установленной Arduino IDE. Или второй вариант установить библиотеки прямо в среде программирования. Не распаковывая скачанные архивы, в среде Arduino IDE выберите меню Скетч – Подключить библиотеку. В самом верху выпадающего списка выберите пункт «Добавить.Zip библиотеку». В появившемся диалоговом окне выберете библиотеку, которую вы хотите добавить. Снова откройте меню Скетч – Подключить библиотеку. В самом низу выпадающего списка вы должны увидеть новую библиотеку. Теперь библиотеку можно использовать в программах. Не забудьте после всего этого перезагрузить Arduino IDE.

Датчик температуры работает по протоколу One Wire и имеет уникальный адрес для каждого устройства - 64-разрядный код. Каждый раз искать этот код нецелесообразно. Поэтому необходимо вначале подключить датчик к Arduino, залить в нее скетч находящийся в меню Файл – Примеры – Dallas Temperature – OneWireSearch. Далее запускаем Инструменты - Монитор порта. Arduino должна найти наш датчик, написать его адрес и текущие показания температуры. Копируем или просто записываем адрес нашего датчика. Открываем скетч Arduino_WG12864B_Term, ищем строку:

Byte addr={0x28, 0xFF, 0xDD, 0x14, 0xB4, 0x16, 0x5, 0x97};//адрес моего датчика

Записываем адрес вашего датчика между фигурными скобками, заменяя адрес моего датчика.

Стока:

//u8g.setPrintPos(44, 64); u8g.print(sek); // Выводим секунды для контроля правильности хода

Служит для вывода секунд рядом с надписью «Data». Это необходимо для точной установки хода времени.
Если часы спешат или отстаю следует поменять значение в строке:

If (micros() - prevmicros >494000) { // поменять на другое для корректировки было 500000

Я опытным путем определил число, при котором часы идут достаточно точно. Если ваши часы спешат следует увеличить это число, если отстаю – уменьшить. Для определения точности хода и нужен вывод секунд. После точной калибровки числа, секунды можно закомментировать и таким образом убрать с экрана.

Итак, часы реального времени. Эта полезная штучка решает большинство полезных задач, связанных со временем. Допустим управление поливом в 5 часов утра на даче. Или включение и выключение освещения в определённый момент. По дате можно запускать отопление в каком-нибудь доме. Вещь достаточно интересная и полезная. А конкретно? Мы с вами рассмотрим часы реального времени DS1302 для популярной платформы Arduino.

Из этой статьи вы узнаете:

Доброго времени суток, уважаемые читатели блока kip-world! Как ваши дела? Напишите в комментариях, вы увлекаетесь робототехникой? Что значит для вас эта тема?

У меня ни на минуту не покидает мысль об этом. Я сплю и вижу, когда мы наконец — то придём к тому, что каждый сможет позволить себе купить персонального робота — помощника. Не важно, чем он будет заниматься, уборкой мусора, стрижкой газонов, мойкой автомобиля.

Я просто представляю себе, насколько сложные алгоритмы они должны содержать в своих «мозгах».

Ведь мы придём к тому, что мы будем так же прошивать ПО, как на персональных компах. Так же скачивать прикладные программы. Пришивать руки, ноги, менять клешни, манипуляторы.

Посмотрите фильмы «Я-робот», «Искусственный интеллект», «Звёздных воинов».

Японцы уже давно внедряют свои разработки. Чем мы хуже?? У нас очень слабая популярность. Я знаю немногих разработчиков. По пальцам пересчитать. Мы занимаемся другим. Мы перекупщики. Просто покупаем готовые наборчики, роботов — игрушек и всякую дребедень.

Почему не разрабатываем вот это:

Или вот это:

Я закончил свои размышления вслух. Давайте мы с вами поговорим о подключении Таймера часов реального времени DS1302 к Arduino.

Часы реального времени DS1302

Контроллер Arduino не имеет своих собственных часов. Поэтому в случае необходимости нужно дополнять специальной микросхемой DS1302.

По питанию эти платы могут использовать свой элемент питания, или запитываться непосредственно с платы Arduino.

Таблица распиновки:

Схема подключения c Arduino UNO:


Способ программирования Arduino для работы с DS1302

Обязательно нужно скачать действующую библиотеку из надёжных источников.

Библиотека позволяет считывать и записывать параметры реального времени. Небольшое описание я привожу ниже:

#include // Подключаем библиотеку.
iarduino_RTC ОБЪЕКТ (НАЗВАНИЕ [, ВЫВОД_RST [, ВЫВОД_CLK [, ВЫВОД_DAT ]]]); // Создаём объект.

Функция begin (); // Инициализация работы RTC модуля.

Функция settime (СЕК [, МИН [, ЧАС [, ДЕНЬ [, МЕС [, ГОД [, ДН ]]]]]]); // Установка времени.

Функция gettime ([ СТРОКА ]); // Чтение времени.

функция blinktime (ПАРАМЕТР [ ЧАСТОТА ] ); // Заставляет функцию gettime «мигать» указанным параметром времени.

функция period (МИНУТЫ ); // Указывает минимальный период обращения к модулю в минутах.

Переменная seconds // Возвращает секунды от 0 до 59.

Переменная minutes // Возвращает минуты от 0 до 59.

Переменная hours // Возвращает часы от 1 до 12.

Переменная Hours // Возвращает часы от 0 до 23.

Переменная midday // Возвращает полдень 0 или 1 (0-am, 1-pm).

Переменная day // Возвращает день месяца от 1 до 31.

Переменная weekday // Возвращает день недели от 0 до 6 (0-воскресенье, 6-суббота).

Переменная month // Возвращает месяц от 1 до 12.

Переменная year // Возвращает год от 0 до 99.

Пишем простенькую программу. Установка текущего времени в RTC модуль (DS1302):

Arduino

#include iarduino_RTC time(RTC_DS1302,6,7,8); void setup() { delay(300); Serial.begin(9600); time.begin(); time.settime(0,51,21,27,10,15,2); // 0 сек, 51 мин, 21 час, 27, октября, 2015 года, вторник } void loop(){ if(millis()%1000==0){ // если прошла 1 секунда Serial.println(time.gettime("d-m-Y, H:i:s, D")); // выводим время delay(1); // приостанавливаем на 1 мс, чтоб не выводить время несколько раз за 1мс } }

#include

iarduino _ RTCtime (RTC_DS1302 , 6 , 7 , 8 ) ;

void setup () {

delay (300 ) ;

Serial . begin (9600 ) ;

time . begin () ;

time . settime (0 , 51 , 21 , 27 , 10 , 15 , 2 ) ; // 0 сек, 51 мин, 21 час, 27, октября, 2015 года, вторник

void loop () {

if (millis () % 1000 == 0 ) { // если прошла 1 секунда

Serial . println (time . gettime ("d-m-Y, H:i:s, D" ) ) ; // выводим время

delay (1 ) ; // приостанавливаем на 1 мс, чтоб не выводить время несколько раз за 1мс

Считываем текущее время с RTC модуля (DS1302) и выводим в "Последовательный порт" :

#include iarduino_RTC time(RTC_DS1302,6,7,8); void setup() { delay(300); Serial.begin(9600); time.begin(); } void loop(){ if(millis()%1000==0){ // если прошла 1 секунда Serial.println(time.gettime("d-m-Y, H:i:s, D")); // выводим время delay(1); // приостанавливаем на 1 мс, чтоб не выводить время несколько раз за 1мс } }

Доброго времени суток. В сегодняшней статье мы изготовим необычные бинарные часы на базе Arduino своими руками . Разобравшись с процессом создания подобной поделки , в дальнейшем вы сможете повторить бинарные часы любой конструкции.

Шаг 1: Что же такое бинарные часы?

Для начала вспомним, что же такое бинарное (двоичное) число – это число представленное в двоичной системе исчисления, числовыми значениями, что используют всего два символа: 0 (ноль) и 1 (единица).

Бинарные часы – это часы, что отображают время в двоичном формате. В проекте используются 6 колонок светодиодов для отображения нулей и единиц. Каждая колонка отображает одну цифру/разряд, такой формат известен, как двоично-десятичное число (ДДЧ). Каждая линия отображает степень двойки, от 2^0 (или 1), до 2^3 (или 8). Поэтому всё, что нужно сделать при чтении информации с часов – просуммировать значения колонок с включенными светодиодами. Например, в первой колонке включены 4-й и 1-й светодиоды. Прибавляем 8 к 1 и получаем 9 (количество секунд равное 9). Следующая колонка десятые секунды, в ней светится только 3-й светодиод, поэтому общее значение будет равно 49 секундам, точно также с минутами и часами. Пожалуйста, отметьте следующее, что часы отображают время в 24-х часовом формате.

Шаг 2: Составные части

  • Arduino Pro Mini 328 5 V использовал такую плату, но фактически можете использовать любую другую. Если вы ни разу не использовали Pro Mini, то наверняка вам будет нужен CP 2102 (программатор) для подключения платы к компьютеру;

  • DS 1302 — модуль часов реального времени ;

  • 20-ть 10 мм диффузных «тёплых» светодиодов (советую брать с запасом);

  • 20-ть резисторов с номиналом сопротивления 10Ω;

  • 2 тактовые кнопки;

  • 2 резистора с номиналом сопротивления 10kΩ (используются, как нагрузочные резисторы).

Шаг 3: Изготавливаем прототип

Начнём изготавливать прототип будущей поделки . В принципе, это не обязательное условие, но нужно же посмотреть на то, как светодиодная матрица, Arduino и часовой модуль будут работать вместе. При прототипирование использовал Arduino Mega и простые красные светодиоды. Всё работает хорошо, как и ожидалось.

Шаг 4: Корпус

Корпус самоделки (состоит из двух половинок) будет изготовлен из дерева. Оно будет контрастно смотреться на фоне бинарных часов и придаст поделке ретро стиль.

Шаг 5: Схема

Светодиоды сгруппированы в матрицу, чтобы уменьшить количество задействованных выводов arduino. В нашем случае под матрицу отведено 9 выводов. После изготовления светодиодной матрицы, припаяем выводы к arduino, затем модуль часов, кнопки для настройки времени и под конец блок питания.

Шаг 6: Код

За основу кода взят пример с Arduino Playgroud post для модуля часов DS1302. После чего были внесены изменения для отображения времени на светодиодной матрице.

Понадобилось как-то сделать большие настенные часы с автоматической яркостью.

Такие часы отлично подойдут для больших помещений, например холл офиса или большая квартира.

Сделать такие большие настенные часы не представляет серьёзных сложностей при помощи данной инструкции.


Для оценки размера часов можно принять тот факт, что один сегмент часов будет размером с бумагу формата А4, что позволит легко использовать рамки для фотографий соответствующего размера.

Шаг 1. Составные части больших настенных часов.

Провода, припой, паяльник, лента светодиодная Arduino Nano DC-DC преобразователь LM2596
4 метра светодиодной ленты WS2811 датчик света часы реального времени DS3231
микропереключатели

Что я использовал для этого проекта:

Шаг 8. Программируем часы.

Немного повозившись, мне удалось получить часы, полностью удовлетворяющие моим потребностям. Я уверен что вам удастся сделать лучше моего.

Код хорошо прокоментирован и вам не составит труда в нём разобраться, сообщения отладки так-же прокоментированы очень хорошо.

Если вам нужно поменять используемый цвет настенных часов вам необходимо поменять переменную на строчке 22 (int ledColor = 0x0000FF; // Color used (in hex) ). Вы можете найти список цветов и их коды в hex на странице: https://github.com/FastLED/FastLED/wiki/Pixel-refe…

Если у вас возникли проблемы при загрузке, используйте зеркало:http://bit.ly/1Qjtgg0

Мой итоговый скетч можно скачать .

Шаг 9. Делаем цифры используя полистирол.

Основание резака Рабочий орган резака Общий вид резака
Результат работы резака

Разрежьте каждый сегмент в шаблоне, напечатаетанного в начале.
Полистирол можно разрезать острым ножом, что довольно трудно, либо нехитрым приспособлением из нихромовой проволоки или гитарной струны и нескольких отрезков ОСБ-плиты.

Вы можете видеть, как это сделал я в изображениях выше.

Для того, чтобы запитать резак я использовал 12v блок питания.

В результате отрезаний должны получиться четыре сегмента для больших часов, один из которых показан на фото.

Шаг 10. Приклеиваем цифры и закрываем всё рассеивателем. Итоговые большие настенные часы.

Свечение днем Свечение ночью

После вырезания всех четырех цифр и точек настенных часов приклеиваем их всех на картон вместе со светодиодными лентами (для упрощения процесса я использовал двустороннюю клейкую ленту)

Для того, чтобы рассеять жесткий светодиодный свет я использовал два листа бумаги поверх полистироловых цифр. Для удобства и эстетичности я использовал бумагу размера А2, сложенную вдвое.

После завершения всех этих шагов я поместил получившуюся сборку больших настенных часов в соответствующую им большую фоторамку.

Эти часы получились очень эффектными и притягивающими взгляд. Я думаю что такие большие настенные часы отлично украсят множество помещений.

Вконтакте

Во многих проектах Ардуино требуется отслеживать и фиксировать время наступления тех или иных событий. Модуль часов реального времени, оснащенный дополнительной батарей, позволяет хранить текущую дату, не завися от наличия питания на самом устройстве. В этой статье мы поговорим о наиболее часто встречающихся модулях RTC DS1307, DS1302, DS3231, которые можно использовать с платой Arduino.

Модуль часов представляет собой небольшую плату, содержащей, как правило, одну из микросхем DS1307, DS1302, DS3231.Кроме этого, на плате практически можно найти механизм установки батарейки питания. Такие платы часто применяется для учета времени, даты, дня недели и других хронометрических параметров. Модули работают от автономного питания – батареек, аккумуляторов, и продолжают проводить отсчет, даже если на Ардуино отключилось питание. Наиболее распространенными моделями часов являются DS1302, DS1307, DS3231. Они основаны на подключаемом к Arduino модуле RTC (часы реального времени).

Часы ведут отсчет в единицах, которые удобны обычному человеку – минуты, часы, дни недели и другие, в отличие от обычных счетчиков и тактовых генераторов, которые считывают «тики». В Ардуино имеется специальная функция millis(), которая также может считывать различные временные интервалы. Но основным недостатком этой функции является сбрасывание в ноль при включении таймера. С ее помощью можно считать только время, установить дату или день недели невозможно. Для решения этой проблемы и используются модули часов реального времени.

Электронная схема включает в себя микросхему, источник питания, кварцевый резонатор и резисторы. Кварцевый резонатор работает на частоте 32768 Гц, которая является удобной для обычного двоичного счетчика. В схеме DS3231 имеется встроенный кварц и термостабилизация, которые позволяют получить значения высокой точности.

Сравнение популярных модулей RTC DS1302, DS1307, DS3231

В этой таблице мы привели список наиболее популярных модулей и их основные характеристики.

Название Частота Точность Поддерживаемые протоколы
DS1307 1 Гц, 4.096 кГц, 8.192 кГц, 32.768 кГц Зависит от кварца – обычно значение достигает 2,5 секунды в сутки, добиться точности выше 1 секунды в сутки невозможно. Также точность зависит от температуры. I2C
DS1302 32.768 кГц 5 секунд в сутки I2C, SPI
DS3231 Два выхода – первый на 32.768 кГц, второй – программируемый от 1 Гц до 8.192 кГц ±2 ppm при температурах от 0С до 40С.

±3,5 ppm при температурах от -40С до 85С.

Точность измерения температуры – ±3С

I2C

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307. Важно правильно поставить скорость передачи на 57600 bps.

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

Пример проекта с i2C модулем часов и дисплеем

Проект представляет собой обычные часы, на индикатор будет выведено точное время, а двоеточие между цифрами будет мигать с интервалом раз в одну секунду. Для реализации проекта потребуются плата Arduino Uno, цифровой индикатор, часы реального времени (в данном случае вышеописанный модуль ds1307), шилд для подключения (в данном случае используется Troyka Shield), батарейка для часов и провода.

В проекте используется простой четырехразрядный индикатор на микросхеме TM1637. Устройство обладает двухпроводным интерфейсом и обеспечивает 8 уровней яркости монитора. Используется только для показа времени в формате часы:минуты. Индикатор прост в использовании и легко подключается. Его выгодно применять для проектов, когда не требуется поминутная или почасовая проверка данных. Для получения более полной информации о времени и дате используются жидкокристаллические мониторы.

Модуль часов подключается к контактам SCL/SDA, которые относятся к шине I2C. Также нужно подключить землю и питание. К Ардуино подключается так же, как описан выше: SDA – A4, SCL – A5, земля с модуля к земле с Ардуино, VCC -5V.

Индикатор подключается просто – выводы с него CLK и DIO подключаются к любым цифровым пинам на плате.

Скетч. Для написания кода используется функция setup, которая позволяет инициализировать часы и индикатор, записать время компиляции. Вывод времени на экран будет выполнен с помощью loop.

#include #include "TM1637.h" #include "DS1307.h" //нужно включить все необходимые библиотеки для работы с часами и дисплеем. char compileTime = __TIME__; //время компиляции. #define DISPLAY_CLK_PIN 10 #define DISPLAY_DIO_PIN 11 //номера с выходов Ардуино, к которым присоединяется экран; void setup() { display.set(); display.init(); //подключение и настройка экрана. clock.begin(); //включение часов. byte hour = getInt(compileTime, 0); byte minute = getInt(compileTime, 2); byte second = getInt(compileTime, 4); //получение времени. clock.fillByHMS(hour, minute, second); //подготовка для записывания в модуль времени. clock.setTime(); //происходит запись полученной информации во внутреннюю память, начало считывания времени. } void loop() { int8_t timeDisp; //отображение на каждом из четырех разрядов. clock.getTime();//запрос на получение времени. timeDisp = clock.hour / 10; timeDisp = clock.hour % 10; timeDisp = clock.minute / 10; timeDisp = clock.minute % 10; //различные операции для получения десятков, единиц часов, минут и так далее. display.display(timeDisp); //вывод времени на индикатор display.point(clock.second % 2 ? POINT_ON: POINT_OFF);//включение и выключение двоеточия через секунду. } char getInt(const char* string, int startIndex) { return int(string - "0") * 10 + int(string) - "0"; //действия для корректной записи времени в двухзначное целое число. В ином случае на экране будет отображена просто пара символов. }

После этого скетч нужно загрузить и на мониторе будет показано время.

Программу можно немного модернизировать. При отключении питания выше написанный скетч приведет к тому, что после включения на дисплее будет указано время, которое было установлено при компиляции. В функции setup каждый раз будет рассчитываться время, которое прошло с 00:00:00 до начала компиляции. Этот хэш будет сравниваться с тем, что хранятся в EEPROM, которые сохраняются при отключении питания.

Для записи и чтения времени в энергонезависимую память или из нее нужно добавить функции EEPROMWriteInt и EEPROMReadInt. Они нужны для проверки совпадения/несовпадения хэша с хэшем, записанным в EEPROM.

Можно усовершенствовать проект. Если использовать жидкокристаллический монитор, можно сделать проект, который будет отображать дату и время на экране. Подключение всех элементов показано на рисунке.

В результате в коде нужно будет указать новую библиотеку (для жидкокристаллических экранов это LiquidCrystal), и добавить в функцию loop() строки для получения даты.

Алгоритм работы следующий:

  • Подключение всех компонентов;
  • Проверка – на экране монитора должны меняться ежесекундно время и дата. Если на экране указано неправильное время, нужно добавить в скетч функцию RTC.write (tmElements_t tm). Проблемы с неправильно указанным временем связаны с тем, что модуль часов сбрасывает дату и время на 00:00:00 01/01/2000 при выключении.
  • Функция write позволяет получить дату и время с компьютера, после чего на экране будут указаны верные параметры.

Заключение

Модули часов используются во многих проектах. Они нужны для систем регистрации данных, при создании таймеров и управляющих устройств, которые работают по заданному расписанию, в бытовых приборах. С помощью широко распространенных и дешевых модулей вы можете создать такие проекты как будильник или регистратор данных с сенсоров, записывая информацию на SD-карту или показывая время на экране дисплея. В этой статье мы рассмотрели типичные сценарии использования и варианты подключения наиболее популярных видов модулей.