Подключение и управление светодиодной лентой к arduino. Светодиодная лента WS2812B. Светомузыкальная установка на Arduino. Подготовка к Новому году

Здравствуйте Хабр-сообщество.

В данное время стали доступны светодиодные ленты с изменяемым цветом свечения. Они классно выглядят, не дорого стоят и их можно хорошо приспособить для декоративной подсветки интерьера, рекламы, и т.д.

К таким лентам можно купить источник питания, диммер, диммер с пультом управления. Это позволит вам использовать светодиодную ленту для посветки. Однако если вы захотите запи запрограммировать алгоритм изменения цвета, или сделать управление из компьютера - то тут начинается разочарование. Вы в продаже не найдете диммеров с управлением через COM-порт или Ethernet.

Добро пожаловать под кат.

Теоретическая часть

Для реализации плавного изменения свечения всех 3 каналов нам потребуется сделать собственный димер. Сделать его очень просто, для этого требуется взять силовые ключи и управлять ими с помощью ШИМ сигнала. Также наш диммер должен быть программируемым и/или управляемым из вне.

В качестве мозгов идеально подходит Arduino. В её программу можно записать любой алгоритм изменения цветов, а также её можно управлять как с помощью модулей Arduino, так и удаленно по Ethernet, Ик-порту, Bluetooth, используя соответствующие модули.

Для реализации задуманного я выбрал Arduino Leonardo. Она одна из самых дешевых плат Arduino, и она имеет много выводов с поддержкой ШИМ.

PWM: 3, 5, 6, 9, 10, 11, and 13. Provide 8-bit PWM output with the analogWrite() function.

И так, источник ШИМ у нас имеется, остаётся придумать с силовыми ключами. Если побродить по интренет магазинам, то выяснится, что не существует модуля Arduino для управления RGB лентами. Или просто универсальных модулей с силовыми транзисторами. Также можно найти огромное количество сайтов радиолюбителей, которые делают платы с силовыми ключами сами.

Однако есть способ проще! Нас выручит модуль Arduino для управления двигателями. Этот модуль имеет все необходимое для нам - на нем установлены мощные ключи на 12В.

Пример такого модуля является «L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407». Такой модуль основан на микросхеме L298N, которая представляет из себя 2 моста. Однако мостовое включение полезно для двигателя (от этого он может менять направление вращения), а в случае RGB ленты, оно бесполезное.

Мы будем использовать не весь функционал этой микросхемы, а только 3 её нижних ключа, подключив ленту как показано на рисунке.

Практическая часть часть

Для реализации потребуется Arduino Leonardo, Модуль управления двигателями L298N, Источник 12В (для запитки ленты), сама RGB лента, соединительные провода.
Для удобства подключения я еще использовал Fundruino IO Expansion, но он никакой функциональной нагрузки не несет.

Схема подключения показана на рисунке.

Хочу дополнительно описать питание системы. В данной схеме питание подается на модуль управления двигателями, в нем стоит понижающий источник питания на 5В, и эти 5В я подаю на вход Vin питания Arduino. Если разорвать эту связь (естественно земли оставив соединенными), то запитывать Arduino и силовые ключи можно от разных источников питания. Это может быть полезно когда к Arduino много всего подключено, и источник в модуле управления двигателями не справляется (выключается по перегреву).

Управляется RGB лента с помощью команд analogWrite, которая настраивает выход для формирования ШИМ сигнала.

Исходный код программы для arduino:
#define GRBLED_PIN_R 9 // пин для канала R #define GRBLED_PIN_G 10 // пин для канала G #define GRBLED_PIN_B 11 // пин для канала B int rgbled_r=0, rgbled_g=0, rgbled_b=0; void setup(){ //enable serial datada print Serial.begin(9600); Serial.println("RBG LED v 0.1"); // RGBLED pinMode(GRBLED_PIN_R, OUTPUT); pinMode(GRBLED_PIN_G, OUTPUT); pinMode(GRBLED_PIN_B, OUTPUT); } void loop(){ // change color rgbled_r = (rgbled_r+1)%1024; rgbled_g = (rgbled_g+2)%1024; rgbled_b = (rgbled_b+3)%1024; // Output Z1_output_rgbled(); delay(1); } void Z1_output_rgbled() { analogWrite(GRBLED_PIN_R, rgbled_r); analogWrite(GRBLED_PIN_G, rgbled_g); analogWrite(GRBLED_PIN_B, rgbled_b); }

На видео можно увидеть как это работает:

Экономическая часть






















L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407 $ 5.31 1
Leonardo R3 Development Board for Arduino Compatiblae + USB Cable Wire FZ0437 $ 10.00 1
5050 LED Strip RGB and single color 5M DC12V/24V 60leds/m Waterproof Flexible Car auto Strip Light saving light $ 12.38 1
Retail AC85~265V to DC 12V/6A power supply adaptor transformer switching for led light $ 9.98 1

Итого $37,65 = 1 300 руб

Вместо заключения

Для тех, кто захочет повторить описанную здесь схему - хочу заметить, что драйвер L298N рассчитан на ток 2-3А, а RGB светодиодные ленты, на светодиодах 5050 с плотностью 60 светодиодов на метр, продающиеся по 5 метров, могут потреблять до 6А. По этому если вы хотите использовать длинные и яркие ленты - возможно потребуется схему модернизировать (подключать ленту по сегментам, или взять более мощный драйвер) или использовать ленты по проще.

На этом занятии мы будем использовать цифровые и аналоговые выходы с «широтно импульсной модуляцией» на плате Arduino для включения RGB светодиода с различными оттенками. Использование RGB LED ленты позволяет создать освещение интерьера с любым оттенком цвета. Расскажем про устройство и распиновку полноцветного (RGB) светодиода и рассмотрим директиву #define в языке C++.

Устройство и назначение RGB светодиода

Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red - красный, Green - зеленый, Blue - синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении . Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.

RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке .

Фото. Распиновка RGB светодиода и модуль с RGB светодиодом для Ардуино

Распиновка RGB светодиода указана на фото выше. Заметим также, что для многих полноцветных светодиодов необходимы светорассеиватели, иначе будут видны составляющие цвета. Далее подключим RGB светодиод к Ардуино и заставим его светится всеми цветами радуги с помощью «широтно импульсной модуляции».

Управление RGB светодиодом на Ардуино

Аналоговые выходы на Ардуино используют «широтно импульсную модуляцию» для получения различной силы тока. Мы можем подавать на все три цветовых входа на светодиоде различное значение ШИМ-сигнала в диапазоне от 0 до 255, что позволит нам получить на RGB LED Arduino практически любой оттенок света.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • RGB светодиод;
  • 3 резистора 220 Ом;
  • провода «папа-мама».

Фото. Схема подключения RGB LED к Ардуино на макетной плате

Модуль «RGB светодиод» можно подключить напрямую к плате, без проводов и макетной платы. Подключите модуль с полноцветным RGB светодиодом к следующим пинам: Минус — GND, B — Pin13, G — Pin12, R — Pin11 (смотри первое фото). Если вы используете RGB LED (Light Emitting Diode), то подключите его по схеме на фото. После подключения модуля и сборки схемы на Ардуино загрузите скетч.

Скетч для мигания RGB светодиодом

#define RED 11 // Присваиваем имя RED для пина 11 #define GREEN 12 // Присваиваем имя GREEN для пина 12 #define BLUE 13 // Присваиваем имя BLUE для пина 13 void setup () { pinMode(RED, OUTPUT ); pinMode(GREEN, OUTPUT ); // Используем Pin12 для вывода pinMode(BLUE, OUTPUT ); // Используем Pin13 для вывода } void loop () { digitalWrite (RED, HIGH ); // Включаем красный свет digitalWrite (GREEN, LOW ); digitalWrite (BLUE, LOW ); delay (1000); digitalWrite (RED, LOW ); digitalWrite (GREEN, HIGH ); // Включаем зеленый свет digitalWrite (BLUE, LOW ); delay (1000); // Устанавливаем паузу для эффекта digitalWrite (RED, LOW ); digitalWrite (GREEN, LOW ); digitalWrite (BLUE, HIGH ); // Включаем синий свет delay (1000); // Устанавливаем паузу для эффекта }

Пояснения к коду:

  1. с помощью директивы #define мы заменили номер пинов 11, 12 и 13 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
  2. в процедуре void setup() мы назначили пины 11, 12 и 13, как выходы;
  3. в процедуре void loop() мы поочередно включаем все три цвета на RGB LED.
  4. Плавное управление RGB светодиодом

    Управление rgb светодиодом на Arduino можно сделать плавным, используя аналоговые выходы с «широтно импульсной модуляцией». Для этого цветовые входы на светодиоде необходимо подключить к аналоговым выходам, например, к пинам 11, 10 и 9. И подавать на них различные значения ШИМ (PWM) для различных оттенков. После подключения модуля с помощью проводов «папа-мама» загрузите скетч.

    Скетч для плавного мигания RGB светодиода

    #define RED 9 // Присваиваем имя RED для пина 9 #define GREEN 10 // Присваиваем имя GREEN для пина 10 #define BLUE 11 // Присваиваем имя BLUE для пина 11 void setup () { pinMode (RED, OUTPUT ); // Используем Pin9 для вывода pinMode (GREEN, OUTPUT ); // Используем Pin10 для вывода pinMode (BLUE, OUTPUT ); // Используем Pin11 для вывода } void loop () { analogWrite (RED, 50); // Включаем красный свет analogWrite (GREEN, 250); // Включаем зеленый свет analogWrite (BLUE, 150); // Включаем синий свет }

    Пояснения к коду:

    1. с помощью директивы #define мы заменили номер пинов 9, 10 и 11 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
    2. пины 11, 12 и 13 мы использовали, как аналоговые выходы analogWrite .

Данный проект посвящен тому, как сделать светодиодную подсветку, управляемую с соседней комнаты, чтобы не вставать с дивана. Светодиодная RGB-подсветка одинаково хорошо украшает как маленький аквариум, так и большую комнату.

Можно засветить разными цветами баню от RGB ленты на Arduino. Создать, так сказать, баню на микропроцессорном управлении от Arduino.

Всего лишь понадобятся для сборки RGB-подсветки такие компоненты:

  1. Bluetooth модуль HC-05 для беспроводной связи с Arduino.
  2. Плата Arduino nano, mini, Uno с микропроцессором ATmega 8, ATmega 168, ATmega 328.
  3. Светодиодная лента RGB, при необходимости во влагозащитном исполнении IP65 или без него.
  4. Смартфон с Android как пульт управления RGB-подсветкой.
  5. Полевые MOSFET транзисторы, такие как P3055LD, P3055LDG, PHD3355L, но лучше с выводами для закрепления в монтажных отверстиях. Биполярные транзисторы работают хуже .
  6. Резисторы 10 кОм, 0.125 Вт - 3 штуки.

Немного теории про подключение RGB ленты к Arduino

Нельзя подключить светодиодную полоску напрямую к плате Arduino. Светодиодная лента светиться от 12 В, тогда как микропроцессору нужно для работы всего 5 В.

Но, самая главная проблема в том, что выходы микропроцессора не имеют достаточной мощности для питания целой ленты светодиодов. В среднем метровой длины светодиодная полоса потребляет 600 мА. Такой ток точно выведет из строя плату Arduino.

Используемые ШИМ выходы микропроцессора не имеют достаточной мощности, чтобы засветить RGB ленту, но всё-таки их можно использовать для снятия сигнала управления.

Для развязки по питанию, в качестве ключей, рекомендуется использовать транзисторы. Лучше использовать полевые MOSFET транзисторы: им для открытия нужен мизерный ток на «затвор», к тому же они имеют большую мощность в сравнении с биполярными ключами такого же размера.

RGB ленты к Arduino

На электромонтажной схеме на управление лентой задействованы ШИМ-выхода: 9 (красный), 10 (зеленый), 11 (голубой).

Три резистора по 10 кОм, 0.125 Вт повешены на «затвор» каждого транзистора.

Плюс от блока питания 12 В (красный провод) идет напрямую на RGB ленту.

Минус от блока питания 12 В (черный провод) распределяется по «истокам» полевых транзисторов.

«Сток» каждого транзистора связан с отдельным контактом ленты: R, G, B. Рекомендуется для удобства при подключении использовать провода красного, зеленого, голубого цвета.

Контакт заземления GND платы Arduino следует посадить на минус входного питания.

Сама плата Arduino Uno запитывается от отдельного сетевого адаптера. Для Arduino nano, mini потребуется собрать простенький источник питания на интегральном стабилизаторе 7805.

Подключение Bluetooth модуля HC-05:

  • VCC - 5V (питание +5 В);
  • GND - GND (земля, общий);
  • RX - TX на Arduino nano, mini, Uno;
  • TX - RX на Arduino nano, mini, Uno;
  • LED - не используется;
  • KEY - не используется.

Приведенный ниже эскиз программы является универсальным для управления как одним светодиодом, так и светодиодной полосой. Главное оставить нужные строчки, а ненужные удалить или сделать комментариями в косых черточках.

Unsigned long x; int LED = 9; // зеленый подключен к 9 пину int LED2 = 10; // синий подключен к 10 пину int LED3 = 11; // красный подключен к 11 пину int a,b,c = 0; void setup() { Serial.begin(9600); Serial.setTimeout(4); pinMode(LED, OUTPUT); pinMode(LED2, OUTPUT); pinMode(LED3, OUTPUT); } void loop() { if (Serial.available()) { x = Serial.parseInt(); if (x>=0 && x<=255) { a = x; // для RGB ленты //a = 255-x; // для светодиода analogWrite(LED, a); } if (x>=256 && x<=511) { b = x-256; // для RGB ленты //b = 511-x; // для светодиода analogWrite(LED2, b); } if (x>=512 && x<=767) { c = x-512; // для RGB ленты //c = 767-x; // для светодиода analogWrite(LED3, c); } /* Serial.println(x); Serial.println(a); Serial.println(b); Serial.println(c); */ } }

Если понадобиться подключить один RGB светодиод, тогда есть электромонтажная схема его подключения.

Установка приложения на телефон

Скачиваем приложение с коротким названием RGB на телефон. .

После установки запускаем приложение по иконке.

Кликаем по надписи

Находим в списке установленный Bluetooth модуль HC-05.

При наличии связи вместо надписи будет отображаться адрес и название установленного модуля Bluetooth.

Ну, вот и всё, управление RGB подсветкой налажено!

Вот видео-пример работы нашего проекта:

GPS часы на Arduino Биометрический замок – Схема и сборка ЖК дисплея

Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

Принцип управления нагрузкой через Ардуино

Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

Синтаксис команд

Цифровой вывод:

pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

Аналоговый вывод:

analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

Способы управления светодиодами через Ардуино

Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
Способы подключения нагрузки
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() {
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);

pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
}
void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
{
led = led + 5;

analogWrite(4, led);
}
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
{
led = led — 5;

analogWrite(4, led);
}

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Модули управления Ардуино

Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

ИК-управление

Модуль позволяет запрограммировать до 20 команд.

Радиус сигнала около 8м.

Цена комплекта 6 у.е.

По радиоканалу

Четырёхканальный блок с радиусом действия до 100м

Цена комплекта 8 у.е.

Позволяет включать освещение еще при приближении к квартире.

Бесконтактное

Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

Радиус действия до 5м.

Цена модуля 0,3 у.е.

В прошлый раз был рассмотрен способ подключения светодиодной ленты к ардуино через драйвер L298. Управление цветом осуществлялось программно - функция Random. Теперь пришла пора разобраться, как управлять цветом светодиодной ленты на основании показаний датчика температуры и влажности DHT 11.

За основу взят пример подключения светодиодной ленты через драйвер L298. Плюсом ко всему в пример добавлен дисплей LCD 1602, который будет отображать показания датчика DHT 11.

Для проекта понадобятся следующие элементы Ардуино:

  1. Плата Ардуино УНО.
  2. Дисплей LCD 1602 + I2C.
  3. Датчик температуры и влажности DHT
  4. Светодиодная лента.
  5. Драйвер L298.
  6. Блок питания 9-12В.
  7. Корпус для ардуино и дисплея (по желанию).

Первым делом посмотрим на принципиальную схему (рис. 1). На ней можно увидеть, как нужно подключить все вышеперечисленные элементы. В сборке схемы и подключении ничего сложного нет, однако стоит упомянуть об одном нюансе, о котором большинство людей забывают, и в итоге получают неправильные результаты работы LED – ленты с Ардуино.

Рисунок 1. Принципиальная схема подключения Arduino и светодиодной ленты с датчиком DHT 11

Во избежание некорректной работы светодиодной ленты (мерцание, несоответствие цветов, неполное свечение и т.д.), питание всей схемы необходимо сделать общим, т.е. объединить контакты GND (земля) контроллера Ардуино и драйвера L298 (светодиодной ленты). Как это сделать, можно посмотреть на схеме.

Пару слов о подключении датчика влажности. Если покупать голый DHT 11, без обвязки, то между первым и вторым контактами, 5В и Data, соответственно, нужно впаять резистор номиналом 5-10 кОм. Диапазон измерения температуры и влажности написан на обратной стороне корпуса датчика DHT 11. Температура: 0-50 градусов по Цельсию. Влажность: 0-80%.


Рисунок 2. Правильное подключение датчика влажности DHT 11

После сборки всех элементов проекта по схеме, необходимо написать программный код, который заставит все это работать так, как нам нужно. А нужно нам, чтобы светодиодная лента изменяла цвет в зависимости от показаний датчика DHT 11 (влажности).

Для программирования датчика DHT 11 понадобится дополнительная библиотека.

Код программы Arduino и RGB – лента. Изменение цвета ленты в зависимости от влажности.

#include #include //библиотека для работы с дисплеем LCD 1602 #include //библиотека для работы с датчиком влажности и температуры DHT 11 int chk; //переменная будет хранить все данные с датчика DHT11 int hum; //переменная будет хранить показания влажности с датчика DHT11 dht11 DHT; //объект типа DHT #define DHT11_PIN 4 //контакт Data датчика DHT11 подключен на вход 4 #define LED_R 9 // пин для канала R #define LED_G 10 // пин для канала G #define LED_B 11 // пин для канала B //переменные будут хранить значения цветов //при смешивании всех трех цветов будет получаться необходимый цвет int led_r=0, led_g=0, led_b=0; //объявление объекта дисплея с адресом 0х27 //не забываем использовать в проекте дисплей через плату I2C LiquidCrystal_I2C lcd(0x27,16,2); void setup() { //создание дисплея lcd.init(); lcd.backlight(); // объявляем пины выходами pinMode(LED_R, OUTPUT); pinMode(LED_G, OUTPUT); pinMode(LED_B, OUTPUT); } void loop() { chk = DHT.read(DHT11_PIN);//читаем данные с датчика DHT11 //вывод данных на дисплей lcd.print("Temp: "); lcd.print(DHT.temperature, 1); lcd.print(" C"); lcd.setCursor(0,1); lcd.print("Hum: "); lcd.print(DHT.humidity, 1); lcd.print(" %"); delay(1500); //для корректной работы датчика нужна задержка на опрос lcd.clear(); hum = DHT.humidity; //берем показания влажности //в диапозоне от 19 до 30% влажности выдать зеленый цвет if ((hum >= 19) && (hum <= 30)) { led_r = 1; led_g = 255; led_b = 1; } //в диапозоне от 31 до 40% влажности выдать красный цвет if ((hum >= 31) && (hum <= 40)) { led_r = 255; led_g = 1; led_b = 1; } //в диапозоне от 41 до 49% влажности выдать синий цвет if ((hum >= 41) && (hum <= 49)) { led_r = 1; led_g = 1; led_b = 255; } // подача сигналов цвета на выхода analogWrite(LED_R, led_r); analogWrite(LED_G, led_g); analogWrite(LED_B, led_b); }

Метки: Метки