Что такое параллельные и последовательные порты пк. Устранение ошибок в портах. Отрывок, характеризующий Последовательные и параллельные порты ввода-вывода

Порты ввода - вывода. Устройства параллельного и последовательного ввода - вывода

Порт ввода-вывода

Канал передачи данных между устройством и микропроцессором. Порт представляется в микропроцессоре как один или несколько адресов памяти, из которых можно прочитать или в которые можно записать данные.

Параллельный порт

Разъем ввода/вывода для подключения устройств параллельного интерфейса. Большинство принтеров подключаются к параллельному порту.

Последовательный порт

Порт компьютера для организации побайтной асинхронной связи. Последовательный порт называется также коммуникационным или COM – портом.

Асинхронная связь

Форма передачи данных, в которой информация передается и принимается через нерегулярные интервалы времени, один символ за раз. Так как данные принимаются через нерегулярные интервалы времени, получающему модему должно быть передано сообщение, позволяющее ему определить, когда начинаются и заканчиваются биты данных символа. Для этого предназначены стартовый и стоповый биты.

Параллельный порт (LPT)

(25 – контактный разъем). Предназначен для подключения принтера, сканера, а также – внешних устройств для хранения и траспортировки информации (накопителей). До недавнего времени отличался сравнительно высокой скоростью передачи данных (около 2 Мбайт/с). Как правило, LPT – разъем на задней стенке компьютера единственный.

Последовательные порты (COM) (9 – и 25 – контактный разъем) отличаются куда меньшей скоростью (около 112 кбайт/с). Потому и выпадала на их долю поддержка всяческих «неспешных» устройств – например, мыши или модема. Первоначально COM – портов на компьютере было четыре, однако со временем их осталось лишь два. Мышь предпочла последовательному порту свой собственный разъем PS/2, разделив его с клавиатурой, а на долю COM – порта осталась лишь поддержка медлительного модема. Со временем и модем эмигрирует к новому порту USB – тогда COM – порт окончательно и бесповоротно уйдет в прошлое.

В свое время мышь и клавиатура подключались к разным разъемам: мышь по соседству с модемом на COM – порте, а клавиатура имела свой собственный, ни на что не похожий разъем. PS/2 – порт впервые появился на массовых материнских платах в 1998 году. Подключить к нему что – то кроме мыши и клавиатуры не получится.

Последовательный порт и интерфейс USB.

Эту новинку, успешно дебютирующую в 2000 году, называли одной из самых значительных новаций десятилетия. Одним из главных плюсов USB является то, что на один USB – порт можно подключить 127 устройств (в отличие от старых портов: к каждому можно было подключить только одно устройство). Все USB – устройства могут подключаться к компьютеру «по цепочке» - в том случае, если у каждого «звена» имеется свой USB – порт или USB – хаб на несколько портов одновременно. Единственное правило, которое следует соблюдать при работе с USB – первыми в цепочке должны быть самые производительные устройства: принтер, сканер, колонки, накопители. А в самом конце - медленные клавиатура и мышь.

Еще одно важное качество USB – этот интерфейс позволяет подключать к компьютеру любые устройства без перезагрузки системы.

Скорость первой модификации USB (а именно к этому стандарту относятся все устройства, выпущенные до конца 2000 года) составляет около 12 Мбайт/с (на деле ряд подключенных к USB устройств работает с куда меньшей скоростью – до 1,5 Мбайт/с). Новая спецификация шины USB 2.0, принятая в апреле 2000 года, планировала увеличить скорость передачи данных до 60 Мбайт/с, однако новые устройства, поддерживающие такую скорость обмена, вышли на рынок только в конце года. USB 2.0 совместима с устройствами USB старого формата, но работать они будут с прежней скоростью.

Инфракрасный порт

Оптический порт, предназначенный для связи компьютера с другими компьютерами или устройствами посредством инфракрасного излучения, без кабелей. Инфракрасные порты применяются на некоторых переносных компьютерах, принтерах и камерах.

Одним из самых старых портов компьютера является LPT-порт или параллельный порт. И хотя LPT-порт сейчас можно увидеть далеко не на всякой материнской плате, тем не менее, читателям, возможно, интересно было бы узнать, что он из себя представляет.

Прежде всего, разберемся с названием порта. Возможно, далеко не все знают, что обозначает аббревиатура LPT. На самом деле, LPT – это сокращение от словосочетания Line Print Terminal (построчный принтерный терминал). Таким образом, становится понятным, что LPT-порт предназначался, прежде всего, для подключения принтеров. Именно поэтому порт LPT имеет и еще одно название – порт принтера. Хотя теоретически могут подключаться к LPT и другие устройства.

LPT-порт имеет давнюю историю. Он был разработан фирмой Centronics (поэтому данный порт часто называют также портом Centronics), производившей матричные принтеры еще до начала эпохи персоналок, в начале 1970-х. А в начале 1980-х LPT-порт стал использоваться фирмой IBM в своих компьютерах и на какое-то время стал стандартным портом для подключения высокоскоростных (на то время) устройств.

Внешний вид параллельного порта на задней панели компьютера

Интерфейс LPT существовал в нескольких редакциях. В оригинальной версии LPT-порт был однонаправленным, то есть мог передавать данные лишь в одном направлении – к периферийному устройству. Разумеется, такая ситуация не устраивала пользователей, поскольку существовали принтеры, которые требовали передачи данных в обоих направлениях. Поэтому впоследствии интерфейс LPT несколько раз был усовершенствован, пока не был разработан его международный стандарт IEEE 1284. В соответствии с этим стандартом интерфейс параллельного порта поддерживал несколько режимов работы и был также совместим со старыми стандартами. Кроме того, интерфейс в своей конечной редакции поддерживал относительно высокие скорости передачи данных – до 5 Мб/с.

Принцип работы параллельного порта

Порт LPT называется параллельным потому, что в подключаемом к нему кабеле данные передаются параллельно, то есть, одновременно по нескольким проводникам. Этим свойством параллельный порт отличается от другого порта компьютера –последовательного порта COM.

Проводников, передающих сами данные, в кабеле Centronics насчитывается 8. Кроме того, в кабеле присутствует несколько линий, по которым передаются управляющие сигналы.

Хотя параллельный порт большей частью используется для подключения принтеров, тем не менее, существовали и другие его применения. Во-первых, при помощи порта LPT можно напрямую соединить два компьютера – посредством специального кабеля Interlink. До широкого распространения сетевых карт Ethernet подобное соединение, хоть и не обеспечивавшее пользователю большую скорость передачи данных, зачастую было, тем не менее, единственным способом связать два компьютера. Существуют также электронные ключи, предназначенные для подключения к порту LPT.

Кабель для передачи данных между компьютерами - Interlink

Как и в случае многих других устройств на материнской плате, режимы работы параллельного порта часто можно настроить через BIOS Setup. Как правило, для этого используются такие опции BIOS, как Parallel Port, Parallel Port IRQ, Parallel Port DMA и т.п.

Разъем параллельного порта на материнской плате и кабель Centronics

Разъем порта LPT обычно располагается непосредственно материнской плате, хотя до середины 1990-x гг. он обычно присутствовал на вставляемой в слот расширения так называемой мультикарте, на которой были также расположены другие порты компьютера. Выход порта представляет собой 25-контактный разъем типа «розетка», который называется разъемом DB25.

ISA мультикарта с LPT(DB25 - «мама») и игровым портом на борту.

Для подключения к принтеру используется специальный кабель ­­– кабель Centronics. Один конец (вилка) кабеля Centronics подключается к порту, другой (также вилка) – к специальному разъему принтера. Последний разъем имеет 36 контактов. Следовательно, особенностью кабеля Centronics является то, что он имеет разные разъемы с обеих сторон.

Внешний вид кабеля Centronics.

Хотя часто разъем кабеля для материнской платы называется разъемом Centronics, тем не менее, строго говоря, разъемом Centronics называется лишь 36-контактный разъем для подключения к принтеру, а не к материнской плате. Разъем кабеля для подключения к порту называется разъемом Amphenolstacker, от названия разработавшей его американской фирмы Amphenol, производящей разъемы.

Особенности работы параллельного порта

Благодаря тому, что LPT-порт поддерживает параллельную передачу данных, в первых ПК этот порт считался одним из самых скоростных портов компьютера. Передача данных по нескольким линиям во многом сближает интерфейс LPT по архитектуре с компьютерными шинами. Тем не менее, это обстоятельство накладывает и ограничение на длину кабеля, которая из-за возникающих в кабеле помех не может превышать 5 м.

Максимальное напряжение, использующееся в сигнальных линиях порта, составляет +5 В. Для простой передачи данных требуется всего лишь десять сигнальных линий – это 8 линий собственно данных, линия строб-сигнала, то есть, сигнала о готовности порта к передаче данных, и линия занятости. Остальные линии используются для совместимости со стандартом Centronics.

LPT-порт типа «мама» с нумерацией контактов.

Назначение выводов разъема параллельного порта DB25:

  • 1 – Data strobe (Строб-сигнал)
  • 2-9 – Данные, биты 0-7
  • 10 – Acknowledge (Подтверждение от принтера)
  • 11 – Busy (Занят)
  • 12 – Paper Out (Кончилась бумага)
  • 13 – Select (Принтер активен)
  • 14 – Auto Feed (Автоматическая подача)
  • 15 – Error (Ошибка)
  • 16 – Init (Инициализация принтера)
  • 17 – Select Input (Выбор устройства)
  • 18-25 – Земля

Заключение

LPT-порт представляет собой интерфейс персонального компьютера, который в настоящее время считается устаревшим и не имеет значительной поддержки со стороны производителей компьютерного оборудования и программного обеспечения. Однако параллельный порт до сих успешно используется во многих устаревших моделях компьютеров и принтеров.

Terminal . Сразу после первого запуска программа спросит вас о том, желаете ли вы сделать Hyper Terminal Telnet-приложением, используемым по умолчанию. Вы можете ответить ей Да и продолжать работу. В следующем окне программы вам надо будет дать имя подключению и выбрать значок для него.

Теперь вы попадаете в окно программы, где вам предложат выбрать способ подключения (в нашем случае это будет название модема, рис. 6.31) и ввести номер телефона, к которому следует подключиться.


Рис. 6.31.

Риску атаки подвергаются все Bluetooth -устройства. Главная рекомендация, которую можно применить для предотвращения подобных атак, заключается в том, чтобы не включать обнаружение Bluetooth -устройства без нужды. Однако, даже следование этому совету не избавит вас от риска.

Давайте рассмотрим некоторые Bluetooth -атаки и способы защиты от них. В табл. 6.1 (при построении таблицы использовались данные сайтов www.trifinity.org и www.bluejack.ru .) приведена информация об атаках и способах защиты от них.

Надо отметить, что Bluetooth -атаки возможны на небольшом расстоянии – обычно 10-15 метров, хотя возможность использования направленных антенн увеличивает это расстояние .

Таблица 6.1. Защита от Bluetooth -атак аппаратного адреса устройства, с которым данное устройство уже обменивалось данными.
Название атаки Описание Способы защиты
BlueBug Могут быть атакованы многие модели сотовых телефонов. Злоумышленник получает практически полный доступ к аппарату: может читать и отправлять SMS, совершать звонки, просматривать и править адресную книгу, выходить в Интернет через атакованный аппарат и так далее. Владельцам старых мобильников заменить прошивку на более новую, владельцам всех аппаратов отклонять подозрительные запросы на соединение, включить защиту Bluetooth -соединения, отключать Bluetooth тогда, когда в нем нет необходимости
BlueSmack Могут быть атакованы различные BT-устройства. Это – атака типа DOS ( Denial of Service – отказ в обслуживании ). Восприимчивое к атаке устройство сразу же "падает" - виснет, или перезагружается. Программных способов защиты пока не существует, единственное, что можно порекомендовать – выключать Bluetooth тогда, когда в нем нет необходимости.
CarWhisperer Могут быть атакованы звуковые системы автомобилей, оборудованные Bluetooth . Атака основана на подборе кода доступа к устройству, после чего злоумышленник может им пользоваться. Изменить заводской код доступа к устройству.
BlueChop Атака, направленная на разрушение пикосетей. Пожалуй, наиболее действенным методом борьбы с этой атакой будет поиск злоумышленника, который расположен неподалеку (десятки метров) от вашей пикосети.
BlueBump Атака, основанная на методах социальной инженерии. Сначала атакующий легально соединяется с устройством жертвы, посылая ему бизнес-карточку и запрос на подключение, после чего соединение может быть удалено, а злоумышленник создает дополнительное подключение, до удаления которого может свободно соединяться с устройством. Не принимать подозрительных запросов на подключение
HeloMoto Атака на телефоны Motorola, которую можно представить как комбинацию атак BlueBug и BlueSnarf . Особенности реализации Bluetooth в телефонах от Motorola заключаются в том, что аппараты доступны для обнаружения в течение 60 секунд после активации интерфейса. Если злоумышленник не попался вам в эти 60 секунд, то вам можно не опасаться этой атаки.

Поговорив о Bluetooth -безопасности, обсудим сетевые проблемы .

28. Параллельный и последовательный порты.
Параллельный и последовательный порты используются не только для
подключения принтера и модема, для которых были в свое время
разработаны. Простота исполнения и отработанный протокол приемапередачи данных сделали их незаменимыми для подключения к ПЭВМ
различных низкоскоростных устройств, применяющихся в промышленности
и научных исследованиях.
Параллельный порт (интерфейс Centronics).
Основным назначением интерфейса Centronics (аналог - ИРПР-М)
является подключение к компьютеру принтеров различных типов.
Поэтому распределение контактов разъема, назначение сигналов,
программные средства управления интерфейсом ориентированы именно на
это использование.
В то же время с помощью данного интерфейса можно подключать к
компьютеру и другие специально разработанные внешние устройства.
Скорость обмена по интерфейсу Centronics – 129-200 кБ/с.
Стандартный параллельный порт предназначен только для
односторонней передачи информации от ПЭВМ к принтеру.
Усовершенствованный порт ЕРР (Enhanced Parallel Port) является
двунаправленным, позволяет подключать до 64-х устройств и обеспечивает
скорость передачи данных с использованием ПДП до 2 мБ/с.
Расширенный порт ECP (Extended Capability Port) позволяет подключить
до 128 устройств и поддерживает режим компрессии (сжатия) данных.

Схема контроллера параллельного порта i8255A.
А1
А2
IOR
IOW
RESET
A7, A15
Устройство
управления
А
БР Канал данных В
В
БР Канал данных С
С
Внешнее устройство
Буфер
управления
БР Канал данных А
Внутренняя шина данных
Системная шина
Буфер данных
Сигналы управления
Контроллер параллельного обмена представляет собой 3-хканальный
байтовый интерфейс и позволяет организовать обмен данными в трех
режимах:
Режим 0 – синхронный однонаправленный ввод/вывод (4 порта А, В, С1, С2).
Режим 1 – асинхронный однонаправленный ввод/вывод (2 порта А и В).
Режим 2 – асинхронный двунаправленный ввод/вывод (1 порт А).
Программирование режимов работы каналов контроллера
осуществляется передачей в буфер управления соответствующего кода.

Сигналы Centronics имеют следующее назначение:
D0...D7 - 8-разрядная шина данных для передачи из компьютера в принтер.
-STROBE - сигнал стробирования (сопровождения) данных.
-АСК - сигнал подтверждения принятия данных и готовности принтера.
BUSY - сигнал занятости принтера обработкой полученных данных и
неготовности принять следующие данные.
-AUTO FD - сигнал автоматического перевода строки (каретки).
РЕ - сигнал конца бумаги (режим ожидания).
SLCT - сигнал готовности приемника (принтера).
-SLCT IN - сигнал принтеру о том, что последует передача данных.
-ERROR - сигнал ошибки принтера.
-INIT - сигнал инициализации (сброса) принтера и очистки буфера печати.
Контакт разъема компьютера
Цепь
I/O
Контакт разъема принтера
1
-STROBE
О
1
2 … 9
DO … D7
О
2 … 9
10
-АСК
I
10
11
BUSY
I
11
12
РЕ
I
12
13
SLCT
I
13
14
-AUTOFD
О
14
15
-ERROR
I
32
16
-INIT
О
31
17
-SLCT IN
О
36
18...25
GND
-
16, 17, 19...30, 33

Формирование и прием сигналов интерфейса Centronics производится
путем записи и чтения выделенных для него портов ввода/вывода.
В компьютере может использоваться три порта Centronics:
LPT1 (порт 378h, IRQ5), LPT2 (порт 278h, IRQ7) и LPT3 (порт 3ВСh).
Базовый адрес порта используется для передачи принтеру байта данных.
Установленные на линиях данные можно считать из этого же порта в ПЭВМ.
Временная диаграмма цикла передачи данных по интерфейсу Centronics.
D0 … D7
>500
- STROBE
BUSY
- ACK
>500
>500
наносекунд
>2500 наносекунд
Перед началом передачи данных контролируется снятие сигналов BUSY
и ASK. Затем данные выставляются на шину и формируется сигнал STROB.
За это время принтер должен успеть принять данные и выставить сигнал
BUSY, а затем и ASK.
Максимальная длина соединительного кабеля – 1,8 метра.
В настоящее время стандарты параллельного порта ЕРР и ЕСР
включены в стандарт IEEE 1284 с добавлением еще двух режимов обмена
данными: байтового и полубайтового.

Последовательный порт (Интерфейс RS232C).
Интерфейс RS-232C предназначен для подключения к компьютеру
стандартных внешних устройств (принтера, сканера, модема, мыши и т.д.),
а также для связи компьютеров между собой.
Основными преимуществами использования RS-232C по сравнению с
Centronics являются возможность передачи на значительно большие
расстояния и гораздо более простой соединительный кабель.
В то же время работать с ним несколько сложнее: данные в RS-232C
передаются в последовательном коде побайтно, а каждый байт обрамляется
стартовым и стоповыми битами.
Формат передаваемых данных последовательного порта:
отсутствие передачи
«1»
«0»
Стартовый бит
8 бит
данных
стоповые биты
бит четности
Данные могут передаваться как в одну (полудуплексный режим), так и в
обе стороны (дуплексный режим).
Обмен по интерфейсу RS-232C осуществляется по специально
выделенным для этого последовательным портам:
СОМ1 (адреса 3F8h...3FFh, прерывание IRQ4),
COM2 (адреса 2F8h...2FFh, прерывание IRQ3),
COM3 (адреса 3E8h...3EFh, прерывание IRQ10),
COM4 (адреса 2E8h...2EFh, прерывание IRQ11).

Схема контроллера последовательного порта i8250.
мультиплексор демультиплексор
Буфер
1
управления
Буфер
2
управления
Буфер
3
управления
Буфер
4
управления
Буфер
5
управления
Буфер
6
управления
RESET
IRQ
Устройство управления
Битовый
счетчик
Схема кодирования –
декодирования пакета
Генератор
синхросигнала
ТхD
RxD
CLK
Внешнее устройство
Системная шина
Буфер данных
Сигналы управления
В состав ПЭВМ могут входить до четырех последовательных портов,
работающих в стандарте RS-232С (отечественный аналог - стык С2).
Каждое из устройств RS-232С представляет собой самостоятельный
контроллер i8250, оснащенный 25- или 9- штырьковым разъемом.
Контроллер порта RS-232С является полностью программируемым
Устройством.
Ему можно задать следующие параметры обмена: количество битов
данных и стоп-битов, вид четности и скорость обмена в бодах (бит/с).

Назначение сигналов обращений:
FG - защитное заземление (экран).
-TxD - данные, передаваемые компьютером в последовательном коде.
-RxD - данные, принимаемые компьютером в последовательном коде.
RTS - сигнал запроса передачи. Активен во все время передачи.
CTS - сигнал сброса (очистки) для передачи. Активен во все время
передачи. Говорит о готовности приемника.
DSR - готовность данных. Используется для задания режима модема.
SG - сигнальное заземление, нулевой провод.
DCD - обнаружение несущей данных (принимаемого сигнала).
DTR - готовность выходных данных.
RI - индикатор вызова. Говорит о приеме модемом сигнала вызова по
телефонной сети.
Компьютер обычно имеет
9-контактный (DB9P) или
25-контактный (DB25P)
разъем для подключения
интерфейса RS-232C.
Назначение контактов
разъема приведено в
таблице
сигнал
25-контактный разъем
9-контактный разъем
I/O
FG
1
-
-
-TxD
2
3
О
-RxD
3
2
I
RTS
4
7
О
CTS
5
8
I
DSR
6
6
I
SG
7
5
-
DCD
8
1
I
DTR
20
4
О
RI
22
9
I

Конкретные форматы обращений по этим портам можно найти в
описаниях микросхем контроллеров последовательного обмена UART
(Universal Asynchronous Receiver/ Transmitter), например, для i8250.
Наиболее часто используются трех- или четырехпроводная связь (для
двунаправленной передачи).
Для двухпроводной линии связи в случае только передачи из
компьютера во внешнее устройство используются сигналы SG и TxD.
Все 10 сигналов интерфейса задействуются только при соединении
компьютера с модемом.
компьютер
Схема 4-х проводной
линии связи для
интерфейса RS232C
TxD
RxD
RTS
CTS
DSR
DCD
DTR
RI
SG
FG
внешнее устройство
TxD
RxD
RTS
CTS
DSR
DCD
DTR
RI
SG
FG
Примечание: тактовые частоты приемника и передатчика должны быть
одинаковыми (расхождение – не более 10%) для этого скорость передатчика
(ПЭВМ) может выбираться из ряда: 150, 300, 600, 1200, … 57600, 115200 бит/с.

29.Подсистема ввода-вывода.
Назначение, структура и задачи BIOS.
BIOS (Basic Input Output System) – часть программного обеспечения
ПЭВМ, содержащая управление адаптерами внешних устройств, экранными
операциями, тестирование, а затем начальную загрузку OS.
BOIS обеспечивает стандартный интерфейс, поддерживающий переносимость OS для ПЭВМ с совместимыми процессорами.
BOIS состоит из основных компонент:
1. POST– процедуры проверки системных устройств и их ресурсов.
2. ROM-Scan – программа сканирования ОЗУ.
3. SETAP-программный интерфейс просмотра и корректировки констант.
4. Константы BIOS в CMOS, таблица 256-ти символов ASCII 8х8.
Все адреса констант документированы и должны сохраняться в
последующих версиях BIOS для данной системной платы.
Компоненты BOIS записаны в специальной ПЗУ на системной плате
объемом 64 кБ и обычно рассматриваются, как неотъемлемая часть ПЭВМ,
встраиваемая в адресное пространство ОЗУ с адреса F000:0000.
Основной принцип организации системы ввода/вывода:
ЦПУ и ОЗУ образуют ядро ПЭВМ, а различные периферийные
устройства, к которым можно отнести любое другое устройство, которое не
входит в состав ядра ПЭВМ, сопрягаются с ядром системы с помощью
интерфейсов (совокупности шин, сигналов, электрических схем, протоколов
передачи данных и команд), входящих в состав ядра OS для организации
обмена информацией.

Структура подсистемы POST.
Состояние процессора после включения питания предопределено –
EFLAGS = 00000002h; EIP = 0000FFF0h; CS = 0F000h; PE(CR0) = 0.
по этому адресу находится команда JMP перехода на процедуру POST (Power
On Self Test) самотестирования и инициализации базовых устройств ПЭВМ:
Ввод константы инициализации в порт устройства n
Чтение байта статуса устройства n
Статус устройства n
соответствует данным CMOS
нет
Подача звукового сигнала,
вывод признака ошибки
инициализации устройства n
да
……….
Аварийное завершение
процедуры POST
Процедура сканирования
(верификации) оперативной памяти
Есть ошибки сканирования
нет
да
вывод признака
ошибки
сканирования
оперативной памяти
Передача управления на начало кода загрузки операционной системы

Основные функции подсистемы POST.
Процедуры POST служат для пуска самотестирования устройств на
системной плате, сравнения их статуса с данными CMOS и инициализации:
- каналы системного интервального таймера (слышен гудок),
- контроллер прерываний,
- контроллер прямого доступа,
- контроллер клавиатуры (загораются индикаторы на клавиатуре),
- контроллер памяти и т.д.,
затем инициализируются процедуры самотестирования устройств, имеющих
собственную BIOS:
- видеоконтроллер (на мониторе появляется первое сообщение),
- контроллеры дисковых накопителей (появляется сообщение),
- контроллер USB (клавиатура или мышь USB становятся активными)
- звуковой адаптер,
- сетевой адаптер и т.д.
Выполняется сканирование оперативной памяти (отображается на мониторе)
После успешного завершения процедур тестирования осуществляется
поиск boot-устройств, содержащих в буфере данных байт 80h (1000000), т.е.
неисполняемую команду, используемую в данном контексте POST для
подтверждения активности устройства загрузки OS.
Приоритет загрузочных устройств определяется в SETUP CMOS.
При выполнении POST могут генерироваться сообщения об ошибках.
Описания кодов ошибок можно найти по адресу: www.earthweb.com
или http://burks.bton.ac.uk/burks/pcinfo/hardware/bios_sg/bios_sg.htm

Доступ к переменным и константам BIOS.
Осуществляется через меню SETUP BIOS, доступное в начальные
моменты загрузки BIOS с помощью клавиш, указанных в сообщениях.
Меню SETUP состоит из основных разделов:
1. Стандартные переменные: дата, время, параметры ОЗУ и накопителей.
2. Дополнительные переменные и установленные модули программного
обеспечения BIOS для тестирования аппаратных средств, устройств ядра
ПЭВМ и ближайшего окружения.
3. Параметры остальных устройств, интегрированных в состав системной
(материнской) платы ПЭВМ и варианты распределения ресурсов (слотов
расширений шин, прерываний и каналов прямого доступа).
Здесь же определяется порядок опроса периферийных устройств,
которые могут содержать загрузочные модули операционных систем.
4. Параметры интерфейсов устройств, подключаемых к системной плате,
определяющих варианты энергосбережения.
5. Размеры констант, определяющих параметры центрального процессора
(частота, напряжение энергопитания ядра центрального процессора и ОЗУ), а
также их предельные величины для сигнализации или отключения.
6. Набор параметров BIOS, загружаемый по умолчанию (в случае ошибок
ручного набора параметров пользователем).
7. Ввод пароля для входа в редактор переменных – SETUP BIOS.
8. Ввод пароля для продолжения загрузки BIOS и выполнения POSTпроцедур после включения ПЭВМ (пользовательский пароль).
Значение паролей может быть снято системным обнулением BIOS.

Карта ввода / вывода.
0000 – 00FF – 256 8-разрядных портов предназначены для устройств,
расположенных на системной (материнской) плате ПЭВМ,
0100 – 03FF – 768 8-разрядных портов отведены для контроллеров
периферийных устройств, подключаемых к шинам системной платы ПЭВМ.
Внутренние устройства
Периферийные устройства
Диапазон Наименование устройства Диапазон
000 - 01F
Контроллер ПДП №1
Наименование устройства
3B0 – 3DF VGA
020 – 03F Контроллер ПКП №1
378 – 37B LPT 1
040 – 05F Интервальный таймер
37C – 37F LPT 2
060 – 06F Контроллер клавиатуры
278 – 27B LPT 3
070 – 07F Часы CMOS и константы
3F0 – 3F7 FDD
Диагностический регистр
3F8 – 3FF COM №1
081 – 08F Контроллер страниц ПДП
2F8 – 2FF COM №2
0A0 – 0BF Контроллер ПКП №2
3E8 – 3EF COM №3
0C0 – 0DF Контроллер ПДП №2
2E8 – 2EF COM №4
080
F000 – FFFF – 4096 дополнительных 8-разрядных портов, отведенных
для различных виртуальных устройств, подключаемых к внешним шинам
(USB, mini USB, SCSI, eSATA, HDD IDE ATA/ATAPI, PCI Express и т.д.).

Функции BIOS при работе с портами
Для прямого обращения ЦПУ к портам ввода/вывода в системе команд
предусмотрено всего 2 команды: IN и OUT.
Но сам процесс обмена данными с периферийными устройствами сложен
и должен учитывать ширину порта (порядок опроса нескольких 8-ми
разрядных портов) и протокол обмена, определяющий порядок оценки
готовности этих устройств к обмену данными по той или иной шине, а также
свойства самой шины.
По этой причине в OS Windows прямой доступ к портам ограничен. Ввод
прямых обращений к портам в приложениях может вызвать зависание
программы или ее аварийное завершение из-за превышения привилегий.
Для этой цели в составе ядра OS имеется большой набор типовых
обработчиков – функций BIOS, связанных с тем или иным общепользовательским прерыванием.
Поскольку количество прерываний ограничено, то обычно прерывание
имеет несколько функций, а отдельные функции и подфункций BIOS:
функции прерывания 10h – работа с портами видеоконтроллера VGA
функции прерывания 13h – работа с дисковыми системами и DMA
функции прерывания 14h – работа с последовательным портом СОМ
функции прерывания 15h – работа с манипулятором мышь
функции прерывания 16h – работа с клавиатурой
функции прерывания 17h – работа с параллельным портом LPT
функции прерывания 1Ah – работа с таймером, времязадающие функции
функции прерывания 80h – работа со звуковым процессором

30. Система Plug & Play автоопределения устройств ПЭВМ.
Основные принципы построения системы PnP были сформулированы и
частично внедрены в 1974-м году для шины МСА (Micro Channel Architecture).
Основные принципы построения системы PnP:
1. Ресурсы ядра ПЭВМ (порты доступа и их разрядность, номера прерываний, адресное пространство ОЗУ для обмена информацией, каналы прямого
доступа) не являются жестко распределенными, а присваиваются по
требованию.
2. Каждое периферийное (по отношению к ядру системы) устройство имеет
описание набора требований в своем BIOS.
3. В составе BIOS PnP имеется программа – системный конфигуратор,
которая присваивает номера периферийным устройствам, составляет
паспорта (описания) этих устройств и выделяет необходимые ресурсы, с
учетом недопущения конфликтов, при необходимости производит
оптимизацию (перераспределение) ресурсов.
Паспорта устройств сохраняются в реестре.
4. После загрузки операционной системы для периферийных устройств
загружаются соответствующие системные драйвера. Осуществляется
повторная проверка безконфликтной работы устройств.
5. При отключении периферийного устройства или подключения нового
операционная система автоматически перераспределяет освободившиеся
ресурсы, определяет параметры нового устройства, проверяет его и
предоставляет необходимые ресурсы без перезагрузки OS (на лету).

PnP- спецификация архитектуры аппаратных средств ПЭВМ, используемая соответствующими операционными системами для их конфигурирования и исключения конфликтов устройств между собой.
Основной компонент – все оборудование, подключаемое к шинам, содержит энергонезависимые регистры POS (Programmable Option Select), где хранится конфигурация устройства и требуемые ресурсы.
Дополнительный компонент – файлы OS описания устройств, драйверов
к ним и требуемых ресурсов (ini –файлы или реестр OS).
Программы BIOS PnP, бесконфликтно распределяющие ресурсы.
Обычная загрузка системы:
пуск
POST
Поиск Boot OS
Загрузка OS
Загрузка BIOS PnP:
пуск
Определение PnP
нет
да
Конфигурирование
устойств
POST
Проверка
устройств
Поиск Boot OS
Чтение
POS
чтение
ini
Загрузка OS

Распределение ресурсов ПЭВМ между устройствами.
Для реализации принципов построения системы PnP, учитывая, что в
составе архитектуры ПЭВМ встречается достаточно много устаревших
устройств с жестко закрепленными за ними системными ресурсами, которые
изменять нецелесообразно (контроллер клавиатуры, системный интервальный таймер, контроллеры ПДП и т.д.), в реальной системе PnP используется
следующий порядок распределения ресурсов:
1. При проверке POST определяются устройства «не PnP».
2. Устройствам «не PnP» ресурсы выделяются в первую очередь согласно
спецификационных требований, т.к. эти устройства неперенастраиваемые.
3. При обнаружении конфликтов BIOS PnP генерирует уведомление о
необходимости устранения конфликтов вручную.
4. Затем осуществляется итерационное конфигурирование устройств PnP.
5. Используются методы изоляции устройств друг от друга (присваивается
идентификатор и серийный номер), после этого устройству присваивается
дескриптор (Handle).
Присвоение идентификатора связано с используемой устройством шины
и осуществляется специальной программой из состава OS – энумера-тором
шины, которая является новым типом драйвера контроллера шины.
Номера идентификаторов являются уникальными для каждого устройства и
неизменными для каждой последующей перезагрузки OS, например, PnP
0000 – контроллер прерываний АТ, PnP 0100 – системный интервальный
таймер, PnР 0C04 – матсопроцессор, PnP 0А03 – контроллер шины PCI и т.д.

Подсистема ввода/вывода ПЭВМ и ядро OS решает следующие задачи:
1. Реализация вычислительной системы переменной конфигурации.
2. Параллельная работа программ в памяти и процедур ввода/вывода.
3. Упрощение процедур ввода/вывода, обеспечения их программной
независимости от конфигурации конкретного периферийного устройства.
4. Обеспечение автоматического распознавания ядром ЭВМ периферийных
устройств, многообразия их состояний (готовности, отсутствия носителя,
ошибок чтения/записи и т.д.).
5. Интеллектуализация интерфейса, налаживание диалога между ядром и
периферийными устройствами.
6. Переносимость и независимость OS от аппаратной платформы и ядра
ПЭВМ.
Пути решения этих задач:
1. Модульность - новые периферийные устройства не вызывают
существенных изменений архитектуры и вписываются в существующее
адресное пространство, каналы и порты доступа.
2. Унификация по формату передаваемых данных и команд вне зависимости от используемых внутренних машинных языков микроопераций.
3. Унифицированный интерфейс по разрядности шины, набору линий
сигналов управления и протоколам обмена.
4. Унифицированные по адресному пространству, доступному ядру ПЭВМ, и
каналам доступа к нему со стороны центрального процессора для операций
ввода/вывода информации в пределах этого адресного пространства,.

Современная система PnP состоит из следующих компонентов:
1. BIOS стандарта PnP.
Уведомления – сообщение пользователю об обнаружении нового
устройства
Конфигурирование – изоляция устройства до присвоения ID.
Поддержка данных- информация завершения POST на специальной RAM.
2. Система драйверов-энумераторов шины PCI.
Контроллер шины получает информацию из RAM об устройстве или из
реестра для устройств «не PnP» и присваивает уникальный номер Vendor_ID.
3. Дерево аппаратных средств и реестр.
Ветвь в реестре OS под названием «HKEY_LOKAL_MACHINE\HARDWARE»,
которая состоит из типов аппаратных устройств.
4. Windows 95 и выше (или другая OS PnP).
Фирма Intel предлагает спецификацию PnP всем разработчикам OS.
5. Драйверы устройств PnP.
Спецификация PnP предполагает не только наличие доступной для BIOS
информации об устройстве в RAM этого устройства, но и динамически подгружаемый драйвер этого устройства. Существует интерфейс прикладного
программирования (API) для создания таких драйверов для новых устройств
стандарта PnP. Загрузка таких драйверов должна регистрироваться диспетчером конфигурации и отвечать за выделенные ресурсы (сдавать их при
выгрузке).

6. Арбитр ресурсов (служба OS PnP).
Основные функции:
- Обновление реестра, помещая туда новейшую информацию о выделении
ресурсов на стадии загрузки,
- Переназначение ресурсов «на лету» любым устройства PnP, конфигурация
которых изменилась.
Арбитр ресурсов работает в контакте с диспетчером конфигурации,
который в любой момент может запросить у арбитра ресурсов освобождения ресурса с последующим предоставлением его другому устройству.
7. Диспетчер конфигурации (служба OS PnP).
Отвечает за процесс конфигурирования всей системы в целом.
Диспетчер конфигурации непосредственно взаимодействует, как с BIOS,
так и с реестром, координируя процесс конфигурирования в ходе событий:
- когда BIOS отправляет ему список устройств «не PnP» на системной плате
при загрузке, которые имеют жестко закрепленные за ними ресурсы,
- когда он получает извещение об изменении конфигурации от BIOS или от
энумераторов шин, которую он использует для идентификации всех
устройств на конкретной шине, а также требования каждого устройства о
выделении ресурсов. Эта информация заносится в реестр.
8. Пользовательский интерфейс (API).
Основное требование для пользовательских приложений, запускаемых
в OS PnP – они не должны иметь явных обращений к ресурсам устройств
(портам ввода/вывода, прерываниям или дискам) необходимо заменять эти
обращения формальными обращениями к соответствующим устройствам.

Конфигурационное адресное пространство шины PCI
Одним из главных усовершенствований шины PCI по сравнению с другими
архитектурами ввода-вывода стал её конфигурационный механизм.
В дополнение к типичным адресным пространствам памяти и вводавывода в PCI вводится конфигурационное адресное пространство.
Оно состоит из 256 байт, которые можно адресовать, зная номер шины PCI,
номер устройства и номер функции в устройстве.
Первые 64 байта из 256 стандартизированы, а остальные регистры могут
быть использованы по усмотрению изготовителя устройства.
Регистры Vendor ID и Device ID идентифицируют устройство и обычно
называются PCI ID.
Шестнадцатиразрядный регистр Vendor ID выдаётся организацией PCI-SIG.
Но только при уплате членского взноса в организацию.
Шестнадцатиразрядный регистр Device ID назначается изготовителем
устройства.
Существует проект создания базы данных всех известных значений
регистров Vendor ID и Device ID.
Аналогичное решение существует и для универсальной последовательной
шины USB.
Сообщество разработчиков шины – организация USB-IF также ведет
регистрацию всех значений регистров Vendor ID для USB.
Чтобы стать членом USB-IF, нужно платить по 4000$ членских взносов
ежегодно. Тогда вам бесплатно выделят двухбайтовый VID (Vendor_ID).

void f_DeviceDescriptor(void) //
Дескриптор драйвера устройства USB

Как писать драйвер USB-устройства PnP ?
автор Глазков Игорь
Статья в 7 частей
Опубликовано: 13 Марта 2013 года
http://npf-wist.com/
ООО «НПФ Вист» Украина
Учебный комплект STK0001
на базе микроконтроллера
фирмы «Microchip»
280 гривен (35$)
В данный комплект входит:
1. Устройство (модель), которое программируется, как USB-устройство.
2. Программатор, с помощью которого разрабатываемая программа (ее
бинарный код) зашивается в устройство (модель).
3. Кабель – переходник USB-COM – порт при его отсутствии в ВАШЕМ
компьютере. Этот порт нужен для просмотра данных, получаемых
программируемым USB-устройством.
4. Брошюра с подробным описанием последовательных шагов для
получения связки: “USB-устройство – драйвер - программа обращения к
устройству”.
5. CD-диск с дополнительным программным обеспечением.

31. Общие сведения об операционных системах.
Общие понятия об операционной системе.
Чтобы полностью овладеть всеми возможностями своего компьютера,
необходимо знать и понимать его операционную систему.
Назначение операционной системы заключается в обеспечении удобства
управления компьютером.
Любая операционная система, в полном смысле этого термина, является
первой и наиболее важной программой любого компьютера. Как правило,
она является и наиболее сложной, используемой только для управления
самим компьютером.
Основная часть работы операционной системы заключается в
выполнении огромного количества рутинных операций контроля, проверки
достоверности, вычисления значений физических адресов и т.д. и т.п. и
предназначена, чтобы скрыть от пользователей большое количество
сложных и ненужных им деталей процесса управления аппаратной частью.
Как правило, операционная система состоит из нескольких частей:
Первая часть - это система BIOS в ПЗУ ПЭВМ.
Вторая часть - главная загрузочная запись.
Третья часть – аппаратный загрузчик операционной системы.
Четвертая часть – сканер и конфигуратор аппаратных средств ПЭВМ.
Пятая часть – ядро операционной системы и командный монитор.
Шестая часть – файлы конфигурации ini или реестр OS.
Седьмая часть – Диспетчеры объектов и устройств.
Восьмая часть – драйверы устройств.

Архитектура операционной системы Windows NT/2000/XP/7/8.
Приложение
POSIX
Подсистема
POSIX
Приложение
Win32
Подсистема
Win32
Приложение
OS/2
Подсистема
OS/2
Процесс
регистрации
в системе
Подсистемы рабочей
среды
Подсистема
защиты
Уровни сервисов OS
Пользовательский режим
Режим ядра
Диспетчер
энергопитания
Средство
локального
вызова
процедур
Диспетчер
механизмов
Plug & Play
Диспетчер
виртуальной
памяти
Диспетчер
процессов
Справочный
монитор
защиты
Диспетчер
объектов
Системные сервисы (службы модуля EXEcutive)
Диспетчер
ввода/вывода
Файловые системы
Диспетчер КЭШа
Драйверы устройств
Ядро OS
Слой абстрагирования от оборудования HAL
Аппаратная часть
Сетевые драйверы

Пояснения к архитектуре операционной системы.
Пользовательский режим.
Большая часть приложений, запускаемых пользователем, работает в
пользовательском режиме. Все эти приложения обладают ограниченным
доступом к операционной системе, благодаря чему при возникновении
неполадок в программе приложения ядро ОС остается надежно защищенным
и продолжает нормально функционировать.
Пользовательское приложение работает в рамках изолированного
адресного пространства, предоставляемого операционной системой.
При обращении к аппаратным устройствам (принтеру) службами ядра
(диспетчером ввода/вывода) запускается соответствующий драйвер.
Службы Windows (например, Task Scheduler, Messenger, Alerter и др.)
работают в пользовательском режиме в специальном пользовательском
контексте безопасности индивидуального рабочего окружения каждой
конкретной прикладной задачи.
Режим ядра.
Процессы, работающие в этом режиме, обладают наивысшим уровнем
привилегий. Они работают в одном и том же адресном пространстве и могут
напрямую обращаться к оборудованию компьютера, включая такие важные
устройства, как центральный процессор или видеоадаптер.
В этом же режиме функционируют драйверы устройств, все системные
диспетчеры, модуль Microkernel, все службы модуля EXEcutive, а также
системные сервисы уровня абстракции оборудования HAL (Hardware
Abstraction Layer).

Модуль EXEcuteve.
Так обозначаются в Windows NT/2000/XP программные компоненты,
работающие в режиме ядра.
Эти компоненты включают в себя жизненно-важные службы ОС такие,
как управление памятью, вводом/выводом, системой безопасности,
механизмами взаимодействия процессов, кэшированием, а также системой
управления объектами.
Модуль EXEcutive загружается в процессе начальной загрузки ОС и
является частью файла Ntoskrnl.exe.
Модуль Microkernel.
Управляет переключением процессора между выполнением разных
потоков, а также обрабатывает системные прерывания и исключения.
Этот модуль синхронизирует работу нескольких процессоров на
многопроцессорных аппаратных платформах.
В отличие от остального кода ОС этот модуль никогда не перемещается
в виртуальную память, т.к. его компоненты должны иметь фиксированные
физические адреса.
Модуль Microkernel также является частью файла Ntoskrnl.exe.
Уровень абстракции оборудования HAL (Hardware Abstraction Layer).
Позволяет ОС работать на аппаратных платформах различной
конфигурации и количества процессоров, не требуя ее перекомпилирования.
Обычно HAL разрабатывается производителем аппаратной платфориы.
Модуль HAL находится в файле hal.dll и загружается в процессе
начальной загрузки ОС.

Процессы и потоки.
Процесс – это программа, которую можно запустить в рабочей среде ОС.
Каждый процесс обладает своим адресным пространством, одним или
несколькими программными потоками, а также идентификатором
безопасности SID (Security ID), соответствующим учетной записи в контексте
безопасности которой этот процесс функционирует.
Поток – это составляющая часть процесса (что-то вроде процесса
внутри процесса), т.е. программный код, выполнением которого занят
процессор.
В любой момент времени один процессор может выполнять только один
программный поток. Переключение процессора между выполнением
нескольких программных потоков осуществляется средствами ОС.
Каждый процесс может включать в себя несколько программных
потоков. Например, работая в программе Explorer, можно открыть новое
окно, для управления этим окном создается новый поток. Это означает, что в
системе существует только один экземпляр процесса Windows Explorer, но в
рамках этого процесса работает одновременно несколько программных
потоков.
Симметричная многопроцессорная архитектура и наращиваемость ОС.
ОС Windows NT/2000/XP обладают встроенной поддержкой многопроцессорных систем SMP (Symmetric Multiprocessing). Это означает, что если в
системе установлено больше одного процессора, то поток, требующий
выполнения, будет выполняться первым освободившимся процессором.
Переключение процессоров между потоками осуществит модуль Microkernel.

Службы и приложения пользовательского режима.
В пользовательском режиме работают процессы 3-х типов с различным
уровнем привилегий.
1. Системные процессы. Это процессы управляющие рабочей средой
пользовательского режима: Winlogon (подключение пользователей к
системе), Service Controller (сервис подключения служб), Session Manager
(диспетчер сеанса). Эти процессы запускаются модулем Ntoskrnl.exe в
процессе начальной загрузки и используют учетную запись LocalSystem.
2. Службы Windows. Службы (Alerter, Computer Browser и др.)
запускаются процессом Service Controller (файл services.exe) для прикладной
задачи. Эти службы функционируют, как отдельные потоки в рамках
процесса services.exe и не отображаются диспетчером задач в качестве
отдельных процессов.
Большинство служб не использует контекст безопасности LocalSystem.
3. Пользовательские прикладные программы. Т.е. прикладные
программы запускаемые пользователем в пользовательском режиме.
Каждая такая программа функционирует в рамках своего собственного
виртуального адресного пространства.
Процесс ассоциируется с подсистемой рабочего окружения environment
subsystem, который принимает от него вызовы, адресуемые API (Application
Program Interface) и преобразует их в команды, адресованные модулю
EXEcutive.
Для поддержки DOS служит подсистема времени исполнения Сsrss.exe,
которая запускается автоматически при формировании вызова.

Порядок загрузки операционной системы.
Загрузка любой операционной системы после завершения операций
инициализации аппаратных средств предусматривает следующие этапы:
- инициализация загрузчика OS (Boot loader process),
- выбор операционной системы (если предусмотрен выбор),
- повторное сканирование аппаратных средств,
- загрузка ядра OS и его инициализация.
После завершения POST BIOS передает управление на первое внешнее
устройство (согласно установленному приоритету), имеющее в буфере
данных байт 80h. Считывание следующего байта из этого порта активирует
программу аппаратной загрузки OS: т.е. будет выполнена процедура,
записанная в начале раздела MBR, которая позволит найти адрес первого
активного раздела в таблице разделов (по значению байта 80h), и загрузит
следующую за ним команду в табличной записи JMP(xx) на исполнение.
Адрес команды JMP является адресом аппаратного загрузчика NTLDR
(для операционной системы Windows NT/2000/XP), IBMBIO.COM (для DOS) или
аналогичной программы для других OS (например UNIX, Linux и т.д.).
NTLDR загрузит режим плоского 32-хразрядного адресного пространства
и запустит минифайловую систему, совместимую с FAT16, FAT32 и NTFS.
Затем читает Boot.ini в корневом каталоге и предлагает выбор OS к загрузке.
После выбора Windows XP выполняет программу Ntdetect.com, чтобы
собрать информацию о всех физических устройствах, подключенных к ЦП.
Затем NTLDR загружает в ОЗУ и запускает ядро операционной системы –
программу Ntoskrnl.exe, которая принимает данные сканирования.

Файлы, необходимые для успешного запуска ОС Windows XP.
Процедура запуска системы закончится неудачей, если хотя бы один из
указанных ниже файлов не будет найден или окажется поврежденным.
Наименование файла
Расположение файла
NTLDR
Корневой каталог Windows
Boot.ini
Корневой каталог Windows
Bootsect.dos (для выбора ОС)
Корневой каталог Windows
Ntdetect.com
Корневой каталог Windows
Ntbootdd.sys (только для SCSI)
Корневой каталог Windows
Ntoskrnl.exe
%SystemRoot%\System32
Hal.dll
%SystemRoot%\System32
Улей реестра \system
%SystemRoot%\System32\Config
драйверы устройств
%SystemRoot%\System32\Drivers
Файл Bootsect.dos содержит копию первого сектора раздела
альтернативной ОС (в данном случае DOS), аналогично можно построить
загрузчики для ОС UNIX и Linux, а затем отредактировать файл Boot.ini:
С:\ BOOTSECT.UNX=“UNIX”
С:\ BOOTSECT.LNX=“Linux”

Дальнейшее развитие архитектуры операционных систем.
Загрузочная запись ДОС версии 1.00 имеет одно незначительное отличие
от всех остальных версий: вместо имени Роберта О"Рира – разработчика
первой версии ДОС, которую он сделал по прототипу (Key DOS) за 2 месяца,
во всех последующих версиях стоит название фирмы - "Майкрософт".
В настоящее время разработка новой версии ОС занимает 6-10 лет и в ее
реализации участвует коллектив 200-300 человек.
Фирма Microsoft стала практически монополистом на рынке ОС ПЭВМ. Из
альтернативных ОС для ПЭВМ можно указать лишь Unix и Linux.
Основное совершенствование, которое реализовано в настоящее время
– для многоядерных процессоров нового поколения архитектуры Itanium
создан новый интерфейс между ОС и встроенным программным
обеспечением аппаратных платформ – EFI (Extensible Firmware Interface),
который предназначен для замены системы POST. Сейчас UEFI.
Для этой системы фирмой Microsoft разработан новый загрузчик для
операционной системы Windows, вошедший в состав ОС Windows 7/8,
bootmgr вместо NTLDR, файлы Boot.ini и Ntdetect.com также исключены из
системы, т.к. информация, которая хранилась там, находится в BOOT, а все
аппаратное окружение полностью соответствует спецификации ACPI.
Для изоляции MBR, ВООТ и загрузчика от неосторожных действий
пользователя создается изолированный системный раздел на жестком диске
размером 100 Мбайт.
Соответствующим образом откорректирован реестр Windows.

Последовательные и параллельные порты ввода-вывода

Наружные разъёмы материнской платы: PS/2 (1 - мышь, 2 - клавиатура), сетевой RJ-45 (3), USB (4),
D-subminiature (9-контактный разъём COM-порта (5), LPT порт (6), VGA порт (7), MIDI) (8) и
3.5 мм аудио входы-выходы (9)

Порт (персонального) компьютера предназначен для обмена информацией между устройствами, подключенными к шине внутри компьютера и внешним устройством. Так, шинный разъём AGP фактически является портом.

Для связи с периферийными устройствами к шине компьютера подключены одна или несколько микросхем контроллера ввода-вывода.

Первые IBM PC предоставляли

· встроенный порт для подключения клавиатуры;

· до 4-х (COM1 … COM4) последовательных портов (англ. COMmunication ), обычно служащих для подключения, сравнительно высокоскоростных, коммуникационных устройств использующих интерфейс RS-232 например модемов. Для них выделялись следующие ресурсы материнской платы:

базовые порты ввода-вывода: 3F0..3FF (COM1), 2F0..2FF (COM2), 3E0..3EF (COM3) и 2E0..2EF (COM4)

номер IRQ: 3 (COM2/4), 4 (COM1/3);

· до 3-х (LPT1 .. LPT3) параллельных портов (англ. Line Print Terminal ), обычно служащих для подключения принтеров использующих интерфейс IEEE 1284. Для них выделялись следующие ресурсы материнской платы:

базовые порты ввода-вывода: 370..37F (LPT1 или LPT2 только в компьютерах IBM с MRA), 270..27F (LTP2 или LPT3 только в компьютерах IBM с MCA] и 3B0..3BF (LPT1 только в компьютерах IBM с MCA)

номер IRQ: 7 (LPT1), 5 (LPT2)

Изначально, COM и LPT порты на материнской плате отсутствовали физически и реализовались дополнительной картой расширения, вставляемой в один из ISA-слотов расширения на материнской плате.

Последовательные порты как правило использовались для подключения устройств, которым требовалась быстро передать небольшой объём данных, например компьютерной мыши и внешнего модема, а параллельные - для принтера или сканера, для которых передача большого объёма не была критичной по времени. В дальнейшем, поддержка последовательных и параллельных портов была интегрирована в чипсеты, реализующие логику материнской платы.

Недостаток интерфейсов RS-232 и IEEE 1284 - относительно малая скорость передачи данных, не удовлетворяющая растущие потребности в передаче данных между устройствами. Как следствие, появились новые стандарты интерфейсных шин USB и FireWire, которые были призваны заменить старые порты ввода-вывода.

Особенностью USB является то, что при подключении многих USB-устройств к единственному USB-порту используют т. н. концентраторы (USB-хабы), которые в свою очередь коммутируют между собой, увеличивая тем самым число USB-устройств, которые можно подключать. Такая топология шины USB называется «звезда» и включает в себя также корневой концентратор, который, как правило, находится в «южном мосте» материнской платы компьютера, к которому и подключаются все дочерние концентраторы (в частном случае сами USB-устройства).



Шина IEEE 1394 предусматривает передачу данных между устройствами со скоростями 100, 200, 400, 800 и 1600 Мбит/с и призвана обеспечивать комфортную работу с жёсткими дисками, цифровыми видео- и аудиоустройствами и другими скоростными внешними компонентами.

FireWire, как и USB, является последовательной шиной. Выбор последовательного интерфейса обусловлен тем, что для повышения скорости работы интерфейса необходимо повышать частоту его работы, а в параллельном интерфейсе это вызывает усиление наводок между параллельными жилами интерфейсного кабеля и требует сокращения его длины. Кроме того, кабель и разъёмы параллельных шин имеют большие габариты.

Просто и легко

Связующим центром для всех USB-устройств является компьютер. Только с ним они могут «общаться» напрямую. Такое соединение получило название «точка-точка».

При первом подключении USB-устройство автоматически об­наруживается операционной си­стемой, после чего она осуществляет поиск нужного драйвера. При этом действует правило: чем новее версия используемой операционной системы, тем выше вероятность того, что пользователю не придется устанавливать драйвер самостоятельно. К примеру, Win­dows XP и Vista автоматически распознают флэш-накопители, кард-ридеры и внешние жесткие диски и ре­ги­стри­руют их в качестве съемных дисков. Необходимые для этих устройств драйверы входят в дистрибутив Windows и всегда находятся «под рукой» у системы. Windows Vista к тому же располагает дополнительными драйверами для наиболее распространенных моделей принтеров, сканеров, игровых клавиатур и других устройств.



За редким исключением, USB-гаджеты могут обмениваться данными между собой только при посредничестве компьютера. В этом случае ПК играет роль так называемого USB-хоста. Он запрашивает у каждого устройства, подключенного по USB и называемого клиентом, информацию о наличии необходимых для передачи данных, после чего организует «диалог». Передавать файлы «по собственной инициативе» клиентам запрещено. Данный метод, называемый опросом, хотя и отнимает часть системных ресурсов, однако делает возможным создание простых и, как следствие, недорогих USB-устройств.

Прямая связь двух USB-гаджетов возможна с помощью технологии On-The-Go. Ее использование позволит выводить на печать изображения без посредничества компьютера или напрямую обмениваться музыкальными файлами между MP3-плеерами.

Преимущества конкурентов

Стандарты USB

USB 1.1. Компьютеры, выпущенные до 2002 года, предоставляют в распоряжение пользователя интерфейс USB 1.1. Передача данных по этому стандарту осуществляется достаточно медленно. Теоретическая пиковая пропускная способность составляет 12 Мбит/с (или 1,5 Мб/с). Для устройств ввода – клавиатуры и мыши – этого вполне достаточно.

На заметку. Более ранняя версия, USB 1.0, не получила распространения, так и оставшись на бумаге. Готовые изделия, соответствующие этому стандарту, в продажу не поступали.

USB 2.0. Компьютеры и ноутбуки, выпущенные после 2003 года, как правило, оснащены портами USB 2.0. Максимальная скорость в сравнении со стандартом 1.1 заметно возросла и составила 480 Мбит/с (или 60 Мб/с). Хотя на практике достигнуть такого уровня пропускной способности не удается.

Более высокую пропускную способность обеспечивают устройства USB 2.0, отмеченные логотипом «USB 2.0 Hi-Speed». Если же на коробке или корпусе устройства указано «USB 2.0 Full-Speed», это означает, что данные будут передаваться на скорости стандарта USB 1.1.

К счастью, все версии USB полностью совместимы друг с другом. Независимо от того, явля­етесь вы владельцем старого или абсолютно нового компьютера, если он оснащен портами USB, то вы сможете подключить к не­му любое устройство с таким интерфейсом. Так, к примеру, мышь, поддерживающая стандарт USB 1.1, можно подключить и к разъему USB 2.0. И наоборот: устройства USB 2.0 будут «поняты» медленными портами спецификации USB 1.1 (в режиме Full-Speed; к примеру, жесткий диск стандарта USB 2.0, подключенный к разъему USB версии 1.1, будет передавать данные на скорости, составляющей всего 1/40 часть доступного для него максимума).

USB 3.0. Следующая версия стандарта USB уже находится на финальной стадии разработки. Появление на рынке первых оснащенных интерфейсом USB 3.0 компьютеров и периферийных устройств ожидается уже в следующем году.

Клавиатуры

Название такого привычного и на первый взгляд несложного компонента ПК как клавиатура – keyboard можно буквально перевести с английского как «ключевая доска». И это не случайно: представить себе работу на компьютере без этого устройства невозможно.

Клавиатура – основной посредник между человеком и электронной техникой множества разновидностей: от персональных компьютеров до мобильных телефонов. Несмотря на почтенный возраст клавиатуры (она использовалась на печатных машинках еще до возникновения компьютеров) и развитие альтернативных, «гуманных» интерфейсов – координатных устройств и технологий распознавания речи, без клавиатуры на компьютере невозможно ни работать, ни в ряде случаев даже играть в игры. Разумной альтернативы клавиатурам пока нет, есть лишь их разнообразные модификации и разновидности, выполняющие одни и те же основные функции и некоторое количество дополнительных – в зависимости от запросов пользователя.

Конструкция клавиатуры

Устройство

Внимание

Некоторые USB-клавиатуры средней и высшей ценовой категории могут использоваться в качестве USB-разветвителей (хабов), так как оснащены USB-портами для подключения кард-ридеров, флэш-драйвов и других накопителей, а также периферийных устройств с аналогичным интерфейсом. Такие решения довольно удобны, особенно для владельцев десктопов с минимальным количеством USB-портов, (которые к тому же являются труднодоступными), однако они существенно дороже стандартных моделей.

Принцип работы клавиатуры

Процесс обработки клавиатурного ввода обеспечивают два микроконтроллера: один находится на материнской плате компьютера, второй встроен в саму клавиатуру. Таким образом, клавиатура ПК сама по себе является отдельной компьютерной системой.

Как видно на схеме, все горизонтальные линии матрицы клавиш подключены через резисторы к источнику питания. Встроенный чип клавиатуры имеет два порта – выходной и входной. Первый подключен к вертикальным (Y0–Y5) линиям матрицы, а второй – к горизонтальным (X0–X4).

Клавиатурный контроллер работает по следующему алгоритму. Устанавливая по очереди на каждой из вертикальных линий уровень напряжения, соответствующий логическому нулю, клавиатурный микро­компьютер непрерывно оценивает состояние горизонтальных линий – независимо от активности на центральном процессоре.

Если ни одна клавиша не нажата, уровень напряжения на всех горизонтальных линиях соответствует логической единице. Как только осуществляется нажатие, соответствующие клавише вертикальная и горизонтальная линии замкнутся. Когда процессор установит на вертикальной линии значение логического нуля, уровень напряжения на горизонтальной линии также будет соответствовать логическому нулю.

Если на одной из горизонтальных линий появится уровень логического нуля, клавиатурный процессор зафиксирует нажатие на клавишу. Он отправит в компьютер (через внутренний 16-байтовый буфер) запрос на прерывание и номер клавиши в матрице (он называется скан-кодом – это случайное значение, выбранное компанией IBM еще тогда, когда она создавала первую клавиатуру для ПК). Обмен данными с компьютером повторится, когда ранее нажатая клавиша будет отпущена.

Скан-код однозначно связан с клавиатурной распайкой и не зависит напрямую от обозначений, нанесенных на поверхность клавиши. Но программе нужен не порядковый номер нажатой клавиши, а соответствующий символу на этой клавише ASCII-код. Важно понимать, что этот код не полностью зависит от скан-кода, ведь одной и той же клавише может быть присвоено несколько значений. Это зависит в том числе и от состояния других клавиш (например, кнопка 0 используется и для ввода символа), когда она нажата вместе с кнопкой) и системных настроек. Именно это позволяет варьировать раскладку клавиатуры (то есть порядок расположения клавиш на ней).

Все преобразования скан-кода в ASCII-код выполняются программными средствами. Как правило, данные функции берут на себя соответствующие модули BIOS. Для кодирования символов кириллицы эти модули расширяются клавиатурными драйверами (сейчас они включены в состав операционных систем).

В отрыве от стандартов

Если читать о стандартных клавиатурах вам неинтересно, загляните, например, на http://onegadget.ru и ознакомьтесь с публикациями, имеющими тэг «Клавиатура». Там рассказывается и о специальной десктопной клавиатуре для набора SMS-сообщений, и о разнообразных игровых, дизайнерских, эргономичных и мобильных моделях... Не слишком полезно, пожалуй (ведь приобрести эти устройства в нашей стране крайне сложно), но невероятно интересно! А мы не будем углубляться в экзотику, а назовем лишь некоторые наиболее распространенные виды нестандартных клавиатур.

Портативные. Они меньше стандартных и обычно имеют 83 клавиши, которые установлены почти вплотную друг к другу (с расстоянием между центрами в 13–15 мм вместо обычных 19). В первую очередь портативные клавиатуры характерны для ноутбуков.

К категории портативных относятся не только уменьшенные, но и составные модели, в которых цифровой и наборный блоки автономны (существуют и модели, в которых наборный блок состоит из двух частей), а также разборные клавиатуры, от которых цифровой блок (в целях экономии места или по иным соображениям) можно отсоединить. О целесообразности такого решения можно спорить, так же как и о достоинствах клавиатур следующей категории.

Эргономичные. Обеспокоенные состоянием здоровья пользователей, много времени проводящих за компьютером, производители все чаще выпускают такие модели клавиатур, форма корпуса и взаимное расположение клавиш на которых соответствуют естественному положению рук человека. Практически все эргономичные клавиатуры имеют встроенный упор для ладоней (обычно несъемный, но возможны варианты). Ряды алфавитных клавиш на них разделены и развернуты друг относительно друга, в результате чего их расположение становится V-образным, а вся клавиатура имеет S-образную форму. Однако пользователю, привыкшему к клавиатуре стандартной формы (особенно если он печатает «вслепую»), адаптироваться к эргономичной модели будет непросто.

Мультимедийные. В последнее время почти все производители оснащают клавиатуры дополнительными кнопками, с помощью которых можно, например, управлять воспроизведением музыки или видео. Выпускаются даже специализированные модели, «заточенные» под мультимедиацентры. Благодаря поставляемым с такой клавиатурой драйверам функции дополнительных клавиш обычно легко изменить.

Мобильные. Они предназначены для использования в паре с карманным компьютером, коммуникатором или ультрапортативным ноутбуком (то есть с теми устройствами, собственная клавиатура которых для набора текста неоптимальна) и для удобства переноски складываются или даже сворачиваются в трубочку. Такие модели по достоинству оценят в первую очередь те, кто много и часто работает в дороге – они легкие, непромокаемые, достаточно долговечные. Но стоят недешево.

Игровые. Для геймеров-энтузиастов выпускают специальные модели с коротким ходом клавиш и богатым набором дополнительных кнопок. Кроме того, определенные клавиши, например Ü, на таких клавиатурах можно заблокировать: ведь если геймер в пылу сражения случайно нажмет на нее, игра прервется...

Некоторые производители оснащают клавиатуры различными дополнительными «фичами», например подсветкой клавиш для работы или игры в темноте или компактным дисплеем для отображения дополнительной информации. Изначально создаваемые для геймеров, эти опции нашли себе применение и в других сферах: так, дисплеи на клавиатурах уже научились использовать для своих целей утилиты мониторинга системы.

Дизайнерские. Для особо требовательных к внешнему виду техники пользователей существуют эксклюзивно оформленные модели клавиатур. В эпоху повального увлечения моддингом и тюнингом всего и вся разнообразие «доработанных» клавиатур поражает воображение. Металл, силикон, стекло, фарфор, мех, кожа, стразы, береста и дерево, роспись... Многие компании специализируются на создании необычных клавиатур, нанося на эти компьютерные аксессуары аэрографию и даже раскрашивая их «под хохлому». Практической пользы в декорировании клавиатур, разумеется, никакой. И относиться к подобным изыскам нужно критично и осторожно – в силу все той же заботы о собственном здоровье. А остальное – вопросы вкуса и достатка...

К данной категории можно отнести и клавиатуры, кнопки на которых оснащены маленькими дисплеями с меняющимся в зависимости от работающей программы изображениями. Наиболее раскрученным представителем этого класса устройств является «клава» Optimus Maximus, разработанная студией Артемия Лебедева. Стоит эта модель невероятно дорого: около 44 тыс. руб., то есть в 50 раз дороже качественной клавиатуры среднего класса. Попытаться понять, за что просят такие сумасшедшие деньги, можно, познакомившись с материалами блога проекта Optimus (в рамках которого выпускается еще несколько моделей «клавиатур завтрашнего дня») – http://community.livejournal.com/optimus_project.

Лазерные. Единственным осязаемым компонентом такой клавиатуры является компактная «коробочка» проектора. Испускаемый ею луч света «рисует» клавиши на поверхности стола, а инфракрасные датчики следят за тем, когда и какую из них «нажимает» пользователь. Стоят такие устройства дорого, а удобство пользования ими пока что оставляет желать лучшего: они не поддерживают печать с высокой скоростью.

Внимание

Для расширения возможностей портативной клавиатуры ноутбука используют дополнительную клавишу-модификатор. В сочетании с алфавитными, цифровыми и функциональными клавишами она позволяет даже управлять настройками аппаратной части ПК. Например, нажатие + e на некоторых компьютерах уменьшает яркость экрана, а + f – увеличивает. Особенности использования модификатора зависят от модели ноутбука.

Советы покупателям

Обязательно протестируйте несколько моделей, представленных в магазине. Значимые для пользователя характеристики клавиатуры можно оценить буквально «кончиками пальцев». В отличие от большинства компонентов компьютера, которые вполне допустимо выбирать «заочно», ориентируясь на содержание перечня технических характеристик, клавиатуру можно оценить только при непосредственном контакте.

Выполните серию нажатий на клавиши, а лучше наберите несколько предложений реального текста. Обратите внимание на тактильные характеристики кнопок. Комфортна ли для вас величина буквенно-цифровых клавиш и интервалов между ними? Подходят ли вам форма и размер клавиш í, r и w, которые даже на стандартных клавиатурах нередко увеличивают и уменьшают? Устраивает ли вас ход клавиш (не является ли он излишне большим или слишком маленьким)? Достаточно ли они упруги? Четкая ли у клавиш фиксация нажатия (тактильно и на слух)? Велик ли люфт кнопок в горизонтальной плоскости? Все эти мелочи далеко не маловажны, как может показаться на первый взгляд: активно работающие с текстами люди в течение дня совершают десятки тысяч нажатий на клавиши! Печатающим вслепую к тому же непременно нужно обратить внимание на наличие и удобство выступов на клавишах A и O, а также на кнопке 5 в цифровом блоке.

Кнопочные клавиатуры могут быть как с «кликом», так и без. «Клик» – щелчок, характерный преимущественно для механиче­ских устройств, но встречается он и у сравнительно дорогих моделей других типов. «Клик» реализуется с помощью дугообразной тонкой пластины под клавишей (которая прогибается рывком, издавая звук) и позволяет на слух определять, что клавиша нажата, и не пропу­скать буквы при быстром наборе. Если вы работаете за компьютером в отдельной комнате и щелчки клавиш никому не мешают, выбор «кликающей» или «тихой» клавиатуры – исключительно вопрос ваших личных предпочтений. Если же вам приходится стучать по клавишам дома (особенно в ночное время), в тесном офисном помещении или в общественном месте, имеет смысл приобрести клавиатуру без «клика».

Помимо конструкции, при выборе важен внешний вид устрой­ства. Долгое время корпусы и кнопки клавиатур для настольных систем изготавливались из стандартного светло-серого пластика. Иногда часть клавиш (в основном служебные и функциональные) окрашивали в более темный цвет; заметной пользы в таком решении нет, оно скорее дизайнерское. Потом стали появляться клавиатуры черного и белого цветов, а с некоторых пор выпускаются и продаются модели, окрашенные в самые разные цвета. Возможность подобрать клавиатуру, гармонирующую с рабочим столом или другими элементами оформления комнаты, конечно, приятна, но она не должна создавать проблем. Представьте, что вам придется долгие часы проводить за ярко-розовой клавиатурой, и вы вряд ли захотите размещать перед собой это устройство, которое с гарантией послужит дополнительным источником стресса и утомления глаз.

На клавишах темного цвета нанесенные символы нередко сложно различимы, поэтому мы рекомендуем приобретать белые клавиатуры (как, например, у компьютеров Apple) или модели с клавишами светло-серого цвета (который часто именуют «компьютерным серым»). Желательно, чтобы символы латиницы и кириллицы были нанесены на кнопки не только качественно и различимо, но и разными цветами. Это позволит не путаться в клавишах, пытаясь определить, нажимаете вы «эйч» или «эн», «эр» или «пи»...

Все вышесказанное справедливо как для настольных компьютеров, так и для портативных. Но к оценке клавиатуры ноутбука следует подходить еще более тщательно, так как она может быть заменена на другую только вместе с мобильным компьютером.

Более дорогая клавиатура – не всегда лучше. Цена, безусловно, является значимым фактором, но индивидуальный комфорт от нее, в общем случае, не зависит: наиболее удобной для вас может оказаться самая дешевая модель неизвестного производителя. Проводная или беспроводная, стандартная или необычная, клавиатура – как обувь или, например, перчатки – должна подходить вам, и именно вам, особенно если вы проводите за компьютером довольно много времени.

«Техника безопасности» при работе с клавиатурой

В свете вышесказанного (то есть учитывая тот факт, что за компьютером проходит значительная часть вашей жизни) необходимо задумываться не только о конструкции и функционировании аппаратуры, но и о ее эксплуатации. Следует помнить, что не только вы способны нанести вред клавиатуре, но и она может оказаться небезопасной для вас!

Наибольшую опасность, связанную с клавиатурой, представляет ее загрязнение. Исследования показали, что на клавиатуре в ряде случаев микроорганизмов больше, чем на стенках унитаза! Поэтому «клаву» следует регулярно чистить влажными салфетками для компьютерной техники и вытряхивать мусор из промежутков между клавишами. Перед этим клавиатуру обязательно надо отключить от ПК или выключить ноутбук. В противном случае устройство может выйти из строя от беспорядочного одновременного нажатия клавиш при чистке: ряд клавиш перестанет работать.

Возьмите за правило никогда не есть за клавиатурой. Пить у компьютера тоже не следует: рано или поздно содержимое чашки или стакана окажется разлитым по «орудию производства». Кофе и другие жидкости, оказавшиеся между клавишами, после испарения воды оставляют внутри и на поверхности устройства липкую субстанцию, удалить которую сложно, а работе она мешает довольно сильно, т.к. клавиши начинают залипать.

Переутомление рук не менее опасно, чем загрязнение клавиш. При работе с клавиатурой кисти находятся в изогнутом положении, что негативно отражается на состоянии запястий, а также долгое время висят над клавиатурой, что приводит к перегрузке локтей и предплечий.

Избавить руки от избыточной нагрузки несложно: необходимо создать опору для кистей, чтобы им не требовалось висеть в воздухе на протяжении всего времени работы за компьютером. Парадоксально, но факт: клавиатура ноутбука в этом плане оказывается более эргономичной, чем стандартная клавиатура десктопа – большинство ноутбуков, за исключением некоторых ультрапортативных моделей, имеет перед рядами клавиш опорную площадку. Соответствующий упор для ладоней на клавиатурах настольных компьютеров может быть создан опциональной площадкой, которую включают в комплектацию некоторых моделей, соответствующим выступом на столешнице или специальным опциональным валиком. Последнее решение оптимально, но подобные валики, которые обычно выполнены из мягкого вспененного полимера, в продаже встречаются редко.

Даже при работе с эргономичной клавиатурой возьмите за правило делать перерывы через каждый час работы, разминая руки и давая им отдых. Помните, как в первом классе вы делали простейшие упражнения: «Мы писали, мы писали, наши пальчики устали»? Они сохраняют актуальность и при активной работе на клавиатуре в более зрелом возрасте.

Как вы печатаете?

Выбор нужно основывать на своих способностях печати и частоте работы с клавиатурой. Если вы много времени проводите за компьютером, много общаетесь или просто работаете, занимаясь набором текстов, тогда вам нужна клавиатура дорогая. Вам будет легче на ней работать и КПД (коэффициент полезного действия) вашей работы повыситься в разы с хорошей периферией. Это однозначно и не подлежит оговоркам. Но в случае, когда вы мало печатаете, будет достаточно и дешевого варианта на основе всего нескольких советов приведенных далее.

Клавиатура меломанам.

Теперь пришло время более глубоко рассмотрению вариантов клав. Если вы любите слушать музыку или в Интернете часто сидите, покупайте клавиатуру с дополнительными функциями. Сейчас есть множество вариантов, которые, кстати, не портят качества самой клавиатуры, как классической, но имеют ряд функций для регулировки звука, переключения песен, открывания браузера, проверки почты и т. д. Все эти функции упростят вашу жизнь игромана или меломана и стоит такая клавиатура не будет слишком дорого.

Жесткость клавиш.

Решившись на клаву с дополнительными функциями или на их отсутствие, думаем об удобстве, ведь набирать тексты вам все же придется постоянно. Попробуйте понажимать на клавиши в магазине, легко ли они стучатся. Издаются ли звуки, ведь бывает, что нажатие бесшумно, что совсем неудобно. Клавиши должны нажимать чуть-чуть трудно, и чувствоваться, что они нажимаются. Но не покупаем клавиатуру с тугими клавишами, это тоже плохо.

Высота клавиш.

Клавиши должны быть средней высоты, слишком большие или маленькие – неудобны, хотя привыкнуть можно ко всему, но зачем?

Подставка для рук.

Старые и новые профессиональные клавиатуры имели перед собой небольшую горку, подставку для удобства рук. В случае долгих часов за набиранием текстов, это весьма удобная вещь, попробуйте ее, может это именно ваш выбор.

Цвет букв.

Сам дизайн, цвет клавиатуры может быть разный. Это дело вкуса и гармонии с другими частями компьютера. Если у вас компьютер весь черный, тогда белая клавиатура не красиво впишется под него. Хотя и нет разницы, глаза не к этому привыкают. Главное, смотрите на цвет букв. Ведь мы имеем английские и русские знаки, которые всегда должны отличатся по цвету и быть заметными. Это особенно важно для людей, которые подсматривают на клавиатуру при печатании. Если буквы обоих языков одинаковые по цвету, вы получите массу мучений, глаза будут уставать и вы постоянно будете путаться. Ведь буквы «М» и «М» английской и русской раскладки будут совершено одинаковы.

Бойтесь клавиши Выкл.

Часто встречаются клавиатуры, где клавиши выключения компьютера, перезагрузки, включения спящего режима, находятся сразу же над клавишами по управлению курсором. Это самые ужасные варианты, привыкнуть к таким невозможно. Если не хотите случайно выключать компьютер, отбросьте такой выбор мгновенно.

Соединение.

Радио.

Прибамбассы.

Сверхмодные клавиатуры имеют и подсветки светодиодные, экранчики дополнительные, скроллинги, вделанную мышку и много другое. Про это писать мы не будем, это все прибамбассы, от которых жизнь не станет легче. Если хотите качество, купите лучше обычную хорошую клавиатуру, такую же мышку и дополнительные устройства ввода, а лепить функции мышки в клавиатуру, это через чур.

Когда купили.

Вот ваш выбор сделан и вы работаете за вашей новой клавиатурой. Отлично, только не забываем следить за покупкой. Если через полгода вы успели пролить на нее кофе, испачкать грязными руками и т. п., тут не стоит думать вновь о новом. Ведь ваша клавиатура работает усердно, лишь немного залипает 1-2 клавиши? Это все не беда! Любая клавиатура легко чистится. Отключаем ее, отверткой снимаем все клавиши и моем. Только не забудьте сфотографировать вначале все, чтобы не запутаться в обратной установке буковок. После чистки, ваша клавиатура будет новой!

Соединение.

Клавиатура соединяется с компьютером двумя, наиболее популярными способами: через разъем ps/2 или USB. Когда-то был разъем и AT, но он давно в прошлом. И, выбирая, посмотрите, что поддерживает ваш компьютер. Новые модели могут не иметь, например, вход ps/2, или USB-разъем у вас только один (пригодится на флешку). Лучше к таким неприятностям подготовиться, хотя по правде это все мелочи. Количество USB-входов можно легко увеличить разветлителем, а при отсутствии ps/2 можно соединиться через переходник (переходники сейчас есть любые). И при выборе клавиатуры единственное что надо, понимать о своих гнездах сзади системного блока, и если ваш выбор упадет на клавиатуру с соединением типа ps/2, а у вас его нет, тогда сразу покупаем переходник, стоящий копейки, совсем не заморачиваясь об отсутствии нужных гнезд.

Радио.

Можно купить клавиатуру с радиоуправлением, без соединительного шнура. Это хорошее решение для дополнительной клавиатуры в ноутбук или для людей, не любящих сидеть в одной позе в кресле, а полулежа или даже лежа перед монитором. Это уже индивидуально, такие клавиатуры ничем не отличаются от проводных собратьев, кроме удобства их переноса и высокой стоимости.

Прибамбассы.

Сверхмодные клавиатуры имеют и подсветки светодиодные, экранчики дополнительные, скроллинги, вделанную мышку и много другое. Про это писать мы не будем, это все прибамбассы, от которых жизнь не станет легче. Если хотите качество, купите лучше обычную хорошую клавиатуру, такую же мышку и дополнительные устройства ввода, а лепить функции мышки в клавиатуру, это чересчур.

Уход.

Вот ваш выбор сделан и вы работаете за вашей новой клавиатурой. Отлично, только не забываем следить за покупкой. Если через полгода вы успели пролить на нее кофе, испачкать грязными руками и т. п., тут не стоит думать вновь о новом. Ведь ваша клавиатура работает усердно, лишь немного залипает 1-2 клавиши? Это все не беда! Любая клавиатура легко чистится. Отключаем ее, отверткой снимаем все клавиши и моем. Только не забудьте сфотографировать вначале все, чтобы не запутаться в обратной установке клавиш с буквами и знаками. После чистки, ваша клавиатура будет новой!

Компьютерные мыши

«Манипулятор типа мышь» (или его аналог) – атрибут любого современного компьютера, без которого с ПК сложно эффективно взаимодействовать и в работе, и в играх. Как функционирует это незаменимое устройство?

Основная идея, лежащая в основе концепции современного пользовательского интерфейса ПК, – уподобить манипуляции с виртуальными объектами операциям с предметами материального мира – переносить их, разворачивать, нажимать на виртуальные кнопки и т.д. Большиство из них человек выполняет руками, и как следствие – наиболее удобным манипулятором оказывается устройство, напрямую «транслирующее» движения руки в действия на экране.

Используя ту или иную технологию, мышь регистрирует свое перемещение в пространстве, а ее драйвер и операционная система соответствующим образом перемещают курсор по экрану. В свою очередь прикладные программы, запущенные на ПК, получают от ОС сведения о том, что курсор находится над тем или иным элементом их пользовательского интерфейса, и заданным образом реагируют на действия мыши – нажатие клавиш и вращение колеса прокрутки.

Типы компьютерных мышей

Коврик для мыши

Коврики, столь популярные в эпоху шариковых мышей (когда они были абсолютно необходимы), сегодня имеют минимальную практическую ценность. Акцент при их изготовлении сместился на дизайн и эксклюзивные «фишки»: выпускаются коврики с мягкими подушечками под запястье, со светодиодной подсветкой или из «космических» материалов, которые по заявлению производителей резко повышают точность позиционирования курсора...

Интерфейс подключения

Для соединения с ПК мышь может использовать четыре различных интерфейса.

Лишь немногие мыши в настоящее время подключаются к зеленому разъему PS/2 (фиолетовый используется для подключения клавиатуры). Недостаток этого интерфейса известен: во время работы компьютера отключать или подключать мышь нельзя, так как это может привести к системному сбою. Кроме того, цифровая техника стремится к унификации интерфейсов, поэтому разъемы PS/2 уже исчезают с панелей материнских плат, как в свое время исчез порт COM, к которому некогда подключались «древние» мыши.

Мышей с интерфейсом USB сегодня большинство. Их можно подключать и отключать во время работы компьютера, а если свободного USB-порта на компьютере нет – присоединять к разъему PS/2 с помощью переходника.

Мыши с радиоинтерфейсом не нуждаются в проводах, а приемник их сигнала подключается к USB-разъему компьютера.

Мыши с поддержкой Bluetooth стоят дороже, чем их аналоги с обычным радиоинтерфейсом, но использование цифрового канала связи позволяет не только защитить передаваемые данные от перехвата (что актуально для немногих частных пользователей), но также избежать проблем, связанных со взаимным влиянием двух или более манипуляторов, работающих в одном помещении. Большинство таких моделей комплектуется миниатюрным USB-адаптером, то есть могут быть подключены к ПК, не имеющим встроенного Bluetooth-модуля (большинство из них напрямую со встроенными модулями и не работает). Недостаток беспроводных мышей – как с интерфейсом Bluetooth, так и без него – в необходимости использовать для их питания аккумуляторы или батарейки. По этой же причине беспроводные мыши всегда оказываются тяжелее своих «хвостатых сестер» и их вес нередко бывает плохо сбалансирован.

Конкуренты мыши

Наиболее перспективные конкуренты мыши – сенсорные дисплеи. Логика появления таких устройств управления понятна: мышь выступает лишь в качестве посредника между ру