Процессоры, ядра и потоки. Топология систем. Процессы и потоки в Windows

Под процессом понимается программа в стадии выполнения. Процесс можно рассматривать также как единицу работы для . Для современных типов процессоров существует и более мелкая единица работы поток или нить. Другими словами процесс может породить один и более потоков.

В чем же состоит принципиальное различие в понятиях процесс и поток. Процесс рассматривается ОС, как заявка на все виды ресурсов (память, файлы и пр.), кроме одного — процессорного времени. Поток — это заявка на процессорное время.

В дальнейшем в качестве единицы работы ОС будут использоваться понятия процесс и поток. В тех же случаях, когда это не играет существенной роли, они будут называться задача

Планирование процессов и потоков

Планирование процессов и потоков включает:

  • Создание-уничтожение процессов
  • Взаимодействие между процессами
  • распределение процессорного времени
  • Обеспечение процессов необходимыми ресурсами (единолично, совместно)
  • Синхронизация (контроль за возникновением «гонок», блокировок)
  • После завершения процесса — «зачистка», т.е. удаление следов пребывания в системе

Каждый процесс изолируется от других своим виртуальным адресным пространством, под которым понимается совокупность адресов, которыми может манипулировать программный модуль процесса. ОС отображает виртуальное адресное пространство на отведенную процессу .

Для взаимодействия, процессы обращаются к ОС, которая предоставляет средства общения (конвейеры, почтовые ящики, разделяемые секции памяти и др.)

Возможность распараллеливания вычислений в рамках процесса на потоки повышает эффективность . Механизм распараллеливания вычислений для одного приложения называется многопоточной обработкой (multithreading). Потоки процесса имеют одно адресное виртуальное пространство. Распараллеливание ускоряет выполнение процесса за счет отсутствия переключения ОС с одного адресного пространства на другое, которое имеет место при выполнении процессов. Программы становятся более логичны. Особый эффект при этом достигается в мультипроцессорных системах.

Примером многопоточной обработки может служить выполнение запросов MS SQL Server

Создание процессов

Создать процесс — это создать описатель процесса (информационная структура, содержащая сведения необходимые для управления этим процессом)

Примеры описателей для:

  • Windows NT/2000/XP — объект-процесс (object-process)
  • UNIX — дескриптор процесса
  • OS/2 — управляющий блок процесса (PCB -Process Control Block)

Кроме того создать процесс — это включает также следующие действия:

  • Найти программу на диске
  • перераспределить оперативную память
  • выделить память новому процессу
  • переписать программу в выделенную память
  • изменить некоторые параметры программы

Примечание. В некоторых системах, коды и данные могут сразу не помещаться в память, а переписываться в специальную область диска — область подкачки

Создание потоков

В многопоточной системе при создании процесса создается хотя бы один поток. Для потока ОС генерирует описатель потока (идентификатор потока, данные о правах, приоритете, состояние потока и пр.).Исходное состояние потока — приостановленное.

Поток может породить другой поток — потомок. При завершения потока-родителя используются разные алгоритмы. Асинхронное завершение предполагает продолжение выполнения потоков-потомков после завершения потока-родителя. Синхронное завершение потока-родителя приводит к завершению всех его потомков.

  • Tutorial

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Цель статьи - показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, в статье

Мой комментарий объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.

Процессор

Конечно же, самый древний, чаще всего используемый и неоднозначный термин - это «процессор».

В современном мире процессор - это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою предыдущую заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает , что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память - RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.


К взлёту готов! Intel® Desktop Board D5400XS

Ядро

Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах - как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент - схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер , во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.


Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.

Гиперпоток

До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология - гипертреды или гиперпотоки, - Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT - это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния - регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня - это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии . Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков
В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это - частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение - здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре - уникальная для IA-32 конфигурация.

Логический процессор

Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x , y , z ), где x - это число процессоров, y - число ядер в каждом процессоре, а z - число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией - устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) - ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая - два ядра, а третья - всего лишь два потока.


Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?


Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений - им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии

Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи :

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к , в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID
Local APIC (advanced programmable interrupt controller) - это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) - для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC .

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше - только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей
Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два - внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня - гиперпоток, ядро или процессор, - в ECX.

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, - все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB - не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI .

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст

ggg@shadowbox:~$ cat /proc/cpuinfo |grep "processor\|physical\ id\|siblings\|core\|cores\|apicid" processor: 0 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 0 initial apicid: 0 processor: 1 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 1 initial apicid: 1 processor: 2 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 2 initial apicid: 2 processor: 3 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 3 initial apicid: 3

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст

user@host:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec: 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 0, 1 THREAD groupSMT group 2, 3 THREAD groupSMT group 4, 5 THREAD groupSMT group 6, 7 THREAD groupSMT group

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

4.1 Процессы

4.1.1 Понятие процесса

Процесс (задача) - программа, находящаяся в режиме выполнения.

С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данные.

Адресное пространство содержит:

    саму программу

    данные к программе

    стек программы

С каждым процессом связывается набор регистров, например:

    счетчика команд (в процессоре) - регистр в котором содержится адрес следующей, стоящей в очереди на выполнение команды. После того как команда выбрана из памяти, счетчик команд корректируется и указатель переходит к следующей команде.

    указатель стека

Во многих операционных системах вся информация о каждом процессе, дополнительная к содержимому его собственного адресного пространства, хранится в таблице процессов операционной системы.

Некоторые поля таблицы:

Управление процессом

Управление памятью

Управление файлами

Регистры

Счетчик команд

Указатель стека

Состояние процесса

Приоритет

Параметры планирования

Идентификатор процесса

Родительский процесс

Группа процесса

Время начала процесса

Использованное процессорное время

Указатель на текстовый сегмент

Указатель на сегмент данных

Указатель на сегмент стека

Корневой каталог

Рабочий каталог

Дескрипторы файла

Идентификатор пользователя

Идентификатор группы

4.1.2 Модель процесса

В многозадачной системе реальный процессор переключается с процесса на процесс, но для упрощения модели рассматривается набор процессов, идущих параллельно (псевдопараллельно).

Рассмотрим схему с четырьмя работающими программами.

В каждый момент времени активен только один процесс

С права представлены параллельно работающие процессы, каждый со своим счетчиком команд. Разумеется, на самом деле существует только один физический счетчик команд, в который загружается логический счетчик команд текущего процесса. Когда время, отведенное текущему процессу, заканчивается, физический счетчик команд сохраняется в памяти, в логическом счетчике команд процесса.

4.1.3 Создание процесса

Три основных события, приводящие к созданию процессов (вызов fork или CreateProcess ):

    Работающий процесс подает системный вызов на создание процесса

    Запрос пользователя на создание процесса

Во всех случаях, активный текущий процесс посылает системный вызов на создание нового процесса.

В UNIX каждому процессу присваивается идентификатор процесса (PID - Process IDentifier)

4.1.4 Завершение процесса

Четыре события, приводящие к остановке процесса (вызов exit или ExitProcess ):

    Плановое завершение (окончание выполнения)

    Плановый выход по известной ошибке (например, отсутствие файла)

    Выход по неисправимой ошибке (ошибка в программе)

    Уничтожение другим процессом

Таким образом, приостановленный процесс состоит из собственного адресного пространства, обычно называемого образом памяти (core image ), и компонентов таблицы процессов (в числе компонентов и его регистры).

4.1.5 Иерархия процессов

В UNIX системах заложена жесткая иерархия процессов. Каждый новый процесс созданный системным вызовом fork, является дочерним к предыдущему процессу. Дочернему процессу достаются от родительского переменные, регистры и т.п. После вызова fork, как только родительские данные скопированы, последующие изменения в одном из процессов не влияют на другой, но процессы помнят о том, кто является родительским.

В таком случае в UNIX существует и прародитель всех процессов - процесс init .

Дерево процессов для систем UNIX

4.1.6 Состояние процессов

Три состояния процесса:

    Выполнение (занимает процессор)

    Готовность (процесс временно приостановлен, чтобы позволить выполняться другому процессу)

    Ожидание (процесс не может быть запущен по своим внутренним причинам, например, ожидая операции ввода/вывода)

Возможные переходы между состояниями.

1. Процесс блокируется, ожидая входных данных

2. Планировщик выбирает другой процесс

3. Планировщик выбирает этот процесс

4. Поступили входные данные

Переходы 2 и 3 вызываются планировщиком процессов операционной системы, так что сами процессы даже не знают о этих переходах. С точки зрения самих процессов есть два состояния выполнения и ожидания.

На серверах для ускорения ответа на запрос клиента, часто загружают несколько процессов в режим ожидания, и как только сервер получит запрос, процесс переходит из "ожидания" в "выполнение". Этот переход выполняется намного быстрее, чем запуск нового процесса.

4.2 Потоки (нити, облегченный процесс)

4.2.1 Понятие потока

Каждому процессу соответствует адресное пространство и одиночный поток исполняемых команд. В многопользовательских системах, при каждом обращении к одному и тому же сервису, приходится создавать новый процесс для обслуживания клиента. Это менее выгодно, чем создать квазипараллельный поток внутри этого процесса с одним адресным пространством.

4.2.2 Модель потока

С каждым потоком связывается:

    Счетчик выполнения команд

    Регистры для текущих переменных

    Состояние

Потоки делят между собой элементы своего процесса:

    Адресное пространство

    Глобальные переменные

    Открытые файлы

  • Семафоры

    Статистическую информацию.

В остальном модель идентична модели процессов.

В POSIX и Windows есть поддержка потоков на уровне ядра.

4.2.3 Преимущества использования потоков

    Упрощение программы в некоторых случаях, за счет использования общего адресного пространства.

    Быстрота создания потока, по сравнению с процессом, примерно в 100 раз.

    Повышение производительности самой программы, т.к. есть возможность одновременно выполнять вычисления на процессоре и операцию ввода/вывода. Пример: текстовый редактор с тремя потоками может одновременно взаимодействовать с пользователем, форматировать текст и записывать на диск резервную копию.

4.2.4 Реализация потоков в пространстве пользователя, ядра и смешанное

B - потоки в пространстве ядра

В случае А ядро о потоках ничего не знает. Каждому процессу необходима таблица потоков , аналогичная таблице процессов.

Преимущества случая А :

    Такую многопоточность можно реализовать на ядре не поддерживающим многопоточность

    Более быстрое переключение, создание и завершение потоков

    Процесс может иметь собственный алгоритм планирования.

Недостатки случая А :

    Отсутствие прерывания по таймеру внутри одного процесса

    При использовании блокирующего (процесс переводится в режим ожидания, например: чтение с клавиатуры, а данные не поступают) системного запроса все остальные потоки блокируются.

    Сложность реализации

Добрый день. Сегодня хотелось бы разобрать, что такое потоки в процессоре. Те самые, о функциях и возможностях которых большинство и не догадывается, однако любят хвастаться остальным.

Цель функции заключается в том, что на 1 ядро может одновременно обрабатывать несколько потоков данных. Пока первый поток простаивает, а второй занимается вычислением, запущенное приложение может воспользоваться вакантной логической мощью для своих целей. В результате, прерывания случаются гораздо реже, а вы не ощущаете тормозов и прочих неудобств при работе.

Недостаток технологии заключается в следующем:

  • оба потока обращаются к единой кэш-памяти 2 и 3 уровней;
  • тяжелые вычислительные процессы могут вызвать конфликт в системе.

Если очень грубо, то все кирпичи с одного места на другое можно перенести в одной руке (1 поток), либо в двух (2 потока), но человек при этом один (1 ядро) и устает одинаково при любых условиях, хоть его производительность фактически увеличивается вдвое. Иными словами, мы упираемся в производительность ЦП, а конкретней в его частоту.

Это четвертая статья из серии "Преодолевая границы Windows", в рамках которой я рассказываю об ограничениях, существующих для фундаментальных ресурсов в Windows. На сей раз, я собираюсь обсудить с вами ограничение на максимальное количество потоков и процессов, поддерживаемое Windows. Здесь я кратко опишу различие между потоком и процессом, ограничение потока опроса (от англ. survey thread), после чего мы поговорим об ограничениях, связанных с процессами. В первую очередь я решил рассказать об ограничениях потоков, так как каждый активный процесс имеет, по крайней мере, один поток (процесс, который завершился, но ссылка на который хранится в обработчике, предоставленном другим процессом, не имеет ни одного потока), так что ограничения процессов напрямую зависят от основных ограничений, связанных с потоками.

В отличие от некоторых вариантов UNIX, большинство ресурсов Windows не имеют фиксированного ограничения, заложенного в операционную систему на этапе сборки, а скорее получают ограничения на основании имеющихся в распоряжении ОС базовых ресурсов, о которых я рассказывал ранее. Процессы и потоки, например, требуют для себя физической памяти, виртуальной памяти и памяти пула, так что число процессов и потоков, которые могут быть созданы на данной системе Windows, в конечном счете, определяется одним из этих ресурсов, в зависимости от того, каким образом эти процессы или потоки были созданы и какое из ограничений базовых ресурсов будет достигнуто первым. Поэтому я рекомендую вам, чтобы вы прочитали мои предыдущие статьи, если вы до сих пор этого не сделали, потому что далее я буду обращаться к таким понятиям, как зарезервированная память, выделенная память и системное ограничение памяти, о которых я говорил в предыдущих своих статьях:

Процессы и потоки
Процесс Windows по своей сути является контейнером, в котором хранится код команд из исполняемого файла. Он представляет собой объект процесса ядра и Windows использует этот объект процесса и связанные с ним структуры данных для хранения и сопровождения информации об исполняемом коде приложения. Например, процесс имеет виртуальное адресное пространство, в котором хранятся его частные и общие данные и в которое отображаются исполняемый образ и связанные с ним библиотеки DLL. Windows с помощью инструментов диагностики записывает информацию об использовании процессом ресурсов для обеспечения учета и выполнения запросов и регистрирует ссылки процесса на объекты операционной системы в таблице дескриптора процесса. Процессы работают с контекстом безопасности, именуемом маркером, который идентифицирует учетную запись пользователя, группы учетной записи и привилегии, назначенные процессу.

Процесс включает в себя один или более потоков, которые фактически выполняют код в процессе (технически, выполняются не процессы, а потоки) и представлены в системе в виде объектов потоков ядра. Есть несколько причин, почему приложения создают потоки в дополнение к их исходному начальному потоку: 1) процессы, обладающие пользовательским интерфейсом, обычно создают потоки для того, чтобы выполнять свою работу и при этом сохранять отзывчивость основного потока к командам пользователя, связанными с вводом данных и управлением окнами; 2) приложения, которые хотят использовать несколько процессоров для масштабирования производительности или же которые хотят продолжать работать, в то время как потоки останавливают свою работу, ожидая синхронизации операций ввода/вывода, создают потоки, чтобы получить дополнительную выгоду от многопоточной работы.

Ограничения потоков
Помимо основной информации о потоке, включая данные о состоянии регистров ЦП, присвоенный потоку приоритет и информацию об использовании потоком ресурсов, у каждого потока есть выделенная ему часть адресного пространства процесса, называемая стеком, которую поток может использовать как рабочую память по ходу исполнения кода программы, для передачи параметров функций, хранения локальных переменных и адресов результатов работы функций. Таким образом, чтобы избежать нерациональной траты виртуальной памяти системы, первоначально распределяется только часть стека, или же часть ее передается потоку, а остаток просто резервируется. Поскольку стеки в памяти растут по нисходящей, система размещает так называемые "сторожевые" страницы (от англ. guard pages) памяти вне выделенной части стека, которые обеспечивают автоматическое выделение дополнительной памяти (называемой расширением стека), когда она потребуется. На следующей иллюстрации показано, как выделенная область стека углубляется и как сторожевые страницы перемещаются по мере расширения стека в 32-битном адресном пространстве:

Структуры Portable Executable (PE) исполняемых образов определяют объем адресного пространства, которое резервируется и изначально выделяется для стека потока. По умолчанию компоновщик резервирует 1Мб и выделяет одну страницу (4Кб), но разработчики могут изменять эти значения либо меняя значения PE, когда они организуют связь со своей программой, либо путем вызова для отдельного потока функции CreateTread . Вы можете использовать утилиту, такую как Dumpbin , которая идет в комплекте с Visual Studio, чтобы посмотреть настройки исполняемой программы. Вот результаты запуска Dumpbin с опцией /headers для исполняемой программы, сгенерированной новым проектом Visual Studio:

Переведя числа из шестнадцатеричной системы исчисления, вы можете увидеть, что размер резерва стека составляет 1Мб, а выделенная область памяти равна 4Кб; используя новую утилиту от Sysinternals под названием MMap , вы можете подключиться к этому процессу и посмотреть его адресное пространство, и тем самым увидеть изначально выделенную страницу памяти стека процесса, сторожевую страницу и остальную часть зарезервированной памяти стека:

Поскольку каждый поток потребляет часть адресного пространства процесса, процессы имеют базовое ограничение на количество потоков, которое они могут создать, равное размеру их адресного пространства, поделенного на размер стека потока.

Ограничения 32-битных потоков
Даже если бы у процесса вообще не было ни кода, ни данных и все адресное пространство могло бы быть использовано под стеки, то 32-битный процесс с установленным по умолчанию адресным пространством в 2 б мог бы создать максимум 2048 потоков. Вот результаты работы программы Testlimit , запущенной в 32-битной Windows с параметром -t (создание потоков), подтверждающие наличие этого ограничения:

Еще раз, так как часть адресного пространства уже использовалась под код и начальную динамическую память, не все 2Гб были доступны для стеков потоков, так что общее количество созданных потоков не смогло достигнуть теоретического предела в 2048 потоков.

Я попробовал запустить Testlimit с дополнительной опцией, предоставляющей приложению расширенное адресное пространство, надеясь, что если уж ему дадут больше 2Гб адресного пространства (например, в 32-битных системах это достигается путем запуска приложения с опцией /3GB или /USERVA для Boot.ini, или же эквивалентной опцией BCD на Vista и позднее increaseuserva), оно будет его использовать. 32-битным процессам выделяется 4Гб адресного пространства, когда они запускаются на 64-битной Windows, так сколько же потоков сможет создать 32-битный Testlimit, запущенный на 64-битной Windows? Если основываться на том, что мы уже обсудили, ответ должен быть 4096 (4Гб разделенные на 1Мб), однако на практике это число значительно меньше. Вот 32-битный Testlimit, запущенный на 64-битной Windows XP:

Причина этого несоответствия кроется в том факте, что когда вы запускаете 32-битное приложение на 64-битной Windows, оно фактические является 64-битным процессом, которое выполняет 64-битный код от имени 32-битных потоков, и потому в памяти для каждого потока резервируются области под 64-битные и 32-битные стеки потоков. Для 64-битного стека резервируется 256Кб (исключения составляют ОС, вышедшие до Vista, в которых исходный размер стека 64-битных потоков составляет 1Мб). Поскольку каждый 32-битный поток начинает свое существование в 64-битном режиме и размер стека, который ему выделяется при старте, превышает размер страницы, в большинстве случаев вы увидите, что под 64-битный стек потока выделяется как минимум 16Кб. Вот пример 64-битных и 32-битных стеков 32-битного потока (32-битный стек помечен как "Wow64"):

32-битный Testlimit смог создать в 64-битной Windows 3204 потока, что объясняется тем, что каждый поток использует 1Мб + 256Кб адресного пространство под стек (повторюсь, исключением являются версии Windows до Vista, где используется 1Мб+ 1Мб). Однако, я получил другой результат, запустив 32-битный Testlimit на 64-битной Windows 7:

Различия между результатами на Windows XP и Windows 7 вызвано более беспорядочной природой схемы распределения адресного пространства в Windows Vista, Address Space Layout Randomization (ASLR), которая приводит к некоторой фрагментации. Рандомизация загрузки DLL, стека потока и размещения динамической памяти, помогает улучшить защиту от вредоносного ПО. Как вы можете увидеть на следующем снимке программы VMMap, в тестовой системе есть еще 357Мб доступного адресного пространства, но наибольший свободный блок имеет размер 128Кб, что меньше чем 1Мб, необходимый для 32-битного стека:

Как я уже отмечал, разработчик может переустановить заданный по умолчанию размер резерва стека. Одной из возможных причин для этого может быть стремление избежать напрасного расхода адресного пространства, когда заранее известно, что стеком потока всегда будет использоваться меньше, чем установленный по умолчанию 1Мб. PE-образ Testlimit по умолчанию использует размер резерва стека в 64Кб, и когда вы указываете вместе параметром -t параметр -n, Testlimit создает потоки со стеками размером в 64Кб. Вот результат работы этой утилиты на системе с 32-битной Windows XP и 256Мб RAM (я специально провел этот тест на слабой системе, что подчеркнуть данное ограничение):

Здесь следует отметить, что произошла другая ошибка, из чего следует, что в данной ситуации причиной является не адресное пространство. Фактически, 64Кб-стеки должны обеспечить приблизительно 32 000 потоков (2Гб/64Кб = 32768). Так какое же ограничение проявилось в данном случае? Если посмотреть на возможных кандидатов, включая выделенную память и пул, то никаких подсказок в нахождении ответа на этот вопрос они не дают, поскольку все эти значения ниже их пределов:

Ответ мы можем найти в дополнительной информации о памяти в отладчике ядра, который укажет нам искомое ограничение, связанное с доступной резидентной памятью, весь объем которой был исчерпан:

Доступная резидентная память - это физическая память, выделяемая для данных или кода, которые обязательно должны находиться в оперативной памяти. Размеры невыгружаемого пула и невыгружаемых драйверов высчитываются независимо от этого, также как, например, память, зарезервированная в RAM для операций ввода/вывода. У каждого потока есть оба стека пользовательского режима, об этом я уже говорил, но у них также есть стек привилегированного режима (режима ядра), который используется тогда, когда потоки работают в режиме ядра, например, исполняя системные вызовы. Когда поток активен, его стек ядра закреплен в памяти, так что поток может выполнять код в ядре, для которого нужные страницы не могут отсутствовать.

Базовый стек ядра занимает 12Кб в 32-битной Windows и 24Кб в 64-битной Windows. 14225 потоков требуют для себя приблизительно 170Мб резидентной памяти, что точно соответствует объему свободной памяти на этой системе с выключенным Testlimit:

Как только достигается предел доступной системной памяти, многие базовые операции начинают завершаться с ошибкой. Например, вот ошибка, которую я получил, дважды кликнув на ярлыке Internet Explorer, расположенном на рабочем столе:

Как и ожидалось, работая на 64-битной Windows с 256Мб RAM, Testlimit смог создать 6600 потоков - примерно половину от того, сколько потоков эта утилита смогла создать в 32-битной Windows с 256Мб RAM - до того, как исчерпалась доступная память:

Причиной, по которой ранее я употреблял термин "базовый" стек ядра, является то, что поток, который работает с графикой и функциями управления окнами, получает "большой" стек, когда он исполняет первый вызов, размер которого равен (или больше) 20Кб на 32-битной Windows и 48Кб на 64-битной Windows. Потоки Testlimit не вызывают ни одного подобного API, так что они имеют базовые стеки ядра.
Ограничения 64-битных потоков

Как и у 32-битных потоков, у 64-битных потоков по умолчанию есть резерв в 1Мб для стека, но 64-битные имеют намного больше пользовательского адресного пространства (8Тб), так что оно не должно стать проблемой, когда дело доходит до создания большого количества потоков. И все же очевидно, что резидентная доступная память по-прежнему является потенциальным ограничителем. 64-битная версия Testlimit (Testlimit64.exe) смогла создать с параметром -n и без него приблизительно 6600 потоков на системе с 64-битной Windows XP и 256Мб RAM, ровно столько же, сколько создала 32-битная версия, потому что был достигнут предел резидентной доступной памяти. Однако, на системе с 2Гб оперативной памяти Testlimit64 смог создать только 55000 потоков, что значительно меньше того количества потоков, которое могла бы создать эта утилита, если бы ограничением выступила резидентная доступная память (2Гб/24Кб = 89000):

В данном случае причиной является выделенный начальный стек потока, который приводит к тому, что в системе заканчивается виртуальная память и появляется ошибка, связанная с нехваткой объема файла подкачки. Как только объем выделенной памяти достигает размера оперативной памяти, скорость создания новых потоков существенно снижается, потому что система начинает "пробуксовывать", ранее созданные стеки потоков начинают выгружаться в файл подкачки, чтобы освободить место для стеков новых потоков, и файл подкачки должен увеличиваться. С включенным параметром -n результаты те же, поскольку таким же остается начальный объем выделенной памяти стека.

Ограничения процессов
Число процессов, поддерживаемых Windows, очевидно, должно быть меньше, чем число потоков, потому как каждый процесс имеет один поток и сам по себе процесс приводит к дополнительному расходу ресурсов. 32-битный Testlimit, запущенный на системе с 64-битной Windows XP и 2Гб системной памяти создает около 8400 процессов:

Если посмотреть на результат работы отладчика ядра, то становится понятно, что в данном случае достигается ограничение резидентной доступной памяти:

Если бы процесс использовал резидентную доступную память для размещения только лишь стека потока привилегированного режима, Testlimit смог бы создать намного больше, чем 8400 потоков на системе с 2Гб. Количество резидентной доступной памяти на этой системе без запущенного Testlimit равно 1,9Гб:

Путем деления объема резидентной памяти, используемой Testlimit (1,9Гб), на число созданных им процессов получаем, что на каждый процесс отводится 230Кб резидентной памяти. Так как 64-битный стек ядра занимает 24 Кб, мы получаем, что без вести пропали примерно 206Кб для каждого процесса. Где же остальная часть используемой резидентной памяти? Когда процесс создан, Windows резервирует достаточный объем физической памяти, чтобы обеспечить минимальный рабочий набор страниц (от англ. working set). Это делается для того, чтобы гарантировать процессу, что любой ситуации в его распоряжении будет достаточное количество физической памяти для сохранения такого объема данных, который необходим для обеспечения минимального рабочего набора страниц. По умолчанию размер рабочего набора страниц зачастую составляет 200Кб, что можно легко проверить, добавив в окне Process Explorer столбец Minimum Working Set:

Оставшиеся 6Кб - это резидентная доступная память, выделяемая под дополнительную нестраничную память (от англ. nonpageable memory), в которой хранится сам процесс. Процесс в 32-битной Windows использует чуть меньше резидентной памяти, поскольку его привилегированный стек потока меньше.

Как и в случае со стеками потока пользовательского режима, процессы могут переопределять установленный для них по умолчанию размер рабочего набора страниц с помощью функции SetProcessWorkingSetSize . Testlimit поддерживает параметр -n, который, в совокупности с параметром -p, позволяет устанавливать для дочерних процессов главного процесса Testlimit минимально возможный размер рабочего набора страниц, равный 80Кб. Поскольку дочерним процессам нужно время, чтобы сократить их рабочие наборы страниц, Testlimit, после того, как он больше не сможет создавать процессы, приостанавливает работу и пробует ее продолжить, давая его дочерним процессам шанс выполниться. Testlimit, запущенный с параметром -n на системе с Windows 7 и 4Гб RAM уже другого, отличного от ограничения резидентной доступной памяти, предела - ограничения выделенной системной памяти:

На снимке снизу вы можете увидеть, что отладчик ядра сообщает не только о том, что был достигнут предел выделенной системной памяти, но и о том, что, после достижения этого ограничения, имели место тысячи ошибок распределения памяти, как виртуальной, так и памяти, выделенной под выгружаемый пул (предел выделенной системной памяти фактически был достигнут несколько раз, так как, когда случалась ошибка, связанная с нехваткой объема файла подкачки, этот самый объем увеличивался, отодвигая это ограничение):

До запуска Testlimit средний уровень выделенного объема памяти был равен приблизительно 1,5Гб, так что потоки заняли около 8Гб выделенной памяти. Следовательно, каждый процесс потреблял примерно 8 Гб/6600 или 1,2Мб. Результат выполнения команды!vm отладчика ядра, которая показывает распределение собственной памяти (от англ. private memory) для каждого процесса, подтверждает верность данного вычисления:

Начальный объем выделенной памяти под стек потока, описанный ранее, оказывает незначительное влияние на остальные запросы на предоставление памяти, требуемой для структур данных адресного пространства процесса, записей таблицы страниц, таблицы дескрипторов, объектов процесса и потока, и собственных данных, которые процесс создает во время своей инициализации.

Сколько процессов и потоков будет достаточно?
Таким образом, ответы на вопросы "сколько потоков поддерживает Windows?" и "сколько процессов вы можете одновременно запустить на Windows?" взаимосвязаны. Помимо нюансов методов, по которым потоки определяют размер их стека и процессы определяют их минимальный рабочий набор страниц, двумя главными факторами, определяющим ответы на эти вопросы для каждой конкретной системы, являются объем физической памяти и ограничение выделенной системной памяти. В любом случае, если приложение создает достаточное количество потоков или процессов, чтобы приблизиться к этим пределам, то его разработчику следует пересмотреть проект этого приложения, поскольку всегда существуют различные способы достигнуть того же результата с разумным числом процессов. Например, основной целью при масштабировании приложения является стремление сохранить число выполняющихся потоков равным числу ЦП, и один из способов добиться этого состоит в переходе от использования синхронных операции ввода/вывода к асинхронным с использованием портов завершения, что должно помочь сохранить соответствие числа запущенных потоков с числом ЦП.