Принцип работы светодиодов и фотодиодов. Как применять фоторезисторы, фотодиоды и фототранзисторы. Включение фотодиода в каскад с общей базой

2. Унифицированные сигналы ИП

3. Назначение обратных ИП

1. Фотодиоды свойства, схемы включения, применение.

Фотодио́д (ФД) - приёмник оптического излучения, который преобразует падающий на его фоточувствительную область поток в электрический заряд за счёт процессов в p-n-переходе.

На рис. 9 приведена структурная схема фотодиода с элементами внешней цели.

1-кристалл полупроводника;

2-контакты;

3-выводы;

Ф-поток электромагнитного излучения;

Е-напряжение источника постоянного тока;

Rн-сопротивление нагрузки.

Рис. 9. Структурная схема фотодиода

Принцип работы

При освещении p-n перехода монохроматическим излучением с энергией фотонов > ( – ширина запрещенной зоны) имеет место собственное поглощение квантов излучения и генерируются неравновесные фотоэлектроны и фотодырки. Под действием электрического поля перехода эти фотоносители перемещаются: электроны - в n-область, а дырки - в р-область, т.е. через переход течет дрейфовый ток неравновесных носителей. Ток фотодиода определяется током неосновных носителей.

Уравнение, определяющее световые и вольт-амперные характеристики фотогальванических элементов, может быть представлено в следующем виде:

, (5)

, (6)

где - темновой ток «утечки» через p- n переход;

- ток насыщения, т. е. абсолютное значение величины, к которой стремится темновой ток при ;

A – коэффициент, зависящий от материала фотоэлемента и имеющий значение от 1 до 4(для германиевых фотодиодов он равен 1);

- температура, ˚ K ;

, k (элементарный заряд);

(постоянная Больцмана);

Семейство вольт-амперных характеристик освещенного фотодиода показано на рисунке 10.

Рис. 10. Вольт-амперная характеристика фотодиода

Семейство ВАХ фотодиода расположено в квадрантах I, III, IV. Квадрант I-это нерабочая область для фотодиода, в этом режиме фотоуправление током через диод невозможно.

Квадрант IV семейства ВАХ фотодиода соответствует фотогальваническому режиму работы ФД. Если цель разомкнута, то концентрация электронов в n-области и дырок в p-области увеличивается, поле объемного заряда атомов примеси в переходе частично компенсируется и потенциальный барьер снижается. Это снижение происходит на величину фотоЭДС, называемую напряжением холостого хода фотодиода Uxx. Значение Uxx для ФД составляет 0,5-0,55В для GaAs - арсенид галлия Uxx=0,8÷0,9В и не может превышать контактную разность потенциалов перехода, поскольку при этом полностью компенсируется электрическое поле и разделение фотоносителей в переходе прекращается.

Если p- и n- области соединить внешним проводником (режим короткого замыкания), то Uxx=0 и в проводнике потечет ток короткого замыкания , образованный неравновесными фотоносителями.

Промежуточные значения определяются линиями нагрузки, которые при разных значениях выходят из начала координат под разным углом. При заданном значении тока по ВАХ ФД можно выбрать оптимальный режим работы фотодиода, при котором в нагрузку будет передаваться наибольшая электрическая мощность.

Основными световыми характеристиками фотодиода в фотогальваническом режиме являются зависимости тока короткого замыкания от светового потока и напряжения холостого хода от светового потока Uхх = , их типовые зависимости показаны на рисунке 11.

Как видно из рис.11 зависимость линейна в широком диапазоне Ф и лишь при значительных световых потоках (Ф>2000…3000лм) начинает проявляться нелинейность.

Зависимость Uxx =также линейна, но при световых потоках, не превышающих 200÷300лм, имеет существенную нелинейность при Ф более 4000лм. Нелинейность при увеличении Ф объясняется ростом падения напряжения на объемном сопротивлении базы фотодиода, а нелинейность Uхх = - уменьшением потенциального барьера при росте Ф.

Характеристики ФД в сильной степени зависят от температуры. Для кремниевых ФД Uxx падает на 2.5 мВ при увеличении температуры на 1˚С, при этом, Iкз увеличивается в относительных единицах на 3∙10 -3 1/˚С.

Рис. 11. Световые характеристики фотодиода

Квадрант III-это фотодиодная область работы ФД, при которой к p-n переходу прикладывается обратное напряжение (рис.9)

ВАХ нагрузочного резистора представляет собой прямую линию, уравнение которой имеет вид:

,

где - обратное напряжение на ФД,

– фототок.

Фотодиод и нагрузочный резистор соединены последовательно, т.е. через них протекает один и тот же ток . Этот ток можно определить по точке пересечения ВАХ фотодиода и нагрузочного сопротивления.

Таким образом, в фотодиодном режиме при заданном потоке излучения Ф фотодиод является источником тока по отношению к внешней цепи. Причем значение тока от параметров внешней цепи (,) практически не зависит.

1. Энергетические характеристики фотодиода связывают фототок со световым потоком, падающим на фотодиод. Зависимость фототока от светового потока при работе фотодиода в генераторном режиме - является строго линейной только при короткозамкнутом фотодиоде . С ростом нагрузочного сопротивления характеристики все больше искривляются и при больших имеют ярко выраженную область насыщения (рис. 3.12, а). При работе фотодиода в схеме с внешним источником напряжения энергетические характеристики значительно ближе к линейным. При увеличении приложенного напряжения фототок несколько возрастает (рис. 3.12, б). Это объясняется расширением области -перехода и уменьшением ширины базы, в результате чего меньшая часть носителей заряда рекомбинирует в базе при движении к -переходу.

2. Абсолютные и относительные спектральные характеристики фотодиода аналогичны соответствующим характеристикам фоторезистора и зависят от материала фотодиода и введенных примесей (рис. 3.12, в).

Спектральные характеристики практически захватывают всю видимую (300-750 нм) и инфракрасную области спектра.

4. Частотная характеристика показывает изменение интегральной чувствительности при изменении яркости светового потока с разной частотой излучения (рис. 3.12, г). Иногда инерционные свойства фотодиода характеризуют граничной частотой, на которой интегральная чувствительность уменьшается в раз по сравнению со своим статическим значением.

Рис. 3.12. Энергетические характеристики фотодиода в режиме (а) и при работе с внешним источником (б); относительные спектральные и частотные характеристики

Граничная частота быстродействующих кремниевых фотодиодов - порядка Гц.

Для повышения быстродействия и увеличения чувствительности в последние годы разработан ряд фотодиодов; со встроенным электрическим полем; на основе с барьерами Шотки; лавинные фотодиоды и т. д.

В фотодиодах с встроенным электрическим полем базу получают с помощью процесса диффузии. Из-за неравномерного распределения концентрации примесей в ней возникает внутреннее электрическое поле, которое ускоряет движение неосновных носителей заряда к -переходу.

Вследствие наложения диффузионного и дрейфового движений фотодиода несколько возрастает.

Фотодиоды, выполненные на основе , имеют значительно большую толщину области, обедненной основными носителями заряда, так как между р- и -областями имеется -область с собственной электропроводностью. К переходу без риска пробить его можно приложить значительные напряжения. В результате возникает ситуация, когда световое излучение поглощается непосредственно в области, обедненной основными носителями заряда, в которой создано электрическое поле высокой напряженности. Электроны и дырки, возникающие в области перехода при световом облучении, мгновенно перекидываются в соответствующие области. В результате быстродействие резко возрастает и f достигает значений Гц.

Аналогичными по быстродействию являются фотодиоды на основе барьера Шотки. Они выполняются из кремния, на поверхность которого нанесено прозрачное металлическое покрытие из пленок золота мкм) и сернистого цинка 01 к 0,05 мкм), создающее барьер Шотки. Благодаря минимальному сопротивлению базы и отсутствию процессов накопления и рассасывания избыточных зарядов быстродействие получается достаточно высоким Гц).

В лавинных фотодиодах используется лавинный пробой -перехода или барьера Шотки. От обычных фотодиодов они отличаются тем, что возникшие в результате светового облучения носители заряда лавинно размножаются в области -перехода вследствие ударной ионизации. Выбором внешнего напряжения и параметров цепи обеспечивается возникновение лавинного пробоя только при световом облучении. Этот процесс приводит к тому, что ток в цепи увеличивается по сравнению с током , обусловленным световой генерацией и тепловым током перехода, в раз (М-коэффициент лавинного умножения носителей.

Коэффициент лавинного умножения описывается зависимостью

Фотоэлектронные приборы. Принцип работы, основные параметры и характеристики фотодиода.

ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ - электровакуумные или полупроводниковые приборы,преобразующие эл--магн. сигналы оптич. диапазона в электрические токи, напряжения или преобразующие изображения в невидимых (напр., ИК) лучах в видимые изображения. Ф. п. предназначены для преобразования, накопления, хранения, передачи и воспроизведения информации (включая информацию в виде изображения объекта). Действие Ф. п. основано на использовании фотоэффектов: внешнего (фотоэлектронной эмиссии), внутреннего (фотопроводимости) или вентильного. К Ф. п. относятся разл. фотоэлементы, фотоэлектронные умножители, фоторезисторы , фотодиоды, электронно-оптич. преобразователи, усилители яркости изображения, а также передающие электронно-лучевые трубки.

Фотоэлектронными называются приборы, преобразующие энергию оптического излучения в электрическую. В спектре длин волн оптического излучения для фотоэлектронных приборов в основном используются ультрафиолетовые излучения (диапазон длин волн λ=10-400 нм), видимое (λ=0,38-0,76 мкм) и инфракрасное (λ=0,74-1 мкм).
Работа фотоэлектронных приборов основана на явлениях внутреннего и внешнего фотоэффектов. Внутренний фотоэффект, используемый в основном в полупроводниковых фотоэлектронных приборах, заключается в том, что под действием лучистой энергии оптического излучения электроны получают дополнительную энергию для их освобождения от межатомных связей и перехода из валентной зоны в зону проводимости, в результате чего электропроводимость полупроводника существенно возрастает. При этом, согласно теории Эйнштейна, энергия световых квантов (фотонов) оптического излучения должна превышать ширину запрещенной зоны полупроводника. (36)
Следовательно, фотоэффект возможен только при воздействии на полупроводник излучения с длиной волны λ ф, меньшей некоторого граничного значения, называемого «красной границей».
(37)
где λ ф – длинноволновая граница спектральной чувствительности материала, мкм;
с – скорость света в вакууме;
– постоянная Планка;
– ширина запрещенной зоны (рис.3), ограниченная краями энергетических зон ЗП, ВЗ, в электрон-вольтах (эВ).
Следует отметить, что возможности фотоэлектронных приборов могут расширяться при воздействии энергии разнообразных источников излучения. Такими источниками могут быть как источники фотонов (солнечная энергия, гамма-излучение, рентгеновское излучение), так и источники частиц с высокой энергией (электронная пушка, бета-излучение, альфа-частицы, протоны и др.) .

Фотодиод – это двухэлектродный полупроводниковый диод, в котором в результате внутреннего фотоэффекта в p-n переходе возникает односторонняя фотопроводимость при воздействии на него оптического излучения. Конструктивно он представляет собой кристалл с p-n переходом, причём световой поток при освещении прибора направляется перпендикулярно плоскости p-n перехода (рис.36). Различают два режима работы фотодиода: фотогенераторный (или, в различных источниках – запирающий, фотогальванический, фотовольтаический, вентильный) – без внешнего источника питания, и фотодиодный (иногда фотопреобразовательный) – с внешним источником.

Рис. 36. Структура фотодиода

Принцип работы фотодиода

Структурная схема фотодиода. 1 - кристалл полупроводника; 2 - контакты; 3 - выводы; Ф - поток электромагнитного излучения; Е - источник постоянного тока; Rн - нагрузка.

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей - дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода C p-n

Фотодиод может работать в двух режимах:

§ фотогальванический - без внешнего напряжения

§ фотодиодный - с внешним обратным напряжением

Особенности:

§ простота технологии изготовления и структур

§ сочетание высокой фоточувствительности и быстродействия

§ малое сопротивление базы

§ малая инерционность

Параметры и характеристики фотодиодов

Параметры:

чувствительность

отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему.

Si v =I ΦΦv ; Si ,Ev =I ΦEv - токовая чувствительность по световому потоку

Su e =U ΦΦe ; Si ,Ee =U ΦEe - вольтаическая чувствительность по энергетическому потоку

помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром - шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

Характеристики:

вольт-амперная характеристика (ВАХ)

зависимость выходного напряжения от входного тока. U Φ=f (I Φ)

спектральные характеристики

зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

световые характеристики

зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.

постоянная времени

это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

темновое сопротивление

сопротивление фотодиода в отсутствие освещения.

Инерционность

Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.



Рис. 6.7. Структура (а) и обозначение (б) фотодиода

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).

Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

Рис. 6.8. Вольт-амперные характеристики фотодиода

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

Рис. 6.9 Рис. 6.10

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).

Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.

Основные виды фотоэлектронных приборов. Общие сведения

Фотоприёмник в общем смысле - это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.

Фоторезисторы - изменяют сопротивление при освещении

Фоторезистор - фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.

Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.

Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора

Интересно:

Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.

Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.

На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф - темнота, а Ф3 - это яркий свет. Она линейна. Еще одна важная характеристика - это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.

Темновое сопротивление - это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв - это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.

У фоторезисторов есть существенный недостаток - его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд - 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.

Фотодиод - преобразует свет в электрический заряд

Фотодиод - элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.

Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.

По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.

Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие - это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.

У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием - 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.

В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).

Когда диод не освещается светом - в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света - тем больше ток.

Фототок Iф равен:

где Sинт - интегральная чувствительность, Ф - световой поток.

Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен - в обратном направлении по отношению к источнику питания.

Другой режим - генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает , но имеют малую мощность.

Фототранзисторы - открываются от количества падающего света

Фототранзистор - это по своей сути у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.

Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения - с плавающей базой, когда базовый вывод остаётся незадействованным.

В схему включают фототранзисторы подобным образом.

Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.

Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.

В советское время радиолюбители делали фототранзисторы своими руками - делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.

Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.

Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» - до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.

Области применения фотоэлектронных приборов

В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.

Схема, изображенная выше - это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 - он открывается, и открывает еще один транзистор - VT2. Эти два транзистора - это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.

Диод VD2 - нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока - фаза или ноль).

У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление - тем меньше света нужно для включения схемы.

Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.

Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.

В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.

В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.

Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.

Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.

В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.

Применение для передачи сигналов в электронных схемах

Оптоэлектронные приборы - это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.

Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.

Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.

Рассмотрим пару примеров использования таких приборов.

Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет - попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.

В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.

В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.

Выводы

Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.

Фотодиодом называют полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект. Устройство фотодиода аналогично устройству обычного плоскостного диода. Отличие состоит в том, что его p–n переход одной стороной обращен к стеклянному окну, через которое поступает свет, и защищен от воздействия света с другой стороны. Фотодиоды могут работать в одном из двух режимов:

– без внешнего источника электрической энергии (вентильный или фотогенераторный, фотогальванический режим);

– с внешним источником электрической энергии (фотодиодный или фотопреобразовательный режим).

Рассмотрим работу фотодиода в вентильном режиме, схема включения представлена на рис.8.7.

Рис 8.7. Схема включения фотодиода для работы в вентильном режиме

При отсутствии светового потока на границе p–n перехода создается контактная разность потенциалов. Через переход навстречу друг другу протекают два тока – I др и I диф, которые уравновешивают друг друга. При освещении p–n перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т.е. за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка. Под действием контактной разности потенциалов p–n перехода неосновные носители заряда n–области – дырки переходят в р–область, а неосновные носители заряда р–области – электроны – в n–область. Дрейфовый ток получает дополнительное приращение, называемое фототоком Дрейф неосновных носителей приводит к накоплению избыточных дырок в р–области, а электронов в n–области, это приводит к созданию на зажимах фотодиода при разомкнутой внешней цепи разности потенциалов, называемой фото-ЭДС Потенциальный барьер перехода, как и при прямом напряжении, уменьшается на величину фото-ЭДС, называемую напряжением холостого хода U хх при разомкнутой внешней цепи. Снижение потенциального барьера увеличивает ток диффузии DI диф основных носителей через переход. Он направлен навстречу фототоку. Поскольку ключ разомкнут, в структуре устанавливается термодинамическое равновесие токов:

Значение фото-ЭДС не может превышать контактной разности потенциалов p–n перехода. В противном случае из-за полной компенсации поля в переходе разделение оптически генерируемых носителей прекращается. Так, например, у селеновых и кремниевых фотодиодов фото-ЭДС достигает 0,5…0,6 В, у фотодиодов из арсенида галлия – 0,87 В.

При подключении нагрузки к освещенному фотодиоду (ключ замкнут), в электрической цепи появится ток, обусловленный дрейфом неосновных носителей. Значение тока зависит от фото-ЭДС и сопротивления нагрузки, максимальный ток при одной и той же освещенности фотодиода будет при сопротивлении резистора, равном нулю, т.е. при коротком замыкании фотодиода. При сопротивлении резистора не равном нулю, ток во внешней цепи фотодиода уменьшается.


Ток, протекающий через фотодиод, можно записать в следующем виде:

, (8.6)

где I ф – фототок;

I 0 – тепловой ток p–n перехода;

U – напряжение на диоде.

При разомкнутой внешней цепи (R н =¥, I ф общ =0) легко выразить напряжение на переходе при холостом ходе, которое равно фото-ЭДС:

. (8.7)

Фотодиоды, работающие в режиме фотогенератора, часто используются в качестве источников питания, преобразующих энергию солнечного излучения в электрическую.

В фотодиодном или фотопреобразовательном режиме работы последовательно с фотодиодом включается внешний источник энергии, смещающий диод в обратном направлении (рис. 5.12).

Рис.8.8. Схема включения фотодиода для работы в фотодиодном режиме

При отсутствии светового потока и под действием обратно приложенного напряжения через фотодиод протекает обычный начальный обратный ток I о, который называют темновым. Темновой ток ограничивает минимальное значение светового потока. При освещении фотодиода кванты света дополнительно вырывают электроны из валентных связей полупроводника, увеличивая тем самым поток неосновных носителей заряда через p–n переход. Чем больше световой поток, падающий на фотодиод, тем выше концентрация неосновных носителей заряда вблизи запорного слоя, и тем больший фототок, определяемый напряжением внешнего источника и световым потоком, протекает через диод.

При правильно подобранном сопротивлении нагрузки R н и напряжении источника питания этот ток будет зависеть только от освещенности прибора, а падение напряжения на сопротивлении можно рассматривать как полезный сигнал.

Фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p–n перехода уменьшается). Недостатком фотодиодного режима работы является большой темновой ток, зависящий от температуры.

5.9. Характеристики и параметры фотодиода

Фотодиод описывается вольтамперной, энергетической (световой), спектральной и частотной характеристиками, приведенными на рис. 8.9, 8.10.

Если к неосвещенному фотодиоду подключить источник напряжения, значение и полярность которого можно изменять, то снятые при этом вольтамперные характеристики будут иметь такой же вид, как у обычного полупроводникового диода (рис. 8.9,а). При освещении фотодиода существенно изменяется лишь обратная ветвь вольтамперной характеристики, прямые же ветви при сравнительно небольших напряжениях практически совпадают.

Рис 8.9. Схема включения фотодиода для работы в вентильном режиме

В квадранте III фотодиод работает в фотодиодном режиме, а в квадранте IV в фотовентильном режиме, и фотоэлемент становится источником электрической энергии. Квадрант I – это нерабочая область для фотодиода, в этом квадранте p–n переход смещен в прямом направлении.

Энергетическая характеристика фотодиода связывает фототок со световым потоком, падающим на фотодиод рис. 8.9,б. При работе фотодиода в вентильном режиме спектральные характеристики существенно зависят от сопротивления резистора, включенного во внешнюю цепь. С ростом нагрузочного сопротивления характеристики все более искривляются и при больших сопротивлениях имеют ярко выраженный участок насыщения. При работе фотодиода в фотодиодном режиме энергетические характеристики линейны, т.е. практически все фотоносители доходят до p–n перехода и участвуют в образовании фототока.

Спектральная характеристика фотодиода аналогична соответствующим характеристикам фоторезистора и зависит от материала фотодиода и количества примесей (рис. 8.10,а).

Рис 8.10. Спектральная (а) и частотная характеристика фотодиода

Селеновые фотодиоды имеют спектральную характеристику, близкую по форме к спектральной зависимости чувствительности человеческого глаза. Германиевые и кремниевые фотодиоды чувствительны как в видимой, так и в инфракрасной части спектра излучения.

Частотная характеристика показывает изменение интегральной чувствительности при изменении яркости светового потока с разной частотой модуляции (рис. 8.1,б). Быстродействие фотодиода характеризуется граничной 0частотой, на которой интегральная чувствительность уменьшается в раз по сравнению со своим низкочастотным значением.

Для повышения чувствительности и быстродействия разработаны следующие фотодиоды: со встроенным электрическим полем; фотодиоды с p–i–n структурой; с барьером Шотки; лавинные фотодиоды.

Фотодиоды со встроенным электрическим полем имеют неравномерно легированную базу, за счет чего возникает внутреннее электрическое поле, которое ускоряет движение неосновных носителей заряда.

Фотодиоды с p–i–n структурой имеют большую толщину области, обедненной основными носителями, i–область имеет удельное сопротивление в 10 6 …10 7 раз больше, чем сопротивление легированных областей n– и p–типов. К переходу можно прикладывать большие обратные напряжения, и однородное электрическое поле устанавливается по всей i–области. Падающее световое излучение поглощается i–областью, имеющей сильное электрическое поле, что способствует быстрому дрейфу носителей в соответствующие области.

У фотодиодов с барьером Шотки за счет минимального сопротивления базы и отсутствия процессов накопления и рассасывания избыточных зарядов достигается высокое быстродействие. У лавинных фотодиодов происходит лавинное размножение носителей в p–n переходе, и за счет этого резко возрастает чувствительность, их быстродействие составляет f гр = 10 11 …10 12 Гц. Эти диоды считаются одними из перспективных элементов оптоэлектроники.

Параметры фотодиодов следующие:

1. Темновой ток I Т – начальный обратный ток, протекающий через диод при отсутствии внешнего смещения и светового излучения (10…20 мкА для германиевых и 1…2 мкА для кремниевых диодов).

2. Рабочее напряжение U p – номинальное напряжение, прикладываемое к фотодиоду в фотодиодном режиме (U p =10…30 В).

3. Интегральная чувствительность S инт показывает, как изменяется фототок при единичном изменении светового потока:

. (8.8)

4. Граничная частота f гр – частота, на которой интегральная чувствительность уменьшается в раз (10 7 …10 12 Гц).