Перевод величин из децибелов в абсолютные значения и мощность. Как измерить децибелы - wikiHow

Как это ни странно, звуки, лежащие за пределами слышимости человеческим ухом, играют огромную роль в различных областях знаний. Учёным, вооружённым методами современных компьютерных технологий и электроники, удалось не только расшифровать такие природные звуки, но и поставить их на службу человечеству.

Например, в странах, подвергающихся нашествию разрушительных цунами (Япония, Филиппины, Малайзия, Таиланд и Индонезия и других), развёрнута целая сеть станций раннего оповещения о таких событиях. Помимо береговых стационарных сейсмических станций, фиксирующих инфразвуки подводных землетрясений, развёрнута целая сеть автономных датчиков, находящихся в свободном плавании и связанных с центрами обработки информации через спутниковую связь. И есть надежда, что трагедиям, подобных трагедии 2004 года, когда от цунами пострадали сотни тысяч людей в Южной Азии, равно как и трагедии Фукусимы 2011 года, не суждено будет больше повториться. Пусть мы пока не в состоянии управлять подземными силами, и нам не избежать материальных потерь в ближайшем обозримом будущем, мы должны и сможем хотя бы свести к минимуму число человеческих жертв.

Инфразвуки с успехом применяются учёными-геофизиками при изучении свойств и характеристик Земли и отдельных её составляющих - коры, мантии и ядра. Высокоэкономичным методом в поиске полезных ископаемых, среди которых надо выделить особо ценные залежи нефти и природного газа, является сейсморазведка. Поскольку уже сейчас треть добываемой нефти приходится на добычу из моря, а морские неразведанные запасы превышают таковые запасы на суше, в последнее время всё больше внимания уделяется исследованиям морского дна. С помощью современных компьютерных технологий обработки отраженного и преломлённого инфразвукового сигнала можно получать 2D- и 3D-изображения залежей и оценивать перспективность их дальнейшей разработки.

Инфразвуковой контроль является неотъемлемой частью общего контроля за соблюдением выполнения Договора о всеобъемлющем запрещении ядерных испытаний, наравне с сейсмическим, химическим и радиологическим контролем. Инфразвуковой контроль удобен для обнаружения ядерных взрывов в связи с тем, что инфразвук способен проходить большие расстояния практически без рассеяния.

И пока пусть остаются библейским мифом разрушение стен Иерихона из-за звука труб (что с точки зрения современной науки вполне возможно, достаточно только достигнуть полного резонанса на инфразвуке), историческая наука не стоит на месте, вполне возможно, что мы сумеем отыскать материальные подтверждения знаний древних людей.

Историческая справка

Первое официальное наблюдение инфразвука было произведено во время мощного извержения вулкана Кракатау в Зондском проливе в 1883 году. Мощность взрыва вулкана была эквивалентна взрыву атомной бомбы в 200 мегатонн, что вчетверо превышает мощность испытания Советским Союзом водородной авиационной бомбы АН602 (русское название - изделие 202, англоязычное обозначение -RDS-202, никнейм «Big Ivan») мощностью более 50 мегатонн (русское расхожее название Царь-Бомба, по аналогии с Царь-пушкой и Царь-колоколом) 30 октября 1961 года на ядерном полигоне острова Новая Земля. Ударная волна от взрыва вулкана трижды обогнула земной шар, под ее воздействием в радиусе сотни километров разбивались стеклянные окна, звуки извержения были слышны в г. Перт (Западная Австралия, расстояние свыше 3000 километров) и на острове Родригес, что близ острова Маврикий (расстояние свыше 4800 километров).

Интерес к звукам, лежащим за пределами слышимости человеческим ухом, и связанных с ними физическими и психофизическими явлениями, начал проявляться по мере появления и развития таких наук, как радиотехника и электроника. Парадоксальным образом отсчет им положили работы физиков разных стран конца 19-го и начала 20-го века совершенно в другом диапазоне волн - радиодиапазоне. В их число заслуженно включаются такие выдающиеся учёные как Генрих Рудольф Герц, Александр Степанович Попов и Гульельмо Маркони.

Ключевым моментом в исследовании и генерации как аудиозвука, так и инфразвука и ультразвука явилось изобретение электронных усилителей. Вначале появились схемы на основе электронных ламп, разработкой которых мы обязаны целой плеяде замечательных изобретателей. Ещё в 1883 году Т. А. Эдисон первым обнаружил эффект проводимости в вакууме. Затем, в 1904 году, Д. А. Флеминг первым практически использовал эффект Эдисона для преобразования переменного тока в постоянный (выпрямление тока) с помощью двухэлектродной лампы (диода). В 1906 году Ли де Форест ввёл в лампу третий электрод - управляющую сетку, получив усилительный элемент триод. В 1912 году на её основе был создан первый автогенератор. Позднее на основе изобретения транзисторов, а потом интегральных схем были созданы более совершенные и экономичные схемы усиления и генерации электрических сигналов низкочастотного диапазона. Верхом этого процесса можно считать разработку цифровых методов анализа и синтеза звука любого мыслимого диапазона с помощью современных компьютерных технологий, которым поддаются даже методы визуализации звука.

Как всегда, впереди планеты всей по этой части стали военные инженеры. Они не только научились определять дислокацию вражеских артиллерийских батарей по инфразвукам от их выстрелов с закрытых позиций, но также научились обнаруживать скрытые под водой объекты в виде нового типа вооружений (подводных лодок), используя, помимо инфразвука, звук и ультразвук (гидроэхолокация). Специальность инженера-акустика стала неотъемлемым атрибутом и в морских, и в наземных войсках.

Инфразвук. определение и физика явлений

К инфразвуку относятся звуки с частотами ниже частот, воспринимаемых человеческим слухом, то есть с частотой ниже 20 Гц; нижняя граница инфразвука условно принимается равной 1 миллигерцу, однако на практике чаще рассматривают нижнюю границу 0,1 Гц.

При распространении в различных средах, инфразвук в общем подчиняется законам акустики, то есть способен затухать, отражаться и преломляться. Но имеются некоторые отличия:

  • для восприятия человеком через вибрации тела, инфразвук должен иметь более высокую амплитуду колебаний по сравнению со звуковыми волнами в диапазоне слышимости;
  • инфразвук гораздо дальше распространяется в воздухе, поскольку слабо поглощается атмосферой;
  • из-за большой длины волн, инфразвуку в большей степени, чем обычному звуку, свойственны дифракционные явления (огибание препятствий).

В природе инфразвук возникает при землетрясениях, ударах молний, извержениях вулканов, при сильном ветре, во время бурь и ураганов. На море усиление инфразвукового фона является верным признаком надвигающегося шторма; то же справедливо в отношении к сходу снежных лавин.

Восприятие инфразвуков животными

Совершенно естественно, что в живой природе наиболее чувствительными к действию инфразвуков являются животные крупных размеров: киты, слоны, бегемоты, носороги, жирафы, окапи, крокодилы, львы и тигры. Они не только воспринимают инфразвук, но и прекрасно его генерируют в силу размеров своих органов. Киты и слоны с успехом используют инфразвуковые сигналы для общения с себе подобными, причем дальность такой связи на суше может достигать при благоприятных условиях распространения инфразвука сотни километров. Хищники таким образом защищают свою охотничью территорию от посягательств на неё чужаков своего вида, хотя ареал обитания прайда не превышает радиуса 10 километров. В случае китов дальность связи может составлять даже несколько тысяч километров! Возможно, в открытом океане используется эффект дальнего прохождения за счёт образования своеобразного канала распространения инфразвука из-за разности температур, разности гидростатического давления и разности в солёности поверхностных и глубинных вод. Принцип действия этого канала аналогичен принципу передачи информации по волоконно-оптическому кабелю, в котором световые лучи распространяются также благодаря полному внутреннему отражению.

Техногенная генерация инфразвука

С момента возведения первых мегалитических сооружений (вспомните Стоунхендж!) человечество неосознанно стало техногенным генератором инфразвука, строя различные здания для хозяйственных, жилищных и религиозных нужд, камеры которых (комнаты, залы, печи и камины с дымоходами) служили своеобразными резонаторами инфразвука и пассивными генераторами под воздействием ветра. По мере освоения природных сил люди стали всё более активным генератором инфразвука. Первыми устройствами стали водяные и ветряные мельницы, хотя у них интенсивность инфразвука была не столь велика, тем не менее, производила некий мистический эффект. Недаром во всех преданиях различных народов профессия мельника, равно как и профессия кузнеца, вынужденного своими равномерными ударами молота вызывать инфразвук, окружена легендами с негативным подтекстом. Прямыми потомками этих устройств ныне являются напорные водоводы гидроэлектростанций, ветроэлектрогенераторы и механические молоты титанических размеров.

На производстве источником инфразвука также являются тяжёлые станки, где происходит возвратно-поступательное движение больших масс (например, поршневые компрессоры), вентиляторы и системы кондиционирования, турбины и виброплощадки и другое оборудование. Реактивные двигатели самолётов также излучают инфразвуковые волны. С освоением силы пара и массовым внедрением силовых установок на судах, мы стали генерировать инфразвуки не только на суше, но и на море.

Ныне основными источниками антропогенного шумового загрязнения океана являются суда, пневмопушки для сейсмической разведки полезных ископаемых на дне морей и океанов, морские буровые и эксплуатационные платформы для добычи нефти и газа, а также гидролокаторы, как военного, так и гражданского назначения. Источниками инфразвука также являются ядерные взрывы, причем инфразвук от них может распространяться по атмосферному волноводу на тысячи километров.

Биологи небезосновательно бьют тревогу, относя массовые выбросы китообразных на сушу за счёт антропогенных инфразвуков, звуков и ультразвуков, генерируемых нами. По их мнению, мы своим звуком просто сбиваем животных с курса, вызывая сбои их систем навигации. Сейчас шумовое загрязнение морей в полосе частот инфразвука достигает максимальной интенсивности, превышая акустическое загрязнение на остальных частотах в тысячи раз.

Воздействие инфразвука на человека

Человеческий организм и его психика подвержены влиянию инфразвука по той причине, что он стимулирует вестибулярный аппарат, а также в связи с тем, что почти все органы человека имеют резонансные частоты в пределах 8-20 Гц:

  • 20–30 Гц (резонанс головы);
  • 18 Гц и 40–100 Гц (резонанс глаз);
  • 0,5–13 Гц (резонанс вестибулярного аппарата);
  • 4–6 Гц (резонанс сердца);
  • 2–3 Гц (резонанс желудка);
  • 2–4 Гц (резонанс кишечника);
  • 6–8 Гц (резонанс почек);
  • 2–5 Гц (резонанс рук).

Разброс в значениях объясняется разбросом антропометрических данных среди представителей человечества.

Полагают, что инфразвуковые колебания даже небольшой интенсивности вызывают симптомы, схожие с сотрясением мозга (тошнота, шум в ушах, нарушения зрения). Колебания средней интенсивности могут стать причиной «непищевой» диареи и нарушений функций мозга с самыми неожиданными последствиями. Считается, что инфразвук высокой интенсивности, влекущий за собой резонанс, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца или разрыва кровеносных сосудов.

Ещё более интересные эффекты производит инфразвук на психоэмоциональное состояние людей, подвергшихся его воздействию. В этом смысле показателен масштабный опыт, проведённый группой английских исследователей над аудиторией из 700 человек в лондонском концертом зале Перселл-Рум (Purcell Room), которым предлагалось прослушать музыкальный концерт в двух отделениях. Каждое из отделений состояло из четырёх произведений, в два из них в оригинальное исполнение подмешивался инфразвук частотой 17 Гц малой интенсивности, во втором отделении инфразвук подмешивался в два других произведения. Слушателям предлагалось описать свои ощущения и значительная часть респондентов (22%) отмечала необычные переживания: тревогу, беспокойство, крайнюю печаль, чувство отвращения и страха, озноб вдоль позвоночника и чувство давления в груди как раз в моменты подачи инфразвукового сигнала.

Крайне любопытным воздействием на человека инфразвука частотой 18,98 Гц стало обнаружение визуального эффекта английским инженером-исследователем Виком Тэнди в начале 80-х годов прошлого столетия. Засиживаясь допоздна в своей лаборатории, Тэнди неоднократно замечал периферическим зрением появление бесформенного серого пятна, которое исчезало при повороте головы в его сторону. Будучи заядлым фехтовальщиком, он также заметил, что при полировке рапиры, зажатой рукояткой в тиски, её кончик заметно дрожал. Предположив по вибрациям рапиры (лезвие рапиры играла роль приёмника-регистратора) наличие в помещении инфразвука, он исследовал помещение лаборатории и обнаружил, что инфразвук действительно присутствует - его источником был недавно установленный вытяжной вентилятор. Максимум инфразвукового сигнала отмечался как раз над рабочим столом Тэнди и его частота была близка к резонансной частоте глазного яблока 18 Гц, определённой НАСА. Работы в этом направлении были просуммированы В. Тэнди в статье «Призраки из машины», опубликованной 1998 году. В дальнейшем он по приглашению исследователей паранормальных явлений привлекался в рабочие группы по обследованию подвала туристического центра в Ковентри в 2001 году и Уорикского замка в 2004 году. В обоих случаях отмечался высокий уровень инфразвука. Так что появление призраков в английских замках имеет под собой вполне материальную основу!

«Фантомный» инфразвук

Еще более удивительным образом на человека влияет «фантомный» инфразвук. Дело в том, что из-за бинаурального эффекта слуха, присущего человеку и большинству высших животных, человеческий мозг оценивает источник звука по частоте, фазе и интенсивности сигнала, вычисляя направление на источник звука по этим признакам, в том числе и по разности фаз звуковых колебаний, поступающих в правое и левое ухо. В результате, при воздействии на правый и левый каналы слуха близких частот с разницей, лежащей в пределах восприятия звука, возникают «фантомные» ощущения восприятия звука «основного» тона при прослушивании более высоких частот (гармоник). При этом возникает «фантомное» восприятие основной частоты, хотя её в исходном сигнале вообще нет. Например, если одно ухо слышит сигнал с частотой 550 Гц, а другое с частотой 570 Гц, то мозг воспринимает (то есть, как будто, слышит) дополнительную частоту 20 Гц, которая является разностью этих двух частот. Следует отметить, что это не обычная сумма двух синусоидальных сигналов разных частот, в результате которой наблюдаются биения. Суммирование происходит в мозге, а не в воздухе! И звук формируется не в воздухе, а в мозге слушателя.

Иногда человек слышит низкочастотные звуки, которых в реальности нет. Это происходит из-за того, что мозг подвергает звук серьезной обработке, добавляя частоты, которых нет в звуках. Это явление широко используется в технике. Примером может служить телефонный канал, ограниченный полосой 300 -3000 Гц. Тем не менее, все мы уверенно определяем гендерную принадлежность голоса по телефону, хотя для представителей «сильного» пола характерная частота голоса составляет 150 Гц. Наш мозг, этот самый совершенный компьютер на текущий момент, обманывает нас!

Ещё хуже (а может быть и лучше) дело обстоит, когда два сигнала с небольшой разницей частот, которые лежат в диапазоне инфразвука, приходят в правое и левое ухо. Это, возможно, связано с тем обстоятельством, что электрическая активность человеческого мозга имеет несколько биоритмов, связанных с его состоянием. Некоторые из таких ритмов ЭЭГ рассмотрены ниже.

  • Бета-волны: самые быстрые, характерны для состояния бодрствования, сосредоточенности и познания. Их избыток сопровождается беспокойством, страхом и паникой. В зависимости от степени состояния может меняться в пределах 14–42 Гц. Слабый уровень бета-волн статистически коррелирует с депрессией, плохим избирательным вниманием и слабой памятью.
  • Альфа-волны: биоритмы мозга замедляются до частот в 8–13 Гц. Их доминанта соответствует состоянию умиротворённости, способности к восприятию новой информации. В этом состоянии мозг производит наибольшее количество эндорфинов и энкефалинов - «наркотиков» собственного производства.
  • Тета-волны: сигналы электроэнцефалограммы в диапазоне 4–8 Гц. В исследованиях на животных тета-волны записывают с помощью электродов, имплантированных в мозг. Для исследований людей электроды наклеивают на голову. Исследования на людях показывают, что тета-волны связаны с фазой быстрого сна и переходом от сна к пробуждению, а также со спокойным состоянием бодрствования.
  • Дельта-волны: переход в сонное или бессознательное состояние, электрическая активность мозга замедляется до частот ниже 4 Гц и имеет высокую амплитуду. Ассоциируется с глубоким сном.
  • Существуют также гамма-волны мозга, которые возникают при решении задач, требующих максимального внимания. Поскольку их типичная частота (40 Гц) лежит вне пределов рассматриваемого диапазона, ограничимся только упоминанием о них. Отметим только, что этот список далеко не исчерпывающий.

На этих эффектах основано горловое пение тибетских монахов и григорианское хоровое пение. За счёт практически неуловимых биений в исполнении, они провоцируют состояние восторженности вплоть до экстаза у благодарных слушателей. А ныне шарлатаны от медицины рекламируют их как панацею для снятия тревожных состояний психики, безо всякого медицинского контроля предлагая «успокоительную» музыку.

С точки зрения автора этой статьи - радиоинженера, компьютерщика, отъявленного атеиста и материалиста, человеческий мозг представляет собой высокоизбирательный приёмник со многими точками входа, к тому же подключённый к суперкомпьютеру со своими программами обработки входных сигналов, алгоритмы которых не совсем адекватно отражают объективную реальность.

Опыт по обнаружению инфразвука

Аппаратура

В нашем быту всегда присутствуют инфразвуки, основным генератором которых служат вентиляторы и воздуховоды систем кондиционирования. В принципе, для демонстрации инфразвуков достаточно вентилятора с малыми оборотами в качестве генератора инфразвука. В качестве приёмника инфразвука можно использовать динамик сабвуфера в инверсном режиме, подключённого к регистратору через предварительный усилитель с малым уровнем шумов и фильтром по срезу высших частот, поскольку все типичные акустические микрофоны слабо реагируют на инфразвук из-за малости их размеров. В качестве регистратора инфразвуков можно использовать цифровой или аналоговый осциллограф или устройство для записи звука. Результаты записи звука оконного кондиционера и напольного вентилятора показаны на графиках.

На этих двух графиках показан записанный звук напольного вентилятора. На нижнем графике показана спектрограмма (спектр частот - зависимость частоты от времени и зависимость амплитуды сигнала от частоты в конкретный момент времени). Справа от этого графика показано как цвет изменяется от черного к белому в зависимости от амплитуды сигнала. Амплитуда указана в децибелах относительно полной шкалы. 0 dBFS соответствует максимально возможному уровню сигнала для данной системы звукозаписи.

\\ Самара

Децибел (дБ) считается базовой единицей, с помощью которой все проектировщики телекоммуникационной промышленности сравнивают характеристики оборудования. Но что такое дБ? И какое преимущество в характеристиках в действительности обеспечивает запас в несколько децибел? Ответ можно найти в происхождении этого термина. Впервые использованная для измерений интенсивности звука, единица измерения децибел была названа так в честь Александра Грэма Бэлла.

Децибе?л - Логарифмическая единица уровней, затуханий и усилений.

Децибел - десятая часть бела, то есть десятая часть логарифма безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную

Децибел - это безразмерная единица, применяемая для измерения отношения некоторых величин - «энергетических» (мощности, энергии, плотности потока мощности и т. п.) или «силовых» (силы тока, напряжения и т. п.). Иными словами, децибел - это относительная величина. Не абсолютная, как, например, ватт или вольт, а такая же относительная, как кратность («трехкратное отличие») или проценты, предназначенная для измерения отношения («соотношения уровней») двух других величин, причем к полученному отношению применяется логарифмический масштаб.

Русское обозначение единицы «децибел» - «дБ», международное - «dB» (неправильно: дб, Дб). Децибел аналогичен единицам бел (Б, B) и непер (Нп, Np) и прямо пропорционален им.

Децибел не является официальной единицей в системе единиц СИ, хотя по решению Генеральной конференции по мерам и весам допускается его применение без ограничений совместно с СИ, а Международная палата мер и весов рекомендовала включить его в эту систему.

Области применения

Децибел широко применяется в любых областях техники, где требуется измерение величин, меняющихся в широком диапазоне: в радиотехнике, антенной технике, в системах передачи информации, в оптике, акустике (в децибелах измеряется уровень громкости звука) и др. Так, в децибелах принято измерять динамический диапазон (например, диапазон громкости звучания музыкального инструмента), затухание волны при распространении в поглощающей среде, коэффициент усиления и коэффициент шума усилителя.

Децибел используется не только для измерения отношения физических величин второго порядка (энергетических: мощность, энергия) и первого порядка (напряжение, сила тока). С помощью децибела можно измерять отношения любых физических величин, а также использовать децибелы для представления абсолютных величин (см. опорный уровень).

Как перейти к децибелам?

Любые операции с децибелами упрощаются, если руководствоваться правилом: величина в дБ - это 10 десятичных логарифмов отношения двух одноименных энергетических величин. Всё остальное - следствия этого правила. «Энергетические» - величины второго порядка (энергия, мощность). По отношению к ним напряжение и сила электрического тока («неэнергетические») - величины первого порядка (P ~ U?), которые должны быть на каком-то этапе вычислений корректно преобразованы в энергетические.

Измерение «энергетических» величин

Изначально дБ использовался для оценки отношения мощностей, и в каноническом, привычном смысле величина, выраженная в дБ, предполагает логарифм отношения двух мощностей и вычисляется по формуле:

где P1/P0 - отношение значений двух мощностей: измеряемой P1 к так называемой опорной P0, то есть базовой, взятой за нулевой уровень (имеется ввиду нулевой уровень в единицах дБ, поскольку в случае равенства мощностей P1 = P0 логарифм их отношения lg(P1/P0) = 0).

Соответственно, переход от дБ к отношению мощностей осуществляется по формуле

P1/P0 = 10 (0.1 · величина в дБ) ,

а мощность P1 может быть найдена при известной опорной мощности P0 по выражению

P1 = P0 · 10 (0.1 · величина в дБ) .

Измерение «неэнергетических» величин

Из правила (см. выше) следует, что «неэнергетические» величины должны быть преобразованы в энергетические. Так, согласно закону Джоуля-Ленца P = U?/R или P = I? R.

Следовательно,

Где R1 - сопротивление, на котором определяется изменяемое напряжение U1, а R0 - сопротивление, на котором было определено опорное напряжение U0.

В общем случае напряжения U1 и U0 могут регистрироваться на различных по величине сопротивлениях (R1 не равно R0). Такое может быть, например, при определении коэффициента усиления усилителя, имеющего различные выходное и входное сопротивления, или при измерении потерь в согласующем устройстве, трансформирующем сопротивления. Поэтому в общем случае

величина в децибелах = .

Только в частном (весьма распространенном) случае, если оба напряжения U1 и U0 измерялись на одном и том же сопротивлении (R1 = R0), можно пользоваться кратким выражением

величина в децибелах = .

Децибелы «по мощности», «по напряжению» и «по току»

Из правила (см. выше) следует, что дБ бывают только «по мощности». Тем не менее, в случае равенства R1 = R0 (в частности, если R1 и R0 - одно и то же сопротивление, или в случае, если соотношение сопротивлений R1 и R0 по той или иной причине не важно) говорят о дБ «по напряжению» и «по току», подразумевая при этом выражения:

дБ по напряжению =

дБ по току =

Для перехода от «дБ по напряжению» («дБ по току») к «дБ по мощности» следует четко определить, на каких именно сопротивлениях (равных или не равных друг другу) регистрировались напряжение (ток). Если R1 не равно R0, следует пользоваться выражением для общего случая (см. выше).

при регистрации мощности изменению на +1 дБ (+1 дБ «по мощности») соответствует приращение мощности в?1.259 раза, изменению на?3.01 дБ - снижение мощности в два раза, в то время как

Переход от дБ к «разам»

Чтобы вычислить изменение «в разах» по известному изменению в дБ («dB» в формулах ниже), нужно:

для мощности:

;

для напряжения (силы тока):

Переход от дБ к мощности

Для этого нужно знать значение опорного уровня мощности P0. Например, при P0 = 1 мВт и известном изменении на +20 дБ:

Переход от дБ к напряжению (току)

Для этого нужно знать значение опорного уровня напряжения U0 и определиться, регистрировалось ли напряжение на одинаковом сопротивлении, или же для решаемой задачи различие значений сопротивлений не важно. Например, при условии R0 = R1, заданном U0 = 2 В и приросте напряжения на 6 дБ:

При некотором навыке операции с децибелами вполне реально выполнять в уме. Более того, нередко это очень удобно: вместо умножения, деления, возведения в степень и извлечения корня удается обходиться сложением и вычитанием «децибельных» единиц.

Для этого полезно помнить и научиться применять несложную таблицу:

1 дБ - в 1.25 раза,

3 дБ - в 2 раза,

10 дБ - в 10 раз.

Отсюда, раскладывая «более сложные значения» на «составные», получаем:

6 дБ = 3 дБ + 3 дБ - в 2·2 = в 4 раза,

9 дБ = 3 дБ + 3 дБ + 3 дБ - в 2·2·2 = в 8 раз,

12 дБ = 4 · (3 дБ) - в 24 = в 16 раз

и т. п., а также:

13 дБ = 10 дБ + 3 дБ - в 10·2 = в 20 раз,

20 дБ = 10 дБ + 10 дБ - в 10·10 = в 100 раз,

30 дБ = 3 · (10 дБ) - в 10? = в 1000 раз

Сложению (вычитанию) значений в дБ соответствует умножение (деление) самих отношений. Отрицательные значения дБ соответствуют обратным отношениям. Например:

уменьшение мощности в 40 раз - это в 4·10 раз или на?(6 дБ + 10 дБ) = ?16 дБ;

увеличение мощности в 128 раз это 27 или на 7·(3 дБ) = 21 дБ;

снижение напряжения в 4 раза эквивалентно снижению мощности (величины второго порядка) в 4? = 16 раз; и то и другое при R1 = R0 эквивалентно снижению на 4·(?3 дБ) = ?12 дБ.

Зачем использовать децибелы?

Зачем вообще применять децибелы и оперировать логарифмами, если для решения задачи в принципе можно обойтись более привычными процентами или долями? Тому есть ряд причин:

  • Характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия (живая природа живет по логарифму). Поэтому вполне естественно шкалы приборов и вообще шкалы единц устанавливать именно в логарифмические, в том числе, используя децибелы. Например музыкальная равномерно темперированная шкала частот является одной из таких логарифмических шкал.
  • Удобство логарифмической шкалы в тех случаях, когда в одной задаче приходится оперировать одновременно величинами, различающимися не во втором знаке после запятой, а в разы и, тем более, различающимися на много порядков (примеры: задача выбора графического отображения уровней сигнала, частотных диапазонов радиоприемников и др. звуковоспроизводящих устройств, расчет частот для настройки клавиатуры фортепьяно, расчеты спектров при синтезе и обработке музыкальных и других гармонических звуковых, световых волн, графические отображения скоростей в космонавтике, авиации, в скоростном транспорте, графическое отображения других переменных величин, изменения которых в широком диапазоне величин являются критически важными...).
  • Удобство отображения и анализа величины, изменяющейся в очень широких пределах (пример - диаграмма направленности антенны, график движений курса валют за год,...).

Условные обозначения

Для различных физических величин одному и тому же числовому значению, выраженному в децибелах, могут соответствовать разные уровни сигналов (вернее разности уровней). Поэтому во избежание путаницы такие «конкретизированные» единицы измерения обозначают теми же буквами «дБ», но с добавлением индекса - общепринятого обозначения измеряемой физической величины. Например «дБВ» (децибел относительно вольта) или «дБмкВ» (децибел относительно микровольта), «дБВт» (децибел относительно ватта) и т. п. В соответствии с международным стандартом МЭК 27-3 при необходимости указать исходную величину ее значение помещают в скобках за обозначением логарифмической величины, например для уровня звукового давления: LP (re 20 µPA) = 20 dB; LP (исх. 20 мкПа) = 20 дБ

Опорный уровень

Децибел служит для определения отношения двух величин. Но нет ничего удивительного в том, что децибел используют и для измерения абсолютных значений. Для этого достаточно условиться, какой уровень измеряемой физической величины будет принят за опорный уровень (условный 0 дБ).

Строго говоря, должно быть однозначно определено, какая именно физическая величина и какое именно ее значение используются в качестве опорного уровня. Опорный уровень указывается в виде «добавки», следующей за символами «дБ» (например, «дБм»), либо опорный уровень должен быть ясен из контекста (например, «дБ относительно 1 мВт»).

На практике распространены следующие опорные уровни и специальные обозначения для них:

dBm (русское дБм) - опорный уровень - это мощность в 1 мВт. Мощность обычно определяется на номинальной нагрузке (для профессиональной техники - обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники - 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет 20 мВт)..

dBV (русское дБВ) - опорное напряжение 1 В на номинальной нагрузке (для бытовой техники - обычно 47 кОм); например, стандартизованный уровень сигнала для бытового аудиооборудования составляет?10 дБВ, то есть 0.316 В на нагрузке 47 кОм.

dBuV (русское дБмкВ) - опорное напряжение 1 мкВ; например, «чувствительность радиоприёмника, измеренная на антенном входе - ?10 дБмкВ … номинальное сопротивление антенны - 50 Ом».

dBu - опорное напряжение 0,775В, соответствующее мощности 1мВт на нагрузке 600?; например, стандартизованный уровень сигнала для профессионального аудиооборудования составляет +4dBu, то есть 1.23В.

dBm0 (русское дБм0) - опорная мощность в дБм в точке нулевого относительного уровня. «Абсолютный уровень мощности относительно 1 мВт в точке линии передачи с нулевым уровнем»

dBFS (англ. Full Scale - «полная шкала») - опорное напряжение соответствует полной шкале прибора; например, «уровень записи составляет?6dBfs». Для линейного цифрового кода каждый разряд соответствует 6дБ, и максимально возможный уровень записи равен 0dBFS.

dBSPL (англ. Sound Pressure Level - «уровень звукового давления») - опорное звуковое давление 20мкПа, соответствующее порогу слышимости; например, «громкость 100dBSPL».

dBPa - опорное звуковое давление 1Па или 94дБ звуковой шкалы громкости dBSPL; например, «для громкости 6dBPa микшером установили +4dBu, а регулятором записи?3dBFS, искажения при этом составили?70dBc».

dBA, dBB, dBC, dBD - опорные уровни выбраны в соответствии с частотными характеристиками «весовых фильтров» в соответствии с кривыми равной громкости (см. Фон).

dBc (русское дБн) - опорным является уровень излучения на частоте несущей (англ. carrier) или уровень основной гармоники в спектре сигнала. Примеры использования: «уровень побочного излучения радиопередатчика на частоте второй гармоники составляет?60 дБн» (то есть мощность этого побочного излучения в 1 млн раз меньше мощности несущей) или «уровень искажений составляет?60 дБн».

dBi (русское дБи) - изотропный децибел (децибел относительно изотропного излучателя). Характеризует коэффициент направленного действия (а также коэффициент усиления) антенны относительно коэффициента направленного действия изотропного излучателя. Как правило, если не оговорено специально, характеристики усиления реальных антенн даются именно относительно усиления изотропного излучателя. То есть, когда вам говорят, что коэффициент усиления какой-то антенны равен 12 децибел, подразумевается 12 дБи.

dBd (русское дБд) - децибел относительно полуволнового вибратора («относительно диполя»). Характеризует коэффициент направленного действия (а также коэффициент усиления) антенны относительно коэффициента направленного действия полуволнового вибратора, размещенного в свободном пространстве. Поскольку коэффициент направленного действия указанного полуволнового вибратора приближенно равен 2.15 дБи, то 1 дБд = 2.15 дБи.

По аналогии образуются составные единицы измерений. Например, уровень спектральной плотности мощности дБВт/Гц - «децибельный» аналог единицы измерения Вт/Гц (мощность, выделяющаяся на номинальной нагрузке в полосе частот шириной в 1 Гц с центром на указанной частоте). Опорным уровнем в данном примере является 1 Вт/Гц, то есть физическая величина «спектральная плотность мощности», ее размерность «Вт/Гц» и значение «1». Так, запись «-120 дБВт/Гц» полностью эквивалентна записи «10?12 Вт/Гц».

В случае затруднения во избежание путаницы достаточно указать опорный уровень явно. Например, запись?20 дБ (относительно 0.775 B на нагрузке 50 Ом) исключает двойное толкование.

Справедливы следующие правила (следствие правил действий с размерными величинами):

перемножать или делить «децибельные» значения нельзя (это бессмысленно);

суммирование «децибельных» значений соответствует умножению абсолютных значений, вычитание «децибельных» значений - делению абсолютных значений;

суммирование или вычитание «децибельных» значений может выполняться независимо от их «исходной» размерности. Например, равенство 10 дБм + 13 дБ = 23 дБм является корректным, полностью эквивалентно равенству 10 мВт · 20 = 200 мВт и может трактоваться как «усилитель с коэффициентом усиления 13 дБ увеличивает мощность сигнала с 10 дБм до 23 дБм».

Следует аккуратно использовать знак «минус», поскольку цена ошибки со знаком в операциях с децибелами - не «в два раза», а «на много порядков». Например, из записи «входной уровень - 10 дБм» не ясно, идёт ли речь о «+10 дБм» или же о «минус 10 дБм». В зависимости от ситуации лучше писать: «входной уровень +10 дБм», «входной уровень: 10 дБм», «входной уровень минус 10 дБм».

Громкость звука. Уровень шума и его источники

Физическая характеристика громкости звука - уровень звукового давления, в децибелах (дБ). «Шум» - это беспорядочное смешение звуков.

Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. С учётом этого, неравномерную чувствительность

человеческого уха к звукам разных частот модулируют с помощью специального электронного частотного фильтра, получая, в результате нормирования

измерений, так называемый эквивалентный (по энергии, "взвешенный") уровень звука с размерностью дБА (дБ(А), то есть - с фильтром "А").

Человек может слышать звуки громкостью от 10-15 дБ и выше. Максимальный диапазон частот для человеческого уха - от 20 до 20 000 Гц. Лучше

слышен звук с частотой 3-4 КГц (обычен в телефонах и по радио на СВ и ДВ диапазонах). С возрастом, воспринимаемый на слух звуковой диапозон

сужается, особенно для высокочастотных звуков, уменьшаясь до 18 килогерц и менее.

В случае отсутствия на стенах помещений звукопоглощающих материалов (ковров, специальных покрытий), звук будет громче из-за многократного

отражения (реверберации, то есть - эха от стен, потолка и мебели), что увеличит уровень шума на несколько децибел.

Шкала шумов (уровни звука, децибел):

0 Ничего не слышно

5 Почти не слышно

10 Почти не слышно тихий шелест листьев

15 Едва слышно шелест листвы

20 Едва слышно шепот человека (1м).

25 Тихо шепот человека (1м)

30 Тихо шепот, тиканье настенных часов.

Норма для жилых помещений ночью, с 23 до 7 ч.

35 Довольно слышно приглушенный разговор

40 Довольно слышно обычная речь.

Норма для жилых помещений, с 7 до 23 ч.

45 Довольно слышно обычный разговор

50 Отчётливо слышно разговор, пишущая машинка

55 Отчётливо слышно Норма для офисных помещений класса А (по европейским нормам)

60 Шумно Норма для контор

65 Шумно громкий разговор (1м)

70 Шумно громкие разговоры (1м)

75 Шумно крик, смех (1м)

80 Очень шумно крик, мотоцикл с глушителем.

85 Очень шумно громкий крик, мотоцикл с глушителем

90 Очень шумно громкие крики, грузовой железнодорожный вагон (в семи метрах)

95 Очень шумно вагон метро (7м)

100 Крайне шумно оркестр, вагон метро (прерывисто), раскаты грома

Максимально допустимое звуковое давление для наушников плеера (по европейским нормам)

105 Крайне шумно в самолёте (до 80-х годов ХХ столетия)

110 Крайне шумно вертолёт

115 Крайне шумно пескоструйный аппарат (1м)

120 Почти невыносимо отбойный молоток (1м)

125 Почти невыносимо

130 Болевой порог самолёт на старте

135 Контузия

140 Контузия звук взлетающего реактивного самолета

145 Контузия старт ракеты

150 Контузия, травмы

155 Контузия, травмы

160 Шок, травмы ударная волна от сверхзвукового самолёта

При уровнях звука свыше 160 дБ возможен разрыв барабанных перепонок и лёгких, больше 200 - смерть

Максимально допустимые уровни звука (LАмакс, дБА) - больше "нормальных" на 15 децибел. Например, для жилых комнат квартир допустимый

постоянный уровень звука в дневное время - 40 децибелов, а временный максимальный - 55.

Неслышный шум - звуки с частотами менее 16-20 Гц (инфразвук) и более 20 КГц (ультразвук). Низкочастотные колебания в 5-10 герц могут вызывать

резонанс внутренних органов и влиять на работу мозга. Низкочастотные акустические колебания усиливают ноющие боли в костях и суставах у

больных. Источники инфразвука: автомобили, вагоны, гром от молнии и т.д. Высокочастотные колебания вызывают нагрев тканей. Эффект зависит от

силы звука, расположения и свойств его источников.

На рабочих местах предельно допустимые эквивалентные уровни звука для прерывистого шума: максимальный уровень звука не должен превышать 110

дБА, а для импульсного шума - 125 дБАI. Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой

октавной полосе.

Шум, издаваемый компьютером, принтером и факсом в комнате без звукопоглощающих материалов - может превышать уровень 70 db. Поэтому не

располагаются рабочие места.

Снизить уровень шума можно, если использовать шумопоглощающие материалы в качестве отделки помещения и занавески из плотной ткани. Помогут и

противошумные бируши для ушей.

При возведении зданий и сооружений, в соответствии с современными, более жесткими требованиями звукоизоляции, должны применяться технологии и

материалы, способные обеспечить надёжную защиту от шума.

Для пожарной сигнализации: уровень звукового давления полезного аудиосигнала, обеспечиваемый оповещателем, должен быть не менее 75 дБА на

расстоянии 3 м от оповещателя и не более 120 dba в любой точке защищаемого помещения (п.3.14 НПБ 104-03).

Сирена большой мощности и корабельный ревун - давит больше 120-130 децибел.

Спецсигналы (сирены и "крякалки" - Air Horn), устанавливаемые на служебном транспорте, регламентируются ГОСТ Р 50574 - 2002. Уровень звукового

давления сигнального устройства при подаче специального звук. сигнала, на расстоянии 2 метра по оси рупора, должен быть не ниже:

116 дБ(А) - при установке излучателя звука на крыше транспортного средства;

122 дБА - при установке излуч-ля в подкапотное пространство автотранспорта.

Изменения основной частоты должны быть от 150 до 2000 Гц. Продолжительность цикла - от 0,5 до 6,0 с.

Клаксон гражданского автомобиля, согласно ГОСТ Р 41.28-99 и Правил ЕЭК ООН №28, должен издавать непрерывный и монотонный звук с уровнем

акустического давления не более 118 децибел. Такого порядка максимально допустимые значения - и для автосигнализации.

Если городской житель, привыкший к постоянному шуму, окажется на некоторое время в полной тишине (в сухой пещере, например, где уровень шума -

менее 20 db), то он вполне может испытать депрессивные состояния вместо отдыха.

Прибор шумометр для измерения уровня звука, шума

Для измерения уровня шума применяется прибор шумомер (на фото), который производят в разных модификациях: бытовые (ориентировочная цена - 3-4

т.р, диапазоны измерения: 30-130 дБ, 31,5 Гц - 8 кГц, фильтры А и С), промышленные (интегрирующие и т.д.) Наиболее распространённые модели:

SL, октава, svan. Для измерений инфразвуковых и ультразвуковых шумов применяются широкодиапазонные шумометры.

Длительное воздействие шума с уровнем более 80-90 децибелл может привести к частичной или полной потере слуха. Так же, могут произойти

патологические изменения в сердечно-сосудистой и нервной системе. Безопасны только звуки громкостью до 35 дБ.

Реакцией на длительное и сильное шумовое воздействие является «тиннитус» - звон в ушах, "шум в голове", который может перерасти в

прогрессирующее снижение слуха. Характерно для возрастов старше 30 лет, при ослабленном организме, стрессах, злоупотреблении алкоголем и

курении. В простейшем случае, причиной ушного шума или тугоухости может быть серная пробка в ухе, которая легко удаляется врачём-специалистом

(промыванием или извлечением). Если воспалён слуховой нерв - это лечится, тоже сравнительно легко, и без медиков. Пульсирующий шум - более

тяжёлый случай (сужение кровенослых сосудов при атеросклерозе или опухолях, а так же - при подвывихе шейных позвонков).

Чтобы уберечь слух:

Не увеличивать громкость звука в наушниках плеера, пытаясь заглушить внешний шум (в метро или на улице). При этом увеличивается и

электромагнитное излучение на мозг от динамика наушника;

В шумном месте использовать противошумные мягкие "беруши" или наушники-вкладыши. Их надо "подгонять" индивидуально под ухо;

В помещениях применять шумоизолирующие экологичные материалы для снижения шума;

При подводном погружении, чтобы не произошёл разрыв барабанной перепонки - вовремя продуваться (проводить продувание ушей зажав нос или

глотательным движением). Сразу после дайвинга - нельзя на самолёт. Прыгая с парашютом - так же надо своевременно выравнивать давление, чтобы

не получить баротравму. Последствия баротравмы: шум и звон в ушах (субъективный «тиннитус»), снижение слуха, боль в ухе, тошнота и

головокружение, в тяжёлых случаях - потеря сознания.

С простудой и насморком, когда заложен нос и гайморовы пазухи, недопустимы резкие перепады давления: ныряние (гидростатическое давл-е – 1

атмосфера на 10 метров глубины погружения в воду, то есть: две - на десяти, три - на 20 м. и т.д.), парашютные прыжки (0,01 атм. на 100 м.

высоты, быстро увеличивается);

Давать своим ушам отдыхать

Приёмы выравнивания давления с обеих сторон барабанной перепонки уха: глотание, зевание, продувание с закрытым носом. Артиллеристы, производя

выстрел - открывают рот или закрывают уши ладонями рук.

Частые причины снижения слуха: попадание в уши воды, инфекции (в том числе и органов дыхания), травмы и опухоли, образование серной пробки и

её набухание при контакте с водой, длительное пребывание в шумной обстановке, баротравма при резком перепаде давления, воспаление среднего уха

Отит (скопление жидкости за барабанной перепонкой).

Децибел - это безразмерная единица, применяемая для измерения отношения некоторых «энергетических»(мощности, энергии, плотности потока мощности и т. п.) или «силовых»(силы тока, напряжения и т. п.) величин. Иными словами, децибел - это относительная величина. Не абсолютная, как, например, ватт или вольт, а такая же относительная, как кратность («трёхкратное отличие») или проценты, предназначенная для измерения отношения («соотношения уровней») двух других величин, причём к полученному отношению применяется логарифмический масштаб.

Впервые использованная для измерений интенсивности звука, единица измерения децибел была названа так в честь Александра Грэхема Бэлла. Изначально дБ использовался для оценки отношения мощностей, и в каноническом, привычном смысле величина, выраженная в дБ, предполагает логарифм отношения двух мощностей и вычисляется по формуле:

где P 1 /P 0 - отношение значений двух мощностей: измеряемой P 1 к так называемой опорной P 0 , то есть базовой, взятой за нулевой уровень (имеется в виду нулевой уровень в единицах дБ, поскольку в случае равенства мощностей P 1 = P 0 логарифм их отношения lg(P 1 /P 0) = 0).

Соответственно, переход от дБ к отношению мощностей осуществляется по формуле:

P 1 /P 0 = 10 0,1· (величина в дБ) ,

а мощность P 1 может быть найдена при известной опорной мощности P 0 по выражению

P 1 = P 0 · 10 0,1· (величина в дБ) .

Выражение берёт своё начало из закона Вебера-Фехнера - эмпирического психофизиологического закона, который заключается в том, что интенсивность ощущения пропорциональна логарифму интенсивности раздражителя.

В ряде экспериментов, начиная с 1834 года, Э. Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. На основе наблюдений Г.Фехнер в 1860 году сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя :

где - значение интенсивности раздражителя. - нижнее граничное значение интенсивности раздражителя: если , раздражитель совсем не ощущается. - константа, зависящая от субъекта ощущения.

Так, люстра, в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть количество лампочек должно увеличиваться в одинаковое число раз, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если абсолютный прирост яркости (разница в яркости «после» и «до») постоянен, то нам будет казаться, что абсолютный прирост уменьшается по мере роста самого значения яркости. Например, если добавить одну лампочку к люстре из двух лампочек, то кажущийся прирост в яркости будет значительным. Если же добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости.

Можно сказать и так: отношение минимального приращения силы раздражителя, впервые вызывающего новые ощущения, к исходной величине раздражителя есть величина постоянная.

Любые операции с децибелами упрощаются, если руководствоваться правилом: величина в дБ - это 10 десятичных логарифмов отношения двух одноименных энергетических величин. Всё остальное - следствия этого правила.

Операции с децибелами можно выполнять в уме: вместо умножения, деления, возведения в степень и извлечения корня применяется сложение и вычитание децибельных единиц. Для этого можно использовать таблицы соотношений (первые 2 - приближённые):

1 дБ → в 1,25 раза,

3 дБ → в 2 раза,

10 дБ → в 10 раз.

Раскладывая «более сложные значения» на «составные», получаем:

6 дБ = 3 дБ + 3 дБ → в 2·2 = в 4 раза,

9 дБ = 3 дБ + 3 дБ + 3 дБ → в 2·2·2 = в 8 раз,

12 дБ = 4 · (3 дБ) → в 2 4 = в 16 раз

и т. п., а также:

13 дБ = 10 дБ + 3 дБ → в 10·2 = в 20 раз,

20 дБ = 10 дБ + 10 дБ → в 10·10 = в 100 раз,

30 дБ = 3 · (10 дБ) → в 10³ = в 1000 раз.

Сложению (вычитанию) значений в дБ соответствует умножение (деление) самих отношений. Отрицательные значения дБ соответствуют обратным отношениям. Например:

    уменьшение мощности в 40 раз → это в 4·10 раз или на −(6 дБ + 10 дБ) = −16 дБ;

    увеличение мощности в 128 раз это 2 7 или на 7·(3 дБ) = 21 дБ;

    снижение напряжения в 4 раза эквивалентно снижению мощности (величины второго порядка) в 4² = 16 раз; и то и другое при R 1 = R 0 эквивалентно снижению на 4·(−3 дБ) = −12 дБ.

Для применения децибелов и оперирования логарифмами вместо процентов или долей есть ряд причин:

    характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия (живая природа живёт по логарифму). Поэтому вполне естественно шкалы приборов и вообще шкалы единиц устанавливать именно в логарифмические, в том числе, используя децибелы. Например, музыкальная равномерно темперированная шкала частот является одной из таких логарифмических шкал

    удобство логарифмической шкалы в тех случаях, когда в одной задаче приходится оперировать одновременно величинами, различающимися не во втором знаке после запятой, а в разы и, тем более, различающимися на много порядков (примеры: задача выбора графического отображения уровней сигнала, частотных диапазонов радиоприемников, расчет частот для настройки клавиатуры фортепьяно, расчеты спектров при синтезе и обработке музыкальных и других гармонических звуковых, световых волн, графические отображения скоростей в космонавтике, авиации, в скоростном транспорте, графическое отображения других переменных величин, изменения которых в широком диапазоне величин являются критически важными)

    удобство отображения и анализа величины, изменяющейся в очень широких пределах (примеры - диаграмма направленности антенны, амплитудно-частотная характеристика электрического фильтра)

Децибел служит для определения отношения двух величин. Но нет ничего удивительного в том, что децибел используют и для измерения абсолютных значений. Для этого достаточно условиться, какой уровень измеряемой физической величины будет принят за опорный уровень (условный 0 дБ).

Строго говоря, должно быть однозначно определено, какая именно физическая величина и какое именно её значение используются в качестве опорного уровня. Опорный уровень указывается в виде добавки, следующей за символами «дБ» (например, дБм), либо опорный уровень должен быть ясен из контекста (например, «дБ относительно 1 мВт»).

На практике распространены следующие опорные уровни и специальные обозначения для них:

    dBm (русское дБм ) - опорный уровень - это мощность в 1 мВт. Мощность обычно определяется на номинальной нагрузке (для профессиональной техники - обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники - 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет 20 мВт).

    dBV (русское дБВ ) - опорное напряжение 1 В на номинальной нагрузке (для бытовой техники - обычно 47 кОм); например, стандартизованный уровень сигнала для бытового аудиооборудования составляет −10 дБВ, то есть 0,316 В на нагрузке 47 кОм.

    dBuV (русское дБмкВ ) - опорное напряжение 1 мкВ; например, «чувствительность радиоприёмника, измеренная на антенном входе - −10 дБмкВ … номинальное сопротивление антенны - 50 Ом».

По аналогии образуются составные единицы измерений. Например, уровень спектральной плотности мощности дБВт/Гц - «децибельный» аналог единицы измерения Вт/Гц (мощность, выделяющаяся на номинальной нагрузке в полосе частот шириной в 1 Гц с центром на указанной частоте). Опорным уровнем в данном примере является 1 Вт/Гц, то есть физическая величина «спектральная плотность мощности», её размерность «Вт/Гц» и значение «1». Так, запись «-120 дБВт/Гц» полностью эквивалентна записи «10 −12 Вт/Гц».

В случае затруднения во избежание путаницы достаточно указать опорный уровень явно. Например, запись −20 дБ (относительно 0,775 B на нагрузке 50 Ом) исключает двойное толкование.

Справедливы следующие правила (следствие правил действий с размерными величинами):

    перемножать или делить «децибельные» значения нельзя (это бессмысленно);

    суммирование «децибельных» значений соответствует умножению абсолютных значений, вычитание «децибельных» значений - делению абсолютных значений;

    суммирование или вычитание «децибельных» значений может выполняться независимо от их «исходной» размерности. Например, равенство 10 дБм + 13 дБ = 23 дБм является корректным, полностью эквивалентно равенству 10 мВт · 20 = 200 мВт и может трактоваться как «усилитель с коэффициентом усиления 13 дБ увеличивает мощность сигнала с 10 дБм до 23 дБм».

При пересчёте уровней мощностей (дБВт, дБм) в уровни напряжений (дБВ, дБмкВ) и обратно необходимо учитывать сопротивление, на котором определяется мощность и напряжение.

В радиотехнике часто используется отношение отношение сигнал/шум (ОСШ; англ. signal-to-noise ratio) - безразмерная величина, равная отношению мощности полезного сигнала к мощности шума.

где P - средняя мощность, а A - среднеквадратичное значение амплитуды. Оба сигнала измеряются в полосе пропускания системы.

Обычно отношение сигнал/шум выражается в децибелах (дБ). Чем больше это отношение, тем меньше шум влияет на характеристики системы.

В аудиотехнике отношение сигнал/шум определяют путем измерения напряжения шума и сигнала на выходе усилителя или другого звуковоспроизводящего устройства среднеквадратичным милливольтметром либо анализатором спектра. Современные усилители и другая высококачественная аудиоаппаратура имеет показатель сигнал/шум около 100-120 дБ.

Бел (сокращение: B) - безразмерная единица измерения отношения (разности уровней) некоторых величин по логарифмической шкале. Согласно ГОСТ 8.417-2002 бел определяется как десятичный логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную:

при для одноименных энергетических величин;

при для одноименных „силовых“ величин;

Бел не входит в систему единиц СИ, однако, по решению Генеральной конференции по мерам и весам, допускается его применение без ограничений совместно с СИ. В основном, применяется в акустике (где в белах измеряется громкость звука) и электронике. Русское обозначение - Б; международное - B.

Очень часто новички сталкивается с таким понятием, как децибел . Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой - электрической, электромагнитной, акустической, механической, - важно лишь, чтобы обе величины были выражены в одинаковых единицах - ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 — 1922) — американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и «Bell Laboratories». Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый «bell». Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

Бел (Б) = lg (P2/P1)

где

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

где

P 1 — мощность до усиления, Вт

P 2 — мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком «плюс», если P2 > P1 (усиление сигнала) и со знаком «минус», если P2 < P1 (ослабление сигнала)

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным — проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:


где

N дБ — усиление, либо ослабление мощности в децибелах

U 1 — это напряжение до усиления, В

I 1 — сила тока до усиления, А

I 2 — сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно — он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я — нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ — сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов. Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать, что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот .

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.


Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника — это чисто физическое явление, то и децибелы не обошли ее стороной.

Децибелы и АЧХ усилителя

Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:


Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:


На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.


Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)


Нас сейчас интересует наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)


Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ


То есть получается за одну декаду у нас сигнал увеличился с -44 до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.


Что еще измеряют в децибелах?

Также очень часто в дБ выражают (signal-to-noise ratio , сокр. SNR)


где

U c — это эффективное значение напряжения сигнала, В

U ш — эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) - 1 Нп ~ 0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:


Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) — здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) — здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики — это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) — как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст — это 10 Вольт

От дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) — опорный уровень 1 милливольт.

dBuV (дБмкВ) — опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

При участии Jeer

При проведении измерений параметров радиоаппаратуры довольно часто приходится иметь дело с относительными величинами выраженными в децибелах [дБ]. В децибелах выражают интенсивность звука, усиление каскада по напряжению, току или мощности, потери передачи или ослабление сигнала, и т.д.

Децибел — это универсальная логарифмическая единица. Широкое использование представления величин в дБ связано с удобством логарифмического масштаба, а при расчетах децибелы подчиняются законам арифметики — их можно складывать и вычитать, если сигналы имеют одинаковую форму.

Существует формула для пересчета отношения двух напряжений в число децибелов (аналогичная формула справедлива и для токов):

Например, если выходной сигнал U2 имеет уровень вдвое больше, чем U1, то это отношение составит +6 дБ (Ig2=0,301). Если U2>U1 в 10 раз, то отношение сигналов составляет 20 дБ (Ig10=1). Если U1>U2, то знак у отношения меняется на минус 20 дБ.

Так, например, у измерительного генератора аттенюатор для ослабления выходного сигнала может иметь градуировку в дБ. В этом случае для перевода величины из децибелов в абсолютное значение быстрей будет получен результат, если воспользоваться уже посчитанной табл. 6; 1. Она имеет дискретность 1 дБ (что вполне достаточно в большинстве случаев) и диапазон значений 0...-119 дБ.

Табл. 6.1 можно использовать для перевода децибелов ослабления аттенюатора в уровень выходного напряжения. Для удобства использования таблицы потребуется на выходе генератора установить при отсутствии ослабления (0 дБ на аттенюаторе) уровень напряжения 1 В (действующего или амплитудного). В этом случае соответствующее нужное значение выходного напряжения после установки ослабления находится на пересечении горизонтальной и вертикальной граф (значения в децибелах складываются арифметически).

Величина выходного напряжения в таблице указана в микровольтах (1 мкВ=10-6 В). I

Воспользовавшись данной таблицей, не трудно решить и обратную задачу — по необходимому напряжению определить, какое нужно установить ослабление сигнала на аттенюаторе в децибелах. Например, чтобы получить на выходе генератора напряжения 5 мкВ, как видно из таблицы, на аттенюаторе потребуется установить ослабление 100+6=106 дБ. Отношение мощностей двух сигналов в децибелах вычисляется по формуле:

Формула для мощности справедлива при условии, что входное и выходное сопротивления устройства одинаковые, что часто выполняется в высокочастотных устройствах для облегчения их согласования между собой.

Для определения мощности можно воспользоваться посчитанной табл. 6.2

Нередко при практическом использовании дБ важно знать и абсолютное значение соотношения двух величин, т.е. во сколько раз напряжение или мощность на выходе больше, чем на входе (или наоборот). Если отношение двух величин обозначить: K=U2/U1 или К=Р2/Р1, то можно воспользоваться табл. 6.3 для перевода величины из дБ в разы (К) и наоборот.

Так, например, антенный усилитель обеспечивает усиление сигнала по мощности на 28 дБ. Из табл. 6.3 видно, что усиление сигнала выполняется в 631 раз.

Литература: И.П. Шелестов - Радиолюбителям полезные схемы, книга 3.