Как складывать двоичные числа

Назначение сервиса . Онлайн-калькулятор предназначен для сложения двоичных чисел в прямом, обратном и дополнительном кодах.

Число №1

Число №2

Числа представлены в 10 2 системе счисления.
Операция с числами Сложение Вычитание Для дробных чисел использовать 2 3 4 5 6 7 8 знака после запятой.
Действие производить в: Прямом коде Обратном коде Дополнительном коде .

Вместе с этим калькулятором также используют следующие:
Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления
Умножение двоичных чисел
Формат представления чисел с плавающей запятой
Пример №1 . Представить число 133,54 в форме числа с плавающей точкой.
Решение . Представим число 133.54 в нормализованном экспоненциальном виде:
1.3354*10 2 = 1.3354*exp 10 2
Число 1.3354*exp 10 2 состоит из двух частей: мантиссы M=1.3354 и экспоненты exp 10 =2
Если мантисса находится в диапазоне 1 ≤ M Представление числа в денормализованном экспоненциальном виде .
Если мантисса находится в диапазоне 0,1 ≤ M Представим число в денормализованном экспоненциальном виде: 0.13354*exp 10 3

Пример №2 . Представить двоичное число 101.10 2 в нормализованном виде, записать в 32-битом стандарте IEEE754.
Таблица истинности


Вычисление пределов

Арифметика в двоичной системе счисления

Арифметические действия в двоичной системе выполняются так же, как и в десятичной. Но, если в десятичной системе счисления перенос и заём осуществляется по десять единиц, то в двоичной - по две единицы. В таблице представлены правила сложения и вычитания в двоичной системе счисления.
  1. При сложении в двоичной системе системе счисления двух единиц в данном разряде будет 0 и появится перенос единицы в старший разряд.
  2. При вычитании из нуля единицы производится заём единицы из старшего разряда, где есть 1 . Единица, занятая в этом разряде, даёт две единицы в разряде, где вычисляется действие, а также по единице, во всех промежуточных разрядах.

Сложение чисел с учетом их знаков на машине представляет собой последовательность следующих действий:

  • преобразование исходных чисел в указанный код;
  • поразрядное сложение кодов;
  • анализ полученного результата.
При выполнении операции в обратном (модифицированном обратном) коде если в результате сложения в знаковом разряде возникает единица переноса, она прибавляется к младшему разряду суммы.
При выполнении операции в дополнительном (модифицированном дополнительном) коде если в результате сложения в знаковом разряде возникает единица переноса, она отбрасывается.
Операция вычитания в ЭВМ выполняется через сложение по правилу: Х-У=Х+(-У). Дальнейшие действия выполняются также как и для операции сложения.

Пример №1 .
Дано: х=0,110001; y= -0,001001, сложить в обратном модифицированном коде.

Дано: х=0,101001; y= -0,001101, сложить в дополнительном модифицированном коде.

Пример №2 . Решить примеры на вычитание двоичных чисел, используя метод дополнения до 1 и циклического переноса.
а) 11 - 10.
Решение .
Представим числа 11 2 и -10 2 в обратном коде.

Двоичное число 0000011 имеет обратный код 0,0000011

Сложим числа 00000011 и 11111101

7 6 5 4 3 2 1 0
1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0

7 6 5 4 3 2 1 0
1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0

В 2-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 3-й разряд.
7 6 5 4 3 2 1 0
1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0

7 6 5 4 3 2 1 0
1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0 0

7 6 5 4 3 2 1 0
1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0

7 6 5 4 3 2 1 0
1 1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0 0

7 6 5 4 3 2 1 0
1 1 1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
1 1 1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0

В итоге получаем:
7 6 5 4 3 2 1 0
1 1 1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0

Возник перенос из знакового разряда. Добавим его (т.е. 1) к полученному числу (тем самым осуществляя процедуру циклического переноса).
В итоге получаем:
7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

Результат сложения: 00000001. Переведем в десятичное представление . Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
00000001 = 2 7 *0 + 2 6 *0 + 2 5 *0 + 2 4 *0 + 2 3 *0 + 2 2 *0 + 2 1 *0 + 2 0 *1 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1
Результат сложения (в десятичном представлении): 1

б) 111-010 Представим числа 111 2 и -010 2 в обратном коде.
Обратный код для положительного числа совпадает с прямым кодом. Для отрицательного числа все цифры числа заменяются на противоположные (1 на 0, 0 на 1), а в знаковый разряд заносится единица.
Двоичное число 0000111 имеет обратный код 0,0000111
Двоичное число 0000010 имеет обратный код 1,1111101
Сложим числа 00000111 и 11111101
В 0-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 1-й разряд.

7 6 5 4 3 2 1 0
1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0

В 1-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 2-й разряд.
7 6 5 4 3 2 1 0
1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 0

В 2-ом разряде возникло переполнение (1 + 1 + 1 = 11). Поэтому записываем 1, а 1 переносим на 3-й разряд.
7 6 5 4 3 2 1 0
1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
1 0 0

В 3-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 4-й разряд.
7 6 5 4 3 2 1 0
1 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 1 0 0

В 4-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 5-й разряд.
7 6 5 4 3 2 1 0
1 1 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 0 1 0 0

В 5-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 6-й разряд.
7 6 5 4 3 2 1 0
1 1 1 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 0 0 1 0 0

В 6-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 7-й разряд.
7 6 5 4 3 2 1 0
1 1 1 1 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 0 0 0 1 0 0

В 7-ом разряде возникло переполнение (1 + 1 = 10). Поэтому записываем 0, а 1 переносим на 8-й разряд.
7 6 5 4 3 2 1 0
1 1 1 1 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0 1 0 0

В итоге получаем:
7 6 5 4 3 2 1 0
1 1 1 1 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 1
0 0 0 0 0 1 0 0

Возник перенос из знакового разряда. Добавим его (т.е. 1) к полученному числу (тем самым осуществляя процедуру циклического переноса).
В итоге получаем:
7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1

Результат сложения: 00000101
Получили число 00000101. Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
00000101 = 2 7 *0 + 2 6 *0 + 2 5 *0 + 2 4 *0 + 2 3 *0 + 2 2 *1 + 2 1 *0 + 2 0 *1 = 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1 = 5
Результат сложения (в десятичном представлении): 5

Сложение двоичных вещественных чисел с плавающей запятой

В компьютере любое число может быть представлено в формате с плавающей точкой. Формат с плавающей точкой показан на рисунке:


Например, число 10101 в формате с плавающей точкой можно записать так:


В компьютерах используется нормализованная форма записи числа, в которой положение запятой всегда задается перед значащей цифрой мантиссы, т.е. выполняется условие:
b -1 ≤|M|Нормализованное число - это число, у которого после запятой идет значащая цифра (т.е. 1 в двоичной системе счисления). Пример нормализации:
0,00101*2 100 =0,101*2 10
111,1001*2 10 =0,111001*2 101
0,01101*2 -11 =0,1101*2 -100
11,1011*2 -101 =0,11011*2 -11

При сложении чисел с плавающей точкой выравнивание порядков выполняют в сторону большего порядка:

Алгоритм сложения чисел с плавающей точкой:

  1. Выравнивание порядков;
  2. Сложение мантисс в дополнительном модифицированном коде;
  3. Нормализация результата.

Пример №4 .
A=0,1011*2 10 , B=0,0001*2 11
1. Выравнивание порядков;
A=0,01011*2 11 , B=0,0001*2 11
2. Сложение мантисс в дополнительном модифицированном коде;
MA доп.мод. =00,01011
MB доп.мод. =00,0001
00,01011
+ 00,00010
=
00,01101
A+B=0,01101*2 11
3. Нормализация результата.
A+B=0,1101*2 10

Пример №3 . Записать десятичное число в двоично-десятичной системе счисления и сложить два числа в двоичной системе счисления.

Здравствуйте, друзья! Ознакомившись с сегодняшней «Шпаргалкой», вы убедитесь, что вычисления в таблицах WORD - достаточно простое дело. Мы с вами научимся производить с цифровыми данными вордовских таблиц все арифметические действия, находить среднее, вычислять проценты. Высшей математикой (обещаю) заниматься не будем: а тех, кому нужны интегралы, производные или (прости гос*ди) экстремумы функций пошлем прямиком в Excel.

Но прежде чем приступить непосредственно к расчетам, давайте вспомним, как в таблицах принято задавать адреса ячеек. На рис. 1 представлена таблица с пронумерованными строками и обозначенными столбцами.

(картинки кликабельные)

Привожу, чтобы было понятно, адреса чисел в ней:

  • A5 - 12;
  • B2 - 34;
  • C3 - 47;
  • D6 - 61.

Причем, проставлять буквенное обозначение столбцов или нумеровать строки непосредственно в самой таблице совсем не обязательно: такая адресация подразумевается по умолчанию. Теперь можно приступать непосредственно к вычислениям. И начнем мы с самого распространенного случая.

Как сложить числа столбца или строки в таблице Ворд

Все математические действия с числами в таблицах Ворд мы производим из панели «Работа с таблицами» , которая открывается по щелчку левой кнопкой мыши в табличном поле или по маркеру перемещения (крестик вверху слева). Далее проходим во вкладку «Макет» , раздел «Данные» , кнопка «формула» (см. рис. 2).

Для того, чтобы сложить числа одной строки, нужно, поставив курсор в ее последнюю, предназначенную для суммы ячейку, щелкнуть в выпадающем диалоговом окне «Формула» по кнопке «ОК» . Так вот просто? В данном случае, да. Дело в том, что по умолчанию текстовый редактор предлагает рассчитать именно сумму, а расположение курсора в последней ячейке объяснит умной программе, что сложить нужно все числа в данной строке (рис. 3).

Разумеется, если складывать нужно не все числа строки, а только из нескольких столбцов, то и эта задача решаема. Просто ставьте тогда курсор в столбец после чисел, подлежащих суммированию. Обратите, друзья, внимание на запись в верхней строке окна «Формула» : = SUM(LEFT) - эта надпись как раз и означает: сумма чисел слева от курсора. Таким же образом программа может посчитать для нас сумму чисел справа от курсора - = SUM(RIGHT) .

Хочу обратить ваше внимание, уважаемые читатели, что при своем довольно развитом интеллекте Ворд не терпит пустоты, то есть незаполненную ячейку он воспринимает как ошибку. Это значит, что во всех пустых ячейках нужно будет поставить нули.

Аналогичным образом можно просуммировать и числа в ряду, поставив курсор в его нижнюю ячейку. При этом запись в строке «формула» одноименного окна будет выглядеть так: = SUM(ABOVE) (см. рис. 3), что означает сумму чисел в ячейках, расположенных выше. Соответственно, при необходимости сложить числа из ячеек ниже курсора вводим: = SUM(BELOW) .

Слова - LEFT (слева), RIGHT (справа), ABOVE (над), BELOW (под) - называют позиционными аргументами. Их удобно использовать при операциях в строках и столбцах, причем цифры, стоящие в строке заголовков Ворд во внимание не принимает.

Итак, друзья, мы разобрали с вами самый простой и часто употребляемый вариант расчетов в таблицах Ворд, когда программа работает на «автомате». Во всех остальных случаях придется выбирать формулу и вводить исходные данные для каждой пары ячеек. Сейчас я вам объясню, как это делается.

Как перемножить, разделить или произвести вычитание чисел в таблице WORD

Для выполнения этих действий проще всего пользоваться операторами арифметических действий: * - умножение; / - деление; - - вычитание. Вот примеры записей, которые можно вводить в строку «формула» :

  • сложение - =А1+В2 ;
  • умножение - =А5*В5 ;
  • деление - =В4/В1 ;
  • вычитание - =А6-В6 .

Пожалуйста, обратите внимание, что любая формула начинается со знака «равно» (=). И далее безо всяких пробелов вводим адреса ячеек и арифметические знаки.

Для умножения в программе предусмотрен еще один вариант - PRODUCT . Это функция перемножения, как и SUM - сложения. В этом случае адреса ячеек нужно вводить в круглых скобках через точку с запятой (см. рис. 4).Если речь идет о нахождении произведения столбца или строки, то можно не перечислять все ячейки, а задать их с помощью интервала через двоеточие, например: = PRODUCT(А1:А8) .

А теперь, друзья, немного о грустном. Вы, должно быть уже поняли, что таблицы в Ворде приспособлены только для простейших вычислений, диапазон возможных операций невелик. Более того, в приведенных выше примерах арифметических действий при изменении одного или обоих аргументов (значений в ячейках) результат автоматически не сменится. Для получения нового значения нужно будет выделить прежнее и нажать клавишу F9 или, кликнув по выделенной цифре правой кнопкой мышки, в выпавшем окне выбрать строку «обновить поле» .

Из прочих математических функций для вычисления в таблицах в Ворде доступны следующие:

  • среднее арифметическое в диапазоне: = AVERAGE() ;
  • определение максимального и минимального значений в указанных ячейках: = MAX/ MIN() ;
  • остаток от деления: =MOD() ;
  • выделение целой части числа: = INT() ;
  • округление до указанного разряда: = ROUND() .

Остальные функции - статистические и логические - в рамках данной статьи мы разбирать не будем. Из обещанного у нас остались проценты и среднее арифметическое. Вот и займемся ими.

Как вычислить в таблице WORD среднее арифметическое и посчитать проценты

  1. Чтобы вычислить среднее арифметическое в строке или столбце, ставим курсор в их последнюю ячейку, открываем окно «Формула» («Работа с таблицами» - вкладка «Макет» - раздел «Данные» - кнопка «Формула» ). В верхней строке окна вводим требуемую формулу: = AVERAGE(A1: A7) и в последней (восьмой) ячейке первого столбца получаем результат (см. рис. 5).
  1. Для вычисления процентов в окне «Формула» мы должны будем сделать запись: =/100* . Допустим, мы хотим взять 3% от 300. Вводим: =A3/100*3 или еще проще: =A3*0,03. В результате получаем, конечно же, 9. Но я специально брала простые числа, результат операции с которыми легко проверить в уме. Вы, друзья, уловив принцип данной процедуры сможете оперировать теперь любыми значениями.

Чтобы повторить и закрепить пройденный материал предлагаю посмотреть небольшой видеоролик.

Надеюсь, после просмотра видео вычисления в таблицах WORD больше не представляют для вас трудностей.

До свидания, друзья. Ваш гид по WORD 2016 копирайтер GALANT.

А эти статьи вы еще не читали? Напрасно… Это тоже про таблицы:

  • Столбцы и строки таблицы WORD 2016
  • Все о границах и рамках таблиц WORD 2016

Функция полезная. Недавно переустанавливал MS Office и долго пытался вспомнить как использовать калькулятор в документах MS Word. Появился он в текстовом редакторе давно. В версии от 2000 года уже был. При переходе на Office 2007/2010 функция изменила своё название.

Калькулятор позволяет вычислить результат простого арифметического выражения. Например, в тексте документа вводим выражение

  1. 143/11 и выделяем его 143/11;
  2. вызываем калькулятор, который вычисляет выделенное выражение и помещает результат в буфер обмена;
  3. вставляем результат в документ командой «вставить» (ctrl+v).

Теперь к делу. Чтобы воспользоваться калькулятором в MS Word 2007/2010 необходимо

добавить кнопку вызова функции на панель быстрого доступа. Как это сделать показано на рисунках ниже.

Рисунок 1 - Панель быстрого доступа (полоса на одном уровне с названием документа)

Рисунок 2 - Вызов списка доступных команд.

Настройка панели быстрого доступа -> Другие команды

Рисунок 3 - Выбор из списка всех команд нужной команды - «Калькулятор»

Рисунок 4 - Дообавление команды «Калькулятор» на панель быстрого доступа

Рисунок 5 - Правильный результат.

Квест пройден, если у вас получилось так же, как на рисунке

Мы настроили функцию «Калькулятор» для работы. В новых версиях MS Office она называется «Вычислить», в старых (Word 2003 и ниже) - «Tools Calculate».

В поисках простого калькулятора нашёл очень полезное решение от самого производителя, расширяющее возможности редактора формул - Microsoft Mathematics.

Вопрос ученому: — Я слышал, что сумма всех натуральных чисел равна −1/12. Это какой-то фокус, или это правда?

Ответ пресс-службы МФТИ — Да, такой результат можно получить при помощи приема, называемого разложением функции в ряд.

Вопрос, заданный читателем, достаточно сложный, и потому мы отвечаем на него не обычным для рубрики «Вопрос ученому» текстом на несколько абзацев, а некоторым сильно упрощенным подобием математической статьи.

В научных статьях по математике, где требуется доказать некоторую сложную теорему, рассказ разбивается на несколько частей, и в них могут поочередно доказываться разные вспомогательные утверждения. Мы предполагаем, что читатели знакомы с курсом математики в пределах девяти классов, поэтому заранее просим прощения у тех, кому рассказ покажется слишком простым — выпускники могут сразу обратиться к http://en.wikipedia.org/wiki/Ramanujan_summation .

Сумма всего

Начнем с разговора о том, как можно сложить все натуральные числа. Натуральные числа —это числа, которые используются для счета цельных предметов — они все целые и неотрицательные. Именно натуральные числа учат дети в первую очередь: 1, 2, 3 и так далее. Сумма всех натуральных чисел будет выражением вида 1+2+3+... = и так до бесконечности.

Ряд натуральных чисел бесконечен, это легко доказать: ведь к сколь угодно большому числу всегда можно прибавить единицу. Или даже умножить это число само на себя, а то и вычислить его факториал — понятно, что получится еще большая величина, которая тоже будет натуральным числом.

Детально все операции с бесконечно большими величинами разбираются в курсе математического анализа, но сейчас для того, чтобы нас поняли еще не сдавшие данный курс, мы несколько упростим суть. Скажем, что бесконечность, к которой прибавили единицу, бесконечность, которую возвели в квадрат или факториал от бесконечности — это все тоже бесконечность. Можно считать, что бесконечность — это такой особый математический объект.

И по всем правилам математического анализа в рамках первого семестра сумма 1+2+3+...+бесконечность — тоже бесконечна. Это легко понять из предыдущего абзаца: если к бесконечности что-то прибавить, она все равно будет бесконечностью.

Однако в 1913 году блестящий индийский математик-самоучка Сриниваса Рамануджан Айенгор придумал способ сложить натуральные числа несколько иным образом. Несмотря на то, что Рамануджан не получал специального образования, его знания не были ограничены сегодняшним школьным курсом — математик знал про существование формулы Эйлера-Маклорена. Так как она играет важную роль в дальнейшем повествовании, о ней придется тоже рассказать подробнее.

Формула Эйлера-Маклорена

Для начала запишем эту формулу:

Как можно видеть, она достаточно сложна. Часть читателей может пропустить этот раздел целиком, часть может прочитать соответствующие учебники или хотя бы статью в Википедии, а для оставшихся мы дадим краткий комментарий. Ключевую роль в формуле играет произвольная функция f(x), которая может быть почти чем угодно, лишь бы у нее нашлось достаточное число производных. Для тех, кто не знаком с этим математическим понятием (и все же решился прочитать написанное тут!), скажем еще проще — график функции не должен быть линией, которая резко ломается в какой-либо точке.

Производная функции, если предельно упростить ее смысл, является величиной, которая показывает то, насколько быстро растет или убывает функция. С геометрической точки зрения производная есть тангенс угла наклона касательной к графику.

Слева в формуле стоит сумма вида «значение f(x) в точке m + значение f(x) в точке m+1 + значение f(x) в точке m+2 и так до точки m+n». При этом числа m и n — натуральные, это надо подчеркнуть особо.

Справа же мы видим несколько слагаемых, и они кажутся весьма громоздкими. Первое (заканчивается на dx) — это интеграл функции от точки m до точки n. Рискуя навлечь на себя гнев всей

Третье слагаемое — сумма от чисел Бернулли (B 2k), поделенных на факториал удвоенного значения числа k и умноженных на разность производных функции f(x) в точках n и m. Причем, что еще сильнее усложняет дело, тут не просто производная, а производная 2k-1 порядка. То есть все третье слагаемое выглядит так:

Число Бернулли B 2 («2» так как в формуле стоит 2k, и мы начинаем складывать с k=1) делим на факториал 2 (это пока просто двойка) и умножаем на разность производных первого порядка (2k-1 при k=1) функции f(x) в точках n и m

Число Бернулли B 4 («4» так как в формуле стоит 2k, а k теперь равно 2) делим на факториал 4 (1×2х3×4=24) и умножаем на разность производных третьего порядка (2k-1 при k=2) функции f(x) в точках n и m

Число Бернулли B 6 (см.выше) делим на факториал 6 (1×2х3×4х5×6=720) и умножаем на разность производных пятого порядка (2k-1 при k=3) функции f(x) в точках n и m

Суммирование продолжается вплоть до k=p. Числа k и p получаются некоторыми произвольными величинами, которые мы можем выбирать по-разному, вместе с m и n — натуральными числами, которыми ограничен рассматриваемый нами участок с функцией f(x). То есть в формуле целых четыре параметра, и это вкупе с произвольностью функции f(x) открывает большой простор для исследований.

Оставшееся скромное R, увы, тут не константа, а тоже довольно громоздкая конструкция, выражаемая через уже упомянутые выше числа Бернулли. Теперь самое время пояснить, что это такое, откуда взялось и почему вообще математики стали рассматривать столь сложные выражения.

Числа Бернулли и разложения в ряд

В математическом анализе есть такое ключевое понятие как разложение в ряд. Это значит, что можно взять какую-то функцию и написать ее не напрямую (например y = sin(x^2) + 1/ln(x) + 3x), а в виде бесконечной суммы множества однотипных слагаемых. Например, многие функции можно представить как сумму степенных функций, умноженных на некоторые коэффициенты — то есть сложной формы график сведется к комбинации линейной, квадратичной, кубической... и так далее — кривых.

В теории обработки электрических сигналов огромную роль играет так называемый ряд Фурье — любую кривую можно разложить в ряд из синусов и косинусов разного периода; такое разложение необходимо для преобразования сигнала с микрофона в последовательность нулей и единиц внутри, скажем, электронной схемы мобильного телефона. Разложения в ряд также позволяют рассматривать неэлементарные функции, а ряд важнейших физических уравнений при решении дает именно выражения в виде ряда, а не в виде какой-то конечной комбинации функций.

В XVII столетии математики стали вплотную заниматься теорией рядов. Несколько позже это позволило физикам эффективно рассчитывать процессы нагрева различных объектов и решать еще множество иных задач, которые мы здесь рассматривать не будем. Заметим лишь то, что в программе МФТИ, как и в математических курсах всех ведущих физических вузов, уравнениям с решениями в виде того или иного ряда посвящен как минимум один семестр.

Якоб Бернулли исследовал проблему суммирования натуральных чисел в одной и той же степени (1^6 + 2^6 + 3^6 + ... например) и получил числа, при помощи которых можно разложить в упомянутый выше степенной ряд другие функции — например, tg(x). Хотя, казалось бы, тангенс не очень-то похож хоть на параболу, хоть на какую угодно степенную функцию!

Полиномы Бернулли позже нашли свое применение не только в уравнениях матфизики, но и в теории вероятностей. Это, в общем-то, предсказуемо (ведь ряд физических процессов — вроде броуновского движения или распада ядер — как раз и обусловлен разного рода случайностями), но все равно заслуживает отдельного упоминания.

Громоздкая формула Эйлера-Маклорена использовалась математиками для разных целей. Так как в ней, с одной стороны, стоит сумма значений функций в определенных точках, а с другой — есть и интегралы, и разложения в ряд, при помощи этой формулы можно (в зависимости от того, что нам известно) как взять сложный интеграл, так и определить сумму ряда.

Сриниваса Рамануджан придумал этой формуле иное применение. Он ее немного модифицировал и получил такое выражение:

В качестве функции f(x) он рассмотрел просто x — пусть f(x) = x, это вполне правомерное допущение. Но для этой функции первая производная равна просто единице, а вторая и все последующие — нулю: если все аккуратно подставить в указанное выше выражение и определить соответствующие числа Бернулли, то как раз и получится −1/12.

Это, разумеется, было воспринято самим индийским математиком как нечто из ряда вон выходящее. Поскольку он был не просто самоучкой, а талантливым самоучкой, он не стал всем рассказывать про поправшее основы математики открытие, а вместо этого написал письмо Годфри Харди, признанному эксперту в области как теории чисел, так и математического анализа. Письмо, кстати, содержало приписку, что Харди, вероятно, захочет указать автору на ближайшую психиатрическую лечебницу: однако итогом, конечно, стала не лечебница, а совместная работа.

Парадокс

Суммируя все сказанное выше, получим следующее: сумма всех натуральных чисел получается равной −1/12 при использовании специальной формулы, которая позволяет разложить произвольную функцию в некоторый ряд с коэффициентами, называемыми числами Бернулли. Однако это не значит, что 1+2+3+4 оказывается больше, чем 1+2+3+... и так до бесконечности. В данном случае мы имеем дело с парадоксом, который обусловлен тем, что разложение в ряд — это своего рода приближение и упрощение.

Можно привести пример намного более простого и наглядного математического парадокса, связанного с выражением чего-то одного через что-то другое. Возьмем лист бумаги в клеточку и нарисуем ступенчатую линию с шириной и высотой ступеньки в одну клетку. Длина такой линии, очевидно, равна удвоенному числу клеток — а вот длина спрямляющей «лесенку» диагонали равна числу клеток, умноженному на корень из двух. Если сделать лесенку очень мелкой, она все равно будет той же длины и практически не отличимая от диагонали ломаная линия окажется в корень из двух раз больше той самой диагонали! Как видите, для парадоксальных примеров писать длинные сложные формулы вовсе не обязательно.

Формула Эйлера-Маклорена, если не вдаваться в дебри математического анализа, является таким же приближением, как и ломаная линия вместо прямой. Используя это приближение можно получить те самые −1/12, однако это далеко не всегда бывает уместно и оправдано. В ряде задач теоретической физики подобные выкладки применяются для расчетов, но это тот самый передний край исследований, где еще рано говорить о корректном отображении реальности математическими абстракциями, а расхождения разных вычислений друг с другом — вполне обычное дело.

Так, оценки плотности энергии вакуума на основе квантовой теории поля и на основе астрофизических наблюдений различаются более чем на 120 порядков. То есть в 10^120 степени раз. Это одна из нерешенных задач современной физики; тут явно просвечивает пробел в наших знаниях о Вселенной. Или же проблема — в отсутствии подходящих математических методов для описания окружающего мира. Физики-теоретики совместно с математиками пытаются найти такие способы описать физические процессы, при которых не будет возникать расходящихся (уходящих в бесконечность) рядов, но это далеко не самая простая задача.

системе , а 10, так как 10 - это следующее за число в двоичной системе .Необходимо запомнить сложения в двоичной системе : 0+0 = 0, 1+0 = 0+1 = 1, 1+1 = 10. Эти правила необходимы, чтобы складывать числа в двоичной системе в столбик. Как , в случае прибавления единицы к единице, единица идет в следующий разряд.Очевидно, что нуля к любому двоичному числу не изменит это число.

Большие двоичные числа удобно складывать в столбик. Правила в двоичной системе аналогичны сложению правилам сложения в столбик в десятичной системе .Пусть складываются числа 1111 и 101. Записываем число с меньшим количеством разрядов 101 под числом 1111 - цифра разряда одного числа должна располагаться над цифрой того же разряда другого числа . Теперь можно складывать эти числа . В первом разряде 1+1 дает 10 - записываете 0 под единицами в первом разряде. Единица из 10 в сумму цифр второго разряда. Во втором разряде 1+0. После прибавления единицы из первого разряда получится тоже 10. Единица переходит уже в третий разряд, а во втором разряде суммы тоже будет ноль. В третьем разряде 1+1+1 (единица перешла сюда!) дает 11. В третьем разряде суммы будет 1, а другая единица из числа 11 перейдет в четвертый разряд. Четвертый разряд имеет только число 1111. 1+1 = 10. Таким образом, 1111+101 = 10100.

Источники:

  • Сложение в восьмеричной системе
  • Сложение в двоичной системе

Системы счисления представляют различные варианты записи чисел и устанавливают порядок действий над ними. Наибольшее распространение получили позиционные системы счисления , среди которых, помимо всем известной десятичной системы, можно отметить двоичную, шестнадцатеричную и восьмеричную системы счисления . Сложение в позиционных системах производится с учетом единого правила переполнения разряда и переноса. При этом переполнение разряда происходит при достижении результатом основания числа.

Инструкция

Сложите два числа в шестнадцатеричной счисления . Для этого числа на листке друг над другом так, чтобы крайние правые символы находились на одном уровне. Возьмите два крайних правых символа и произведите их сложение с учетом таблицы соответствий. То есть для буквенного символа числа найдите его десятичный эквивалент и сложите обычным образом. Например, крайние символы С и 7 при сложении можно расписать 12 + 7, так как буквенное С соответствует числу 12 в системе. Получившееся число при сложении (19) следует на переполнение разряда. Разряд 16 меньше 19, следовательно, переполнение и при сложении будет перенос дополнительной единицы в старший разряд. В текущем разряде оставляем число равное разности результата и основания 16 (19-16=3). Запишите под складываемыми числами получившуюся цифру (3).

Сложите два следующих числа. К их сумме необходимо прибавить 1 из переполненного предыдущего разряда. При записи получившихся значений учитывайте буквенные обозначения чисел свыше 9 из таблицы соответствий. Так, при сложении 7 и 6 у вас получится число 13, которое в шестнадцатеричной системе имеет буквенное D – именно его запишите в результат. При переполнении в данном разряде произведите те же действия, что и в предыдущем шаге.

Сложение двух чисел в двоичной системе счисления происходит по аналогичным правилам, только разрядность в данной системе составляет не 16, а 2. Запишите два двоичных числа друг над другом, как указано выше. Таким же образом, начиная справа и сдвигаясь влево, складывайте цифры по порядку. При этом при сложении 1+1 появляется переполнение разряда. Действуя по выше описанному алгоритму, с учетом основания системы 2 в результирующем значении запишите 0 (2-2=0), а в старший разряд перенесите 1. Если в старшем разряде сумма чисел с переносом оказывается равной 3 (1+1+1=3), то в результат записывается 1 (3-2=1) и снова в старший разряд единица. Суммой двоичных чисел будет являться получившаяся запись из 0 и 1 после сложения всех цифр.

Полезный совет

Аналогичным образом происходит сложение чисел во всех позиционных системах счисления.

Совет 3: Как записывать десятичное число в двоичной системе счисления

Десятичная система счисления – одна из самых распространенных в математической теории. Однако с появлением информационных технологий, двоичная система получила не менее широкое распространение, поскольку она является основным способом представления информации в компьютерной памяти.

Инструкция

Любая – это способ записи числа при помощи определенных символов. Существуют позиционные, непозиционные и системы счисления . Десятичная и двоичная системы являются позиционными, т.е. значение определенной цифры в записи числа определяется в зависимости от того, какую позицию она занимает.

Позиции цифр в числе называются разрядами. В десятичной системе счисления эту роль выполняет число 10, т.е. каждая цифра в числе является множителем числа 10 в соответствующей степени. Число разрядов начинается с нуля, а чтение происходит справа налево. Например, число 173 можно

Был ленив. Чтобы чем-то занять детей на долгое время, а самому вздремнуть, он попросил их сложить числа от 1 до 100.

Гаусс быстро дал ответ: 5050. Так быстро? Учитель не поверил, но юный гений оказался прав. Складывать все числа от 1 до 100 - это для слабаков! Гаусс нашёл формулу:

$$\sum_{1}^{n}=\frac{n(n+1)}{2}$$

$$\sum_{1}^{100}=\frac{100(100+1)}{2}=50\cdot 101=5050$$

Как это у него получилось? Давайте попробуем разобраться на примере суммы от 1 до 10.

Первый способ: разбить числа на пары

Запишем числа от 1 до 10 в виде матрицы c двумя строками и пятью столбцами:

$$\left(\begin{array}{c}1&2&3&4&5\\ 10&9&8&7&6 \end{array}\right)$$

Интересно, сумма каждого столбца равна 11 или $n+1$. И всего таких пар чисел 5 или $\frac{n}{2}$. Получаем нашу формулу:

$$Число\ столбцов\cdotСумма\ чисел\ в\ стобцах=\frac{n}{2}\cdot(n+1)$$

Если нечетное число слагаемых?

Что, если сложить числа от 1 до 9? У нас не хватает одного числа для составления пяти пар, но мы можем взять ноль:

$$\left(\begin{array}{c}0&1&2&3&4\\ 9&8&7&6&5 \end{array}\right)$$

Сумма столбцов теперь равна 9 или ровно $n$. А количество столбцов? По-прежнему пять столбцов (спасибо нулю!), но теперь количество столбцов определяется как $\frac{n+1}{2}$ (y нас $n+1$ чисел в 2 столбцах).

$$Число\ столбцов\cdotСумма\ чисел\ в\ стобцах=\frac{n+1}{2}\cdot n$$

Второй способ: увеличить вдвое и записать в две строки

Мы немного по-разному считаем сумму чисел в этих двух случаях.
Может быть, есть способ одинаково посчитать сумму для четного и нечетного количества слагаемых?

Вместо того, чтобы делать из чисел своеобразную «петлю», давайте запишем их в две строки, при этом количество чисел умножим на два:

$$\left(\begin{array}{c}1&2&3&4&5&6&7&8&9&10\\10&9&8&7&6&5&4&3&2&1 \end{array}\right)$$

Для нечетного случая:

$$\left(\begin{array}{c}1&2&3&4&5&6&7&8&9\\9&8&7&6&5&4&3&2&1\end{array}\right)$$

Видно, что в обоих случаях сумма столбцов равна $n+1$, а количество столбцов $n$.

$$Число\ столбцов\cdotСумма\ чисел\ в\ стобцах=n\cdot(n+1)$$

Но нам нужна сумма только одной строки, поэтому:

$$\frac{n\cdot(n+1)}{2}$$

Третий способ: сделать прямоугольник

Есть еще одно объяснение, давайте попробуем сложить крестики, допутим у нас есть крестики:

Похоже просто на другое представление второго способа - каждая последующая строка пирамидки имеет больше крестиков и меньше ноликов. Количество всех крестиков и ноликов - площадь прямоугольника.

$$Площадь=Высота\cdotШирина=n\cdot(n+1)$$

Но нам нужна сумма крестиков, поэтому:

$$\frac{n\cdot(n+1)}{2}$$

Четветрый способ: среднее арифметическое

Известно: $Среднее\ арифметическое=\frac{Сумма}{Количество\ членов}$
Тогда: $Сумма = среднее\ арифметическое\cdotКоличество\ членов$

Количество членов нам известно - $n$. А как выразить Cреднее арифметическое?

Заметьте, числа распределены равномерно. На каждое большое число приходится маленькое, расположенное на другом конце.

1 2 3, среднее 2

1 2 3 4, среднее 2.5

В этом случае среднее арифметическое - это среднее арфиметическое чисел 1 и $n$, тоесть $Среднее\ арифметическое=\frac{n+1}{2}$

$$Сумма = \frac{n+1}{2}\cdot n$$

Пятый способ: интеграл

Все мы знаем, что определенный интеграл вычисляет сумму. Посчитаем сумму от 1 до 100 интегралом? Да, но для начала давайте хотя бы найдем сумму от 1 до 3. Пусть наши числа будут функцией y(x). Нарисуем картинку:

Высоты трех прямоугольников - как раз числа от 1 до 3. Проведем прямую через середины «шапок»:


Неплохо было бы найти уравнение этой прямой. Она проходит через точки (1.5;1) и (2.5;2). $y=k\cdot x+b$.

$$\begin{cases}2.5k + b = 2\\1.5k + b = 1\end{cases}\Rightarrow k=1; b=-0.5$$

Таким образом, уравнение прямой, которой мы можем аппроксимировать наши прямоугольники $y=x-0.5$


Она отсекает от прямоугольников желтые треугольники, но «добавляет» к ним сверху голубые. Желтые равны голубым. Сначала убедимся, что использование интеграла ведёт к формуле Гаусса:

$$\int_{1}^{n+1} (x-\frac{1}{2}) \, dx = (\frac{x^{2}}{2}-\frac{x}{2}){|}^{n+1}_{1}=\frac{(n+1)^{2}}{2}-\frac{n+1}{2}=\frac{n^{2}+2n+1-n-1}{2}=\frac{n^{2}+n}{2}$$

Теперь посчитаем сумму от 1 до 3, по иксу берем от 1 до 4, чтобы все наши три прямоугольника попали в интеграл:

$$\int_{1}^{4} (x-\frac{1}{2}) \, dx = (\frac{x^{2}}{2}-\frac{x}{2}){|}^{4}_{1}=\frac{4^{2}}{2}-2-(0.5-0.5)=6$$

$$\int_{1}^{101} (x-\frac{1}{2}) \, dx = (\frac{x^{2}}{2}-\frac{x}{2}){|}^{101}_{1}=\frac{101^{2}}{2}-50.5-(0.5-0.5)=5100.5-50.5=5050$$

И зачем все это нужно?

$$\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}$$

В первый день на ваш сайт зашел один человек, на второй день двое… Каждый день количество посещений увеличивалось на 1. Сколько всего посещений наберет сайт к концу 1000-го дня?

$$\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}=\frac{1000^{2}}{2}+\frac{1000}{2} = 500000+500=500500$$