Что такое разрешающая способность оптического прибора. Kvant. Разрешающая способность

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ (разрешающая сила) оптических приборов - величина, характеризующая способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с к-рого их изображения сливаются и перестают быть различимыми, наз. линейным (или угловым) пределом разрешения. Обратная ему величина служит количественной мерой Р. с. оптич. приборов. Идеальное изображение точки как элемента предмета может быть получено от волновой сферич. поверхности. Реальные оптич. системы имеют входные и выходные зрачки (см. Диафрагма )конечных размеров, ограничивающие волновую поверхность. Благодаря дифракции света , даже в отсутствие аберраций оптических систем и ошибок изготовления, оптич. система изображает точку в монохроматич. свете в виде светлого пятна, окружённого попеременно тёмными и светлыми кольцами. Пользуясь теорией , можно вычислить наим. расстояние, разрешаемое оптич. системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображение раздельно. В соответствии с условием, введённым Дж. У. Рэлеем (J. W. Rayleigh, 1879), изображения двух точек можно видеть раздельно, если центр дифракц. пятна каждого из них пересекается с краем первого тёмного кольца другого (рис.).

Распределение освещённости E в изображении двух точечных источников света, расположенных так, что угловое расстояние между максимумами освещённости Df равно угловой величине радиуса центрального дифракционного пятна Dq (Df = Dq - условие Рэлея).

Если точки предмета самосветящиеся и излучают некогерентные лучи, выполнение соответствует тому, что наим. освещённость между изображениями разрешаемых точек составит 74% от освещённости в центре пятна, а угл. расстояние между центрами дифракц. пятен (максимумами освещённости) определится выражением Df = 1,21l/D , где l - длина волны света, D - диаметр входного зрачка оптич. системы. Если оптич. система имеет фокусное расстояние /, то линейная величина предела разрешения d = 1,21lf /D . Предел разрешения телескопов и зрительных труб выражают в угл. секундах и определяют по ф-ле d = 140/D (при l = 560 нм и D в мм) (о Р. с. микроскопов см. в ст. Микроскоп) . Приведённые ф-лы справедливы для точек, находящихся на оси идеальных оптич. приборов. Наличие аберраций и ошибок изготовления снижает Р. с. реальных оптич. систем. Р. с. реальной оптич. системы падает также при переходе от центра поля зрения к его краям. Р. с. оптич. прибора R оп, включающего комбинацию оптич. системы и приёмника (фотослой, катод электронно-оптического преобразователя и др.), связана с Р. с. оптич. системы R oc и приёмника R п приближённой ф-лой

Явление дифракции ставит предел для разрешающей способности многих оптических инструментов и человеческого глаза.

При дневном освещении диаметр зрачка, т. е. диаметр D отверстия, на котором происходит дифракция света, равен примерно 2 мм; длину волны света примем равной Тогда угловой радиус а центрального светлого дифракционного пятна при попадании на зрачок глаза параллельного пучка света может быть определен по формуле (15.3):

Таким образом, в результате дифракции бесконечно удаленный точечный источник воспринимается глазом как светлое пятно

с угловым радиусом, равным примерно одной угловой минуте. Две светящиеся точки могут восприниматься глазом как отдельные источники света при условии, если угловое расстояние между ними превышает угловой радиус центрального дифракционного светлого пятна от одного точечного источника (рис. 66). Следовательно, разрешающая способность человеческого глаза равна примерно одной угловой минуте.

При фотографирований звезд с помощью телескопа изображение звезд на фотопластинке получается не точечным. Это является следствием дифракции света на отверстии объектива телескопа (рис. 67). Радиус центрального светлого дифракционного пятна на фотопластинке можно определить из условия (15.3):

где - фокусное расстояние. Но, с другой стороны,

Выражение (15.4) показывает, что изображения звезд, на фотопластинке тем ближе к точечным, чем больше диаметр D объектива телескопа и чем меньше его фокусное расстояние F.

Оценим разрешающую способность крупнейшего в мире советского телескопа с диаметром объектива 6 м:

Следовательно, с помощью самого большого в мире оптического телескопа можно различить на небе светящиеся объекты: звезды, детали на поверхности планет, отстоящие друг от друга не менее чем на две сотые угловой секунды.

Явление дифракции ограничивает и разрешающую способность микроскопа. Очевидно, что если в изображении, построенном объективом микроскопа, две светящиеся точки становятся неразличимыми в результате наложения их дифракционных изображений, то дальнейшее увеличение изображения с помощью окуляра не может сделать их различимыми. Следовательно, как и в случае определения разрешающей способности глаза и телескопа, минимальное угловое расстояние между точками, которые могут быть разрешены как отдельные источники света, приблизительно равно угловому радиусу а центрального светлого дифракционного пятна. Согласно выражению (15.3), угол выражается через диаметр объектива D и длину световой волны :

Обозначив расстояние от предмета до объектива микроскопа через (рис. 68), получим для минимального линейного расстояния у между двумя светящимися точками и В, на котором они могут быть разрешены при наблюдении в микроскоп, следующее выражение:

Отсюда видно, что разрешающая способность микроскопа возрастает с увеличением диаметра объектива микроскопа, с уменьшением длины световой волны и расстояния от объектива до объекта.

Так как объектив микроскопа должен построить действительное изображение, то

Следовательно, для уменьшения расстояния необходимо использовать возможно более короткофокусные линзы. Увеличение разрешающей способности объектива микроскопа при заданном фокусном расстоянии путем увеличения диаметра D объектива ограничено естественным пределом:

где - радиус кривизны линзы. Это означает, что плоско-выпуклая линза, обычно применяемая в качестве первой линзы объектива микроскопа, должна быть полушаровой.

Так как фокусное расстояние плосковыпуклой линзы определяется формулой

то для объектива микроскопа можно записать соотношение:

Учитывая это, можно минимальное расстояние, на котором могут находиться две светящиеся точки, различимые с помощью микроскопа, выразить так:

Принимая показатель преломления стекла, из которого сделана линза объектива, получаем:

Таким образом, минимальное расстояние, на котором с помощью микроскопа могут быть разрешены две светящиеся точки при оптимальной конструкции объектива, равно приблизительно длине световой волны.

Один из возможных путей увеличения разрешающей способности оптического микроскопа заключается в использовании коротковолнового ультрафиолетового излучения. Так как ультрафиолетовое излучение не воспринимается человеческим глазом, но сильно действует на фотопластинку, изображение фотографируется, проявляется и потом рассматривается.

Спектрографах и спектрометрах. Спектральный прибор представляет любое излучение в виде совокупности монохроматических волн. Любая точка предмета вследствие дифракции отображает-ся в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами; радиус пятна зависит от относительных размеров линз оптической системы.

В ряде спектральных приборов используется дисперсия показателя преломления призм (лекция 1), приводящая к пространственному разделению монохроматических компонент излучения: , где угол падения для излучения с длиной волны , угол падения анализируемого света.

Критерий Рэлея - два близлежащих одинаковых точеч-ных источника или две близлежащие спектральные линии с равными интенсивностями условно считаются полностью разрешенными (наблюдаемыми порознь), если максимум интенсивности одного источ-ника (линии) совпадает с первым миниму-мом интенсивности другого (рис. а).

При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсив-ности в максимуме, что является достаточ-ным для разрешения линий и . Если критерий Рэлея нарушен, то наблюдается одна линия (рис.b).

1. Разрешающая способность объекти-ва. Если на объектив падает свет от двух удаленных точечных источников S 1 и S 2 (например, звезд) с некоторым угловым расстоянием , то вследствие дифракции световых волн на краях диафрагмы, огра-ничивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами. Две близлежащие звезды, наблюдаемые в объективе в моно-хроматическом свете, разрешимы, если уг-ловое расстояние между ними

, (16.1)

где — длина волны света, D — диаметр объектива.

Разрешающей способностью (разре-шающей силой) объектива называется ве-личина (16.2)

где — наименьшее угловое расстоя-ние между двумя точками, при котором они еще разрешаются оптическим прибором. При выполнении критерия Рэлея, угловое расстояние между точками должно быть равно :

Следовательно, разрешающая способ-ность объектива (16.4)

Т.е. для увеличения разрешающей способности оп-тических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны . Для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а получен-ное изображение в данном случае наблю-дается с помощью флуоресцирующего эк-рана либо фиксируется на фотопластинке.


Еще большую разрешающую способность можно было бы получить с помощью рент-геновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломля-ясь; не-возможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излуче-ние. Поэтому электронный микроскоп име-ет очень высокую разрешающую способ-ность.

Разрешающей способностью спек-трального прибора называют безразмер-ную величину (16.5)

где — абсолютное значение минималь-ной разности длин волн двух соседних спектральных линий, при которой эти ли-нии регистрируются раздельно.

Установление длин волн исследуемого излучения в спектральных приборах чаще всего производится путем сравнения длин волн двух близких спектральных линий (одна из которых принадлежит эталонному веществу или излучению). Положение спектральной линии задается углом, определяющим направление лучей.

Угловой дисперсией (16.6) , где — угловое расстоя-ние между двумя линиями (разница в углах на выходе из призмы или решетки для двух лучей с длинами волн и )

Линейной дисперсией спектрального прибора называется величина (16.7) , где — линейное расстоя-ние между линиями, различающимися по длинам волн на .

2. Разрешающая способность дифрак-ционной решетки. В спектральных приборах с дифракционными решетками положение спектральных линий на плоскости наблюдения дается условием максимумов. Пусть максимум т-го порядка для длины волны наблюдается под углом , т.е., согласно (14.6), . При переходе от максимума к соседнему минимуму разность хода ме-няется на (14.7), где -число щелей решетки. Следовательно, ми-нимум , наблюдаемый под углом , удовлетворяет условию . По критерию Рэлея, , т.е., или. Так как и близки между собой, т.е., то,

Таким образом, разрешающая способ-ность дифракционной решетки пропорцио-нальна порядку т спектров и числу N ще-лей, т. е. при заданном числе щелей увели-чивается при переходе к спектрам высших порядков. Современные дифракционные решетки обладают довольно высокой раз-решающей способностью (до 2?10 5).

Угловая дисперсия дифрак-ционной решетки: , где положение m- го максимума.

Cтраница 1


Разрешающая способность оптических приборов и, в частности, микроскопов ограничивается явлением дифракции. Изображение частиц меньших размеров будет иметь вид дифракционного кружка, форма которого практически не зависит от формы частиц. При специальном способе наблюдения эти дифракционные картины, однако, могут быть замечены и, следовательно, факт существования частиц, их положение и движение могут быть установлены. Вопросы наблюдения и исследования таких малых частиц в коллоидных растворах и аэрозолях и составляют предмет ультрамикроскопии.  


Ограничения разрешающей способности оптических приборов связаны с дифракционными явлениями и аберрациями элементов оптических систем.  


На разрешающую способность оптического прибора влияет кроме разрешающей способности глаза степень коррекции системы.  

Чем определяется разрешающая способность оптических приборов.  

Об увеличении разрешающей способности оптических приборов: Докл.  

Обычно под разрешающей способностью оптического прибора понимают способность различать (шит разрешать) в изображении объекта два близких элемента - две близкие светящиеся точки Б обычном оптическом приборе или две близкие монохроматические линии в спектре, полученном с помощью спектрального прибора.  

Что понимают под разрешающей способностью оптического прибора и от чего она зависит.  

Почему явление дифракции ограничивает разрешающую способность оптических приборов, например телескопа.  

Согласно критерию Рэлея, максимальная разрешающая способность оптического прибора соответствует условию, когда главный максимум дифракционной картины от одного точечного объекта точно совпадает с первым минимумом дифракционной картины от другого близко расположенного с первым точечного объекта. Этому условию отвечает минимальное угловое разрешение оптического прибора.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину яолны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Еще один интересный вопрос, очень важный с технической точки зрения: какова разрешающая способность оптических приборов. Когда мы создаем микроскоп, мы хотим целиком видеть тот объект, который находится в поле нашего зрения. Это означает, например, что, глядя на бактерию, на боках которой имеются два пятнышка, мы хотим различить оба пятнышка на увеличенном изображении. Могут подумать, что для этого нужно только получить достаточное увеличение, ведь всегда можно добавить еще линзы и достичь большего увеличения, а если конструктор ловкий, то он устранит сферические и хроматические аберрации; вот вроде бы и нет причин, почему бы не увеличить желаемое изображение до любых размеров. Но предел возможностей микроскопа связан не с тем, что невозможно добиться увеличения более чем в 2000 раз.  

) оптических приборов, характеризует способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с которого их изображения сливаются и перестают быть различными, наз. линейным (или угловым) пределом разрешения. Обратная ему величина служит количеств. мерой Р. с. оптич. приборов. Идеальное изображение точки, как элемента , может быть получено от волновой сферич. поверхности. Реальные оптич. системы имеют входные и выходные зрачки конечных размеров, ограничивающие волновую . Благодаря дифракции света даже при отсутствии аберраций и ошибок изготовления оптич. система изображает точку в монохроматич. свете в виде светлого пятна, окружённого попеременно тёмными и светлыми кольцами. Пользуясь теорией дифракции, можно вычислить наименьшее расстояние, разрешаемое оптич. системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображение раздельно. В соответствии с условием, введённым англ. учёным Дж. У. Рэлеем (1879), изображения двух точек можно видеть раздельно, если центр дифракц. пятна каждого из них пересекается с краем первого тёмного кольца другого (рис.).

Если точки предмета самосветящиеся и излучают некогерентные лучи, выполнение критерия Рэлея соответствует тому, что наименьшая между изображениями разрешаемых точек составит 74% от освещённости в центре пятна, а угловое расстояние между центрами дифракц. пятен (максимумами освещённости) определится выражением Dj=1,21l/D, где l - света, D - диаметр входного зрачка оптич. системы (см. В ОПТИКЕ).

Распределение освещённости Е в изображении двух точечных источников света, расположенных так, что угловое расстояние между максимумами освещённости Dj равно угловой величине радиуса центрального дифракц. пятна Dq(Dj=Dq - условие Рэлея).

Если оптич. система имеет f, то линейная величина предела разрешения d=l,21lf/D. Предел разрешения телескопов и зрительных труб выражают в угловых секундах и определяют по формуле d=140/D (при l=560 нм и D в мм) (о Р. с. микроскопов см. в ст. (см. МИКРОСКОП)). Приведённые формулы справедливы для точек, находящихся на оси идеальных оптич. приборов. Наличие аберраций и ошибок изготовления снижает Р. с. реальных оптич. систем. Р. с. реальной оптич. системы падает также при переходе от центра поля зрения к его краям. Р. с. оптич. прибора Rоп, включающего комбинацию оптич. системы и приёмника (фотослой, электронно-оптического преобразователя и др.), связана с Р. с. оптич. системы прибора Rос и приёмника Rп приближённой формулой 1/Rоп=1/Rос+1/Rп, из к-рой следует, что целесообразно применение лишь таких сочетаний, когда Rос и Rп одного порядка. Р. с. прибора может быть оценена по его аппаратной функции.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

(разрешающая сила) оптических приборов - величина, характеризующая способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с к-рого их изображения сливаются и перестают быть различимыми, наз. линейным (или угловым) пределом разрешения. Обратная ему величина служит количественной мерой Р. с. оптич. приборов. Идеальное изображение точки как элемента предмета может быть получено от волновой сферич. поверхности. Реальные оптич. системы имеют входные и выходные зрачки (см. Диафрагма )конечных размеров, ограничивающие волновую поверхность. Благодаря дифракции света, даже в отсутствие аберраций оптических систем и ошибок изготовления, оптич. система изображает точку в монохроматич. свете в виде светлого пятна, окружённого попеременно тёмными и светлыми кольцами. Пользуясь теорией дифракции, можно вычислить наим. расстояние, разрешаемое оптич. системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображение раздельно. В соответствии с условием, введённым Дж. У. Рэлеем (J. W. Rayleigh, 1879), изображения двух точек можно видеть раздельно, если центр дифракц. пятна каждого из них пересекается с краем первого тёмного кольца другого (рис.).

Распределение освещённости E в изображении двух точечных источников света, расположенных так, что угловое расстояние между максимумами освещённости Df равно угловой величине радиуса центрального дифракционного пятна Dq (Df = Dq - условие Рэлея).

Если точки предмета самосветящиеся и излучают некогерентные лучи, выполнение критерия Рэлея соответствует тому, что наим. освещённость между изображениями разрешаемых точек составит 74% от освещённости в центре пятна, а угл. расстояние между центрами дифракц. пятен (максимумами освещённости) определится выражением Df = 1,21l/D , где l - длина волны света, D - диаметр входного зрачка оптич. системы. Если оптич. система имеет фокусное расстояние /, то линейная величина предела разрешения d = 1,21lf /D . Предел разрешения телескопов и зрительных труб выражают в угл. секундах и определяют по ф-ле d = 140/D (при l = 560 нм и D в мм) (о Р. с. микроскопов см. в ст. Микроскоп). Приведённые ф-лы справедливы для точек, находящихся на оси идеальных оптич. приборов. Наличие аберраций и ошибок изготовления снижает Р. с. реальных оптич. систем. Р. с. реальной оптич. системы падает также при переходе от центра поля зрения к его краям. Р. с. оптич. прибора R оп, включающего комбинацию оптич. системы и приёмника (фотослой, катод электронно-оптического преобразователя и др.), связана с Р. с. оптич. системы R oc и приёмника R п приближённой ф-лой