Общая топология. Важные проблемы и результаты. Два вида: объекты и элементы топологии

1. Общая топология. Общая топология существует с тех пор, когда в процессе развития канторовской теории множеств была создана теория точечных множеств в евклидовом пространстве. Евклидово пространство - это пространство, в котором введено расстояние, поэтому оно как множество точек приобретает свою топологию.

Благодаря этому были разработаны понятия замкнутого и открытого множеств окрестности, точки накопления. Эти понятия являются фундаментальными в разных областях математики, в частности в анализе.

Теория точечных множеств в евклидовом пространстве послужила исходным пунктом в развитии общей идеи топологического пространства. Это началось с работ Фреше (1878-1973) 1907 года, посвященных -пространствам. Фреше, занимаясь исследованиями в области функционального анализа, определил пространство при помощи понятия сходимости, которое составляет ядро всей топологии. Заслуга Фреше в том, что он выдвинул основные положения абстрактного пространства. Это был отход от привычных рассмотрений в евклидовом пространстве. Точка абстрактного пространства - это уже не точка в том смысле, как это понимают в евклидовой геометрии. Если речь идет о множестве, в котором определено понятие сходимости, то это уже топологическое пространство. Абстрактная теория пространства постепенно слилась с тем, что определяется сейчас как теория топологических пространств. Абстрактизация идеи пространства открыла путь формированию многих важных понятий в различных разделах математики.

Мы приведем имена лишь нескольких математиков, которые внесли принципиальный вклад в разработку фундаментальных положений топологии.

В 1909 году Рис (1880-1956) исследовал предельные точки множества. В 1914 году Хаусдорф (1868-1942) пришел к понятию

системы окрестностей. В 1922 году Куратовский (р. 1896) ввел аксиоматику замыкания, в 1925 году Александров (р. 1896) построил теорию открытых множеств, а в 1927 году Серпиньский (1882-1969) - теорию замкнутых множеств.

Около сорока лет назад в противоположность нынешнему состоянию алгебраической топологии алгебраический аппарат использовался робко. В то время для изучения геометрических фигур применялись весьма наглядные методы, которые составляли геометрическую топологию теории множеств. Исследования велись в теории кривых линий, теории размерности, что в настоящее время включается в общую топологию.

2. Комбинаторная топология. При исследовании геометрических свойств мнргообразий Пуанкаре пользовался разбиением многообразия на элементарные симплексы и, обратно, создавал из симплексов сложные комбинаторные структуры. При этом Пуанкаре применял аппарат введенных им групп гомологий. Дальнейший прогресс комбинаторной топологии связан с такими значительными результатами, как результаты Хопфа (1895-1971), теоремы о неподвижных точках отображения Лефшеца (1884-1972), теоремы двойственности Пуанкаре и Александера. Эти геометрические теории, представляя собой часть комбинаторной топологии, являются ветвью алгебраической топологии. Примерно с 1940 года она получила значительное развитие в связи с исследованиями линейных образов комбинаторных структур, где Уайтхедом (1904-1960) были получены замечательные результаты. Эта дисциплина стала называться -топологией.

О положительном решении общего предположения Пуанкаре уже говорилось выше. Затрагивая вопрос определения комбинаторных многообразий, мы не говорили об известном основном предположении комбинаторной топологии, которое в 1961 году Мазуром и Милнором (р. 1931) было опровергнуто.

Основное предположение комбинаторной топологии (Hauptvermutung). В начале XX века комбинаторная топология особенно сильное развитие получила в Германии, и подавляющее большинство работ публиковалось на немецком языке. Упоминаемая здесь основная гипотеза также впервые была сформулирована на немецком языке. И по сей день в различных трудах ее часто называют по-немецки Hauptvermutung. Формулировка этого предположения такова: если полиэдры двух комплексов К к К гомеоморфны, то можно подразделить их таким образом, что полученные в результате этого комплексы являются равными комплексами.

Комплексы некоторые подразделения которых равны, называются комбинаторно эквивалентными. При определении комбинаторного многообразия, казалось бы, естественно потребовать, чтобы полиэдр звезды и -мерный симплекс были гомеоморфны. Однако в общем случае остается неизвестным, можно ли считать равными Поэтому удобнее требовать, чтобы были комбинаторно эквивалентны.

3. Алгебраическая топология. Алгебраическая топология представляет собой область геометрии, цель которой состоит в установлении топологических инвариантов на основе

применения теории групп. Алгебраическая топология считается ведущей областью топологии. Упоминавшаяся выше теория гомологий также относится к этой области геометрии. К числу других достижений алгебраической топологии относятся введенные в работах Александера и Колмогорова (р. 1903) группы когомологий.

В более позднее время алгебраическая топология сделала резкий скачок вперед благодаря работам Стинрода (1910-1971) по теории когомологий, опубликованным в 1947 году, и исследованию Серром (р. 1926) в 1951 году спектральных последовательностей.

4. Дифференциальная топология. Есть область топологии, объектом исследований которой являются дифференцируемые многообразия. Суть дифференцируемого многообразия состоит в возможности рассмотрения дифференцируемых функций, заданных на этом многообразии. Если о дифференцируемых многообразиях говорить конкретнее, то нужно прежде всего вспомнить, что каждая точка многообразия обладает окрестностью гомеоморфной открытому диску (или, что все равно, всему евклидову пространству). Координаты, заданные в евклидовом пространстве, посредством гомеоморфизмов переносятся в окрестность каждой точки многообразия. Это так называемые локальные координаты. Так как точка многообразия принадлежит одновременно многим окрестностям то ей соответствует столько же различных систем локальных координат. Многообразие дифференцируемоу если функции преобразования от одной локальной системы координат к другой являются дифференцируемыми.

Вероятно, следовало привести конкретные формулы, однако суть, думается, может быть ясна и без этого.

Непосредственное впечатление от дифференцируемого многообразия отражено в том, что часто применяется термин «гладкое многообразие». Гладкость состоит, собственно, в том, что окрестность каждой точки можно расширить дифференцируемым образом. Гладкие кривы 1 поверхности, такие, как сфера или поверхность тора представляют собой дифференцируемые многообразия.

В дифференциальной топологии, таким образом, можно рассматривать не только непрерывные относительно точек многообразия отображения, но и дифференцируемые отображения. Если к общим условиям гомеоморфизма одного многообразия на другое добавить условия дифференцируемости, то получим изоморфизм их гладких структур, или так называемый диффеоморфизм.

Другими словами, гладкие структуры диффеоморфных между собой дифференцируемых

многообразий равны. Такие многообразия являются главным объектом исследования дифференциальной топологии. Этот раздел геометрии связан с изучением глобальных свойств многообразий, и мы здесь не будем специально рассматривать такие вопросы дифференциальной геометрии, как кривизна и т. п.

Фундаментальные исследования в дифференциальной топологии были проведены Уитни (р. 1907) в 1930 году. Затем активность исследований в этой области несколько снизилась.

В 1952 году Том (р. 1923), лауреат филдсовской премии 1958 года, опираясь на теорию кбгомологий и гомотопических групп, построил теорию кобордизмов. Недавно он разработал ставшую широко известной теорию катастроф.

В 1956 году Милнором были обнаружены удивительные особенности дифференциальной структуры, присущие семимерной сфере Суть отбытия Милнора, которое явилось совершенно неожиданным не только с геометрической точки зрения, но и с точки зрения анализа, в двух словах заключается в том, что существуют гладкие семимерные сферы которые между собой гомеоморфны, но не диффеоморфны. Доказательство этого факта основано на предварительном изучении свойств и величин, сохраняющихся при диффеоморфизмах, последующее сравнение которых привело к выводу о том, что на семимерной сфере есть различные дифференциальные структуры.

В дифференциальной топологии был получен ряд глубоких теорем, которые составили ей славу одной из самых замечательных

областей всей математики. Ряд достижений дифференциальной топологии связан с комбинаторной топологией. Подтверждением этого является, например, теорема о том, что любое дифференцируемое многообразие есть комбинаторное многообразие.

5. Геометрическая топология. Это название, да и сам раздел топологии отнюдь не является общепризнанным. В исследовании топологических свойств геометрических фигур существует направление, в котором не применяется алгебраический метод, как это было при исследовании комбинаторных и гладких структур, и изучение геометрических свойств проводится непосредственно. Этим и объясняется название «геометрическая топология». Основной объект изучения геометрической топологии - это необычные геометрические фигуры в евклидовом пространстве Слова «необычные геометрические фигуры» употреблены здесь потому, что, с одной стороны, речь идет о необычных фигурах, применить к которым алгебраические методы особенно трудно, а с другой стороны, эти фигуры достаточно геометричны, чтобы иметь о них на: глядное представление. Направление, которое исследует необычные фигуры, можно было бы назвать геометрической патологией фигур.

Инструмент исследования в данном случае не представляет собой методически разработанную теорию. Изучение тех или иных геометрических фигур состоит в непосредственном

наглядном восприятии с последующим проведением цепочки строго обоснованных рассуждений. Поэтому здесь необходимы острота восприятия и правильность логического вывода. Из последних достижений в изучении патологических (диких) геометрических фигур можно, например, отметить исследования трехмерных многообразий. Проблема топологической классификации трехмерных многообразий, как это явствует уже из рассуждений относительно гипотезы Пуанкаре, далека от своего решения и представляется крайне сложной. Именно со стороны гипотезы Пуанкаре к задаче классификации подошли вплотную многие исследователи, получив значительные результаты. Хорошо известны исследования Папакирвякопулоса (1914-1976), в результате которых этот «уважаемый Пап» решил в 1957 году проблему Дэна (1878-1952) о сфере. Теорема о сфере формулируется следующим образом: если трехмерное ориентируемое многообразие с (двумерная гомотопическая группа), то существует вложенная в нестягиваемая двумерная сфера Эта сфера 52 как раз и обеспечивает нетривиальность двумерной гомотопической группы Эта теорема вскрывает еще одну связь между комбинаторной и алгебраической топологией. Надо сказать, что многие результаты одной области могут быть в определенной степени взаимно использованы в смежной области, хотя в каждом конкретном случае существо вопроса подлежит непосредственной проверке.

Что касается только что упомянутой проблемы, то о ее решении, которое опиралось на ряд вспомогательных лемм, заявил еще

в 1910 году, когда он занимался изучением геометрии трехмерных многообразий. Однако вскоре Кнезер (р. 1898) и другие указали на пробелы в приведенном доказательстве. И только гораздо позже, в 1957 году, было получено окончательное доказательство.

В вопросах построения трехмерных многообразий из более простых многообразий Кнезером была предложена важная теорема, которая в 1962 году была улучшена Милнором. Упоминая об этих теоремах, мы, однако, из-за их сложности не приводим здесь даже формулировок.

Из работ, посвященных изучению «диких» многообразий, следует также отметить последовавшую за работами Антуана 1921 года работу Александера 1924 года, в которой он предложил конструкцию так называемой рогатой сферы. Рогатая сфера Александера, которая изображена на рис. 107, непривычная, сложная для восприятия дикая фигура. В дальнейшем исследования в этом направлении продолжены Столлингсом, Бингом (р. 1914) и другими.

Итак, мы дали общий обзор основных областей топологии. Эти области, безусловно, не имеют между собой резких границ. Так, комбинаторная топология очень тесно связана как с геометрической, так и с дифференциальной топологией. В каждой из указанных областей применяется аппарат алгебраической топологии.

Далее следует подчеркнуть, что топологические методы находят применение в разных областях математики. Так, хотя мы почти не затрагивали проблемы классификации геометрических фигур, заметим, что здесь имеется много вопросов топологического характера. Достаточно вспомнить о проблеме узлов, которая является частным случаем более общей проблемы вложения многообразий в евклидово пространство или в какое-нибудь другое многообразие. В качестве простого примера можно указать на топологическую задачу размещения замкнутой кривой линии - окружности - на замкнутых кривых поверхностях рода 1, 2 и т. д.

Топология - это современная ветвь математики, и изложение содержания любой из ее областей неизбежно приводит к обсуждению острых проблем, касающихся современного состояния математики и перспектив ее развития. Однако поскольку мы вынуждены ограничиться кратким описанием лишь некоторых самых общих математических принципов и идей, то очень многое пришлось сократить до минимума или опустить вообще.

Особое место среди областей топологии занимает общая топология. В настоящее время общая топология достигла того наиболее естественного уровня общности, который позволяет излагать топологические принципы, концепции и конструкции с наибольшей прозрачностью и одновременно обеспечить им максимально широкую приложимость в других разделах математики.

Общая топология – это область математики, в которой изучаются общие геометрические свойства, сохраняющиеся при непрерывных и взаимно однозначных отображениях.

Наряду с алгеброй общая топология составляет основу современного теоретико-множественного метода в математике.

Аксиоматически определяемыми объектами изучения общей топологии являются пространства и их непрерывные отображения. Под топологическим пространством понимается множество объектов произвольной природы, называемых точками, в котором выделена некоторая система подмножеств, называемых открытыми множествами пространства. Эта система должна включать в себя всё пространство и пустое множество и содержать в себе вместе с любыми двумя множествами их пересечение и вместе с любым набором множеств множество, которое является их объединением.

Существенное влияние на развитие общей топологии оказало введённое П.С. Александровым понятие бикомпактности. Александров и Урысон создали теорию бикомпактных пространств. Бикомпактные пространства – один из главных объектов исследования в общей топологии – и в настоящее время находятся в центре внимания математиков. Они играют важную роль в теории размерности, теории гомологий и других разделах топологии, а также имеют основное значение в функциональном анализе. Всякое вполне регулярное пространство является подмножеством некоторого бикомпактного хаусдорфова пространства.

В настоящее время наиболее распространённым является следующее определение бикомпактного пространства: пространство называется бикомпактным, если из всякого открытого покрытия этого пространства можно выбрать конечное число покрывающих множеств.

В литературе можно встретить и другие классы пространств, родственные бикомпактным, например псевдокомпактные, квазикомпактные. Бикомпактные пространства занимают главное место среди них и играют такую же роль в общей топологии, как компакты в классе метризуемых пространств.

Кроме того, общая топология посвящена изучению понятий непрерывности, а также других понятий, таких как компактность или отделимость, как таковых, без обращения к другим инструментам.

4. Топологическое пространство

Топологическое пространство – основной объект изучения топологии. Понятие топологического пространства можно рассматривать как обобщение понятия геометрической фигуры, в котором мы отвлекаемся от свойств наподобие размера или точного положения частей фигуры в пространстве, и сосредотачиваемся только на взаимном расположении частей. Топологические пространства возникают естественно почти во всех разделах математики.

Итак, топологическое пространство определяется через систему открытых множеств посредством аксиом. Естественно, само это понятие базируется на предварительных общих понятиях «пространство» и «открытое множество».

В современной математике пространство определяют как некоторое абстрактное множество произвольных объектов, для которых задана определённая операция, осуществляющая известное отношение между элементами пространства. Базой для построения теории того или иного абстрактного пространства является, с одной стороны, общематематическое понятие множества, под которым понимается произвольная совокупность любых объектов (элементов), а с другой, – установленные определённым образом структурные отношения между этими объектами.

Пусть дано множество X. Множество T его подмножеств называется топологией на X, если выполнены следующие свойства:

    Все X и пустое множество принадлежат T,

    Объединение произвольного семейства множеств, принадлежащих T, принадлежит T,

    Пересечение двух множеств, принадлежащих T, принадлежит T.

Множество X вместе с заданной на нем топологией T называется топологическим пространством. Подмножества X, принадлежащие T, называются открытыми множествами.

Потребность в развитии общего подхода к понятию пространства возникла довольно давно – в конце прошлого и начале нынешнего столетия. В связи с развитием теории функций действительного переменного и функционального анализа возникли и другие объекты – функциональные пространства и их подмножества, – для исследования которых также требуются понятия и методы общей топологии.

В настоящее время топологические методы исследования применяются не только в анализе, но и во многих других отраслях математики. Значительной является роль топологических методов в дифференциальных уравнениях. В результате синтеза идей общей топологии и функционального анализа возникла теория топологических векторных пространств. Абстрактные топологические пространства неожиданным образом могут возникать и применяться в самых различных областях математики.

Общепринятое ныне понятие топологического пространства возникло не сразу. Появившееся ранее метрические пространства, которые и по сей день являются важным предметом изучения общей топологии, не могли удовлетворить математиков.

Первые достаточно общие определения топологического пространства даны в работах Фреше, Рисса и Хаусдорфа. Окончательно определение топологического пространства было сформулировано польским математиком К. Куратовским и П.С. Александровым.

Топология компьютерных сетей

На скорость передачи данных в сети, на надежность обслуживания запросов клиентов, на устойчивость сети к отказам оборудования, на стоимость создания и эксплуатации сети значительное влияние оказывает ее топология.

Под топологией компьютерной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают следующие основные топологии:

· топология типа звезда;

· топология типа кольцо;

· топология типа общая шина;

· древовидная топология;

· полносвязная сеть.

Рассмотрим данные топологии сетей.

Топология типа звезда . При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рис. 11). В качестве центрального узла может выступать сервер или специальное устройство – концентратор (Hub).

Рис. 11. Топология типа звезда

В топологии звезда могут использоваться активные и пассивные концентраторы. Активные концентраторы принимают и усиливают передаваемые сигналы. Пассивные концентраторы пропускают через себя сигналы, не усиливая их. Пассивные концентраторы не требуют подключения к источнику питания.

Преимущества топологии звезда состоят в следующем:

1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный узел (сервер или концентратор) выйдет из строя, то работа всей сети прекратится.

2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

3. Отсутствие возможности выбора различных маршрутов для установления связи между абонентами.

Данная топология в настоящее время является самой распространенной.

Топология типа кольцо . При топологии кольцо все компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (рис. 12).

Рис. 12. Топология типа кольцо

Передача информации в данной сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Получив маркер, компьютер создает так называемый пакет, который используется для передачи данных. В пакет помещается адрес получателя и данные, а затем он отправляется по кольцу. Пакет проходит через каждый компьютер, пока не окажется у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения пакета. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.

2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

3. Отсутствие коллизий (см. тему №3, раздел 2) и столкновения данных, так как передачу в каждый момент времени ведет только один компьютер.

К недостаткам данной топологии относятся:

1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

2. Для подключения нового клиента необходимо прервать работу в сети.

3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

4. Общая производительность сети определяется производи­тельностью самого медленного компьютера .

Данная топология выигрывает в том случае, если в организации создается система распределенных центров обработки информации, расположенных на значительном расстоянии друг от друга.

Топология типа общая шина . При шинной топологии все клиенты подключены к общему каналу передачи данных (рис. 13). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Рис.13. Топология типа общая шина

Передача информациипроисходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу.

Преимущества топологии общая шина:

1. Вся информация находится в сети и доступна каждому компьютеру. Т.е. с любого персонального компьютера можно получить доступ к информации, которая храниться на любом другом компьютере.

2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

Последнее преимущество определяется тем, что шина является пассивной топологией. Т.е. компьютеры только принимают передаваемые данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных.

К недостаткам топологии типа общая шина относятся:

1. Низкая скорость передачи данных, так как вся информация циркулирует по одному каналу (шине).

2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем больше загружена шина и тем медленнее идет передача информации от одного компьютера к другому.

3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Древовидная топология . В сетях с древовидной топологией компьютеры непосредственно связаны с центральными узлами сети – серверами (Рис. 14).



Рис.14. Древовидная топология

Древовидная топология представляет собой комбинацию топологии типа звезда и топологии типа общая шина. Поэтому ей в основном присущи те же преимущества и недостатки, которые были указаны для данных топологий.

Полносвязная вычислительная сеть . В полносвязной сети каждый компьютер соединен со всеми другими компьютерами отдельными линиями (рис. 15).

Рис.15. Полносвязная вычислительная сеть

Преимущества полносвязной сети:

1. Высокая надежность, так как при отказе любого канала связи будет найден обходной путь для передачи информации.

2. Высокое быстродействие, так как информация между компьютерами передается по отдельным линиям.

Недостатки данной топологии:

1. Данная топология требует большого числа соединительных линий, т.е. стоимость создания подобной сети очень высокая.

2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи.

Для крупных вычислительных сетей (глобальных или региональных) обычно применяется комбинация различных топологией для разных участков.

Модели ЛВС

Существует две модели локальных вычислительных сетей:

· одноранговая сеть;

· сеть типа клиент-сервер.

В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к своим данным. В таких сетях на всех компьютерах устанавливаются однотипные операционные системы (ОС), которые предоставляет всем компьютерам в сети потенциально равные возможности.

Достоинстваданной модели:

1. Простота реализации. Для реализации данной сети достаточно наличия в компьютерах сетевых адаптеров и кабеля, которых их соединит.

2. Низкая стоимость создания сети. Так как отсутствуют затраты, связанные с покупкой дорогостоящего сервера, дорогой сетевой операционной системы и т.д.

Недостатки модели:

1. Низкое быстродействие при сетевых запросах. Рабочая станция всегда обрабатывает сетевые запросы медленнее, чем специализированный компьютер – сервер. Помимо этого на рабочей станции всегда выполняются различные задачи (набор текста, создание рисунков, математические расчеты и др.), которые замедляют ответы на сетевые запросы.

2. Отсутствие единой информационной базы, так как вся информация распределена по отдельным компьютерам. При этом приходиться обращаться к нескольким компьютерам для получения необходимой информации.

3. Отсутствие единой системы безопасности информации. Каждый персональный компьютер защищает свою информацию посредством операционной системы. Однако операционные системы персональных компьютеров, как правило, обладают меньшей защищенностью, чем сетевые операционные системы для серверов. Поэтому "взломать" такую сеть значительно проще.

4. Зависимость наличия в системе информации от состояния компьютера. Если какой-то компьютер будет выключен, то информация, хранимая на нем, будет недоступна другим пользователям.

В сети типа клиент-сервер имеется один или несколько главных компьютеров - серверов. В таких системах всей основной информацией управляют серверы.

Сеть типа клиент-сервер является функционально не симметричной: в ней используются два типа компьютеров - одни ориентированны на выполнение серверных функций и работают под управлением специализированных серверных ОС, а другие - выполняют клиентские функции и работают под управлением обычных ОС. Функциональная несимметричность вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти.

Достоинствами данной модели являются:

1. Высокое быстродействие сети, так как сервер быстро обрабатывает сетевые запросы и не загружен другими задачами.

2. Наличие единой информационной базы и системы безопасности. Взломать сервер можно, но это значительно сложнее, чем рабочую станцию.

3. Простота управления все сетью. Так как управление сетью заключается в основном в управлении только сервера.

Недостаткимодели:

1. Высокая стоимость реализации, так как требуется покупать дорогостоящий сервер и сетевую операционную систему для сервера.

2. Зависимость быстродействия сети от сервера. Если сервер будет не достаточно мощным, то работа в сети может сильно замедляться.

3. Для правильной работы сети требуется наличие дополнительного обслуживающего персонала, т.е. в организации должна быть введена должность администратор сети.

Курсовая работа

на тему: «Элементы общей топологии»


Введение

Топология – одна из самых молодых ветвей геометрии. Топология является одним из самых абстрактных разделов современной математики. Примерно за сто лет её существования в ней достигнуты результаты, важные для многих разделов математики.

Топология (от греческого «τοποξ» – место, окрестность, «λογοξ» – закон) – раздел математики, изучающий идеи непрерывности. В топологии впервые даются строгие определения таких фундаментальных понятий геометрии, как линия и поверхность. Предметом топологии являются свойства фигур, сохраняющиеся при гомеоморфизмах, то есть взаимно однозначных и непрерывных в обе стороны отображениях. Топология, как наука возникла из потребностей связанных с математическим анализом. Эта наука, хотя и считается молодой, на самом деле известна уже давно, именно благодаря тесным связям с математическим анализом. Идеи топологии идут от работ таких крупных математиков 19 в. как Риммман, Пуанкаре, Кантор, Эйлер. Развитие топологии идёт бурными темпами и в большом числе направлений, этот процесс не окончен в настоящее время, хотя ряд крупных проблем, стоящих перед топологией, успешно решен. Топологические методы стали мощным инструментом математического исследования. Топологический подход позволяет упростить многие доказательства фундаментальных теорем классической математики и обобщить эти теоремы на более широкие классы пространств.

Геометрия школьного курса имеет дело в основном со свойствами фигур, связанными с понятиями длины, площади, объема-то есть метрическими свойствами фигур. Лишь очень немногие теоремы и задачи школьного курса геометрии рассматривают свойства иного характера. Топология как раз и является разделом геометрии, изучающим свойства фигур, которые могут быть установлены без измерения и сравнения величин, но при этом имеющие геометрический смысл.

Целью первой главы курсовой работы было рассмотреть основные элементы общей топологии.

· дать определение топологического пространства;

· рассмотреть свойства топологических пространств;

· охарактеризовать топологические преобразования.

Во второй главе работы мы попытались рассмотреть топологические свойства поверхностей. Были поставлены следующие задачи:

· дать определение двумерного многообразия;

· рассмотреть эйлерову характеристику поверхности;

· охарактеризовать ориентируемые и неориентируемые поверхности.

1. Элементы общей топологии

1.1 Понятие топологического пространства

1.1.1 Понятие метрического пространства

Определение 1. Декартово произведение множеств А и В определяется как множество всех упорядоченных пар (х, у), где хÎА, уÎВ, то есть

А´В = {(х, у)| хÎА, уÎВ}.

В частности, возможно А = В.

Определение 2. Говорят, что в множестве Х задана метрика r, если определено отображение

r: Х ´ Х ®R,

удовлетворяющее следующим аксиомам:

1. " х, у Î Х {r (х, у) ³ 0}, причем r (х, у) = 0 Û х = у.

2. " х, у Î Х {r (х, у) = r (у, х)}.

3. " х, у, zÎ Х {r (х, у) + r (у, z) ³r (х, z)}.

Условия 1, 2, 3 называются аксиомами метрики, при этом условие 2 называется аксиомой симметрии, а 3 – аксиомой треугольника.

Определение 3. Множество Х с заданной на нем метрикой r называется метрическим пространством и обозначается (Х, r).

В тех случаях, когда ясно, о какой метрике идет речь, метрическое пространство (Х,r) обозначают просто Х.

Число r(х, у) называют расстоянием между точками х и у в пространстве Х.

1.1.2 Примеры метрических пространств

Пример 1 . Определим для элементов произвольного непустого множества Х расстояние следующим образом:

.

Очевидно, аксиомы 1 – 3 выполняются, а, следовательно, (Х, r) – метрическое пространство.

Пример 2 . Множество действительных чисел R с расстоянием

r(х, у) = (у – х) 2 не является метрическим пространством.

Действительно не выполняется третья аксиома. Например, для трех точек 2, 3 и 4 получим:

r(2, 3) = (3 – 2) 2 = 1, r(3, 4) = (4 – 3) 2 = 1,

r(2, 4) = (4 – 2) 2 = 4 и r(2, 3) + r(3, 4) < r(2, 4).

Определение 1. Пусть (Х, r) – метрическое пространство, х 0 Î Х,

r > 0– действительное число. Назовём открытым шаром с центром в точке х 0 и радиусом r множество

U (x 0 , r) = {x | xÎX, r (x, x 0)

Определение 2. Подмножество GÌ Х будем называть открытым в

(Х, r), если любая его точка является центром некоторого открытого шара, содержащегося в G.

Пустое множество Æ также считаем открытым множеством.

Определение 3. Окрестностью точки Аметрического пространства будем называть любое открытое множество, содержащее эту точку.

Обозначим совокупность всех открытых множеств в (Х, r) просто Ф r .

Тогда имеет место следующая теорема.

Теорема. 1) Объединение любой совокупности {G a } множеств из Ф r принадлежит Ф r .

GÎФ r .

2) Пересечение любых двух множеств G 1 и G 2 из Ф r принадлежит Ф r .

G 1 ÇG 2 Î Ф r .

3) Метрическое пространство Х – открытое множество, то есть

Х Î Ф r , ÆÎ Ф r .

Доказательство. 1) Пусть

. Обозначим .

Возьмём произвольную точку х 0 ÎG. Тогда существует такое a 0 , что х 0 Î

, и так как Î Ф r , то найдётся число r 0 , что

U (х 0 , r 0) Ì

. 0 ÌG, то U (х 0 , r 0) ÌG.

Итак, G– открытое множество.

2) Пусть G = G 1 ÇG 2 , где G 1 , G 2 Î Ф r и G

Æ.

Если х 0 ÎG, то х 0 ÎG 1 и х 0 ÎG 2 .

Тогда существуют такие радиусы r 1 и r 2 , что


U(х 0 , r 1) ÌG 1, U(х 0 , r 2) ÌG 2 .

Обозначим r= min{r 1 , r 2 }, тогда

U (х 0 , r) ÌG 1 ÇG 2 = G.

Итак, G – открытое множество.

3. Так как всегда можно представить

,

где U a – открытый шар радиуса r, с центром в точке

, объединение рассматривается по всем точкам пространства, то в силу 1 получим, что пространство Х – открыто. Пустое множество мы предполагаем всегда открытым.

В дальнейшем описанное нами семейство Ф r всех открытых множеств в метрическом пространстве (Х, r) будем называть топологией, индуцированной метрикой r в Х. .

1.1.3 Определение и примеры топологических пространств

Многие понятия теории метрических пространств (предел, предельная точка, точка прикосновения, замыкание множества, граница множества, непрерывность и т.д.) вводятся, опираясь на понятие окрестности или, что тоже самое, на понятие открытого множества. Понятие окрестность и открытое множество определяются с помощью метрики.

Свойства открытых множеств метрического пространства принимаются в качестве аксиом. Этот путь приводит нас к топологическим пространствам, по отношению к которым метрические пространства представляют собой частный случай.

Определение 1. Пусть Х – непустое множество элементов произвольной природы, Ф = {

} – семейство подмножеств множества Х, удовлетворяющее следующим аксиомам:

1. Само множество Х и пустое множество Æ принадлежат семейству Ф.

2. Объединение любого семейства множеств из Ф также принадлежит Ф.

3. Пересечение любых двух множеств из Ф также принадлежит Ф.

Тогда семейство Ф называется топологией или топологической структурой.

Пара (Х, Ф) или, другим словами, множество Х, в котором задана некоторая топология, называется топологическим пространством.

Элементы множества Х называются точками топологического пространства, элементы семейства Ф называются открытыми множествами в (Х, Ф).

Когда не может возникнуть недоразумений, разрешается просто писать: Х – топологическое пространство, G

– открытое множество, то есть не указывать постоянно связь с топологией Ф.

Примеры топологических пространств.

Пример 1. Х – произвольное множество. Из аксиомы 1 топологического пространства вытекает, что среди открытых множеств любой топологической структуры в Х обязательно должны быть пустое множество Æ и само множество Х. Очевидно, что для семейства

Ф т = {Æ, X},

которое состоит лишь из этих двух множеств, выполняются также и аксиомы 2 и 3.

Поэтому Ф т = {Æ, X} является простейшей топологической структурой в Х. Эта топология называется тривиальной, а пара (Х, Ф) тривиальным топологическим пространством. Иногда эту пару называют антидискретным топологическим пространством.

Пример 2. Другой крайностью является так называемое дискретное топологическое пространство (Х, Ф d), где Ф d представляет собой семейство всех подмножеств множества Х. Очевидно, что и в этом случае все аксиомы 1 – 3 выполняются.

Содержание статьи

ТОПОЛОГИЯ, раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация – это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек). Такие геометрические свойства связаны с положением, а не с формой или величиной фигуры. В отличие от евклидовой и римановой геометрий, геометрии Лобачевского и других геометрий, занимающихся измерением длин и углов, топология имеет неметрический и качественный характер. Раньше она носила названия «анализ ситус» (анализ положения), а также «теория точечных множеств». В научно-популярной литературе топологию часто называют «геометрией на резиновом листе», поскольку ее наглядно можно представлять себе как геометрию фигур, нарисованных на идеально упругих резиновых листах, которые подвергаются растяжению, сжатию или изгибанию. Топология – один из новейших разделов математики.

История.

В 1640 французский философ и математик Р.Декарт (1596–1650) нашел инвариантное соотношение между числом вершин, ребер и граней простых многогранников. Это соотношение Декарт выразил формулой V – E + F = 2, где V – число вершин, E – число ребер и F – число граней. В 1752 швейцарский математик Л.Эйлер (1707–1783) дал строгое доказательство этой формулы. Еще один вклад Эйлера в развитие топологии – это решение знаменитой задачи о кёнигсбергских мостах. Речь шла об острове на реке Прегель в Кёнигсберге (в том месте, где река разделяется на два рукава – Старый и Новый Прегель) и семи мостах, соединяющих остров с берегами. Задача состояла в том, чтобы выяснить, можно ли обойти все семь мостов по непрерывному маршруту, побывав на каждом только один раз и вернувшись в исходную точку. Эйлер заменил участки суши точками, а мосты – линиями. Полученную конфигурацию Эйлер назвал графом, точки – его вершинами, а линии – ребрами. Вершины он разделил на четные и нечетные в зависимости от того, четное или нечетное число ребер выходит из вершины. Эйлер показал, что все ребра графа можно обойти ровна по одному разу по непрерывному замкнутому маршруту, лишь если граф содержит только четные вершины. Так как граф в задаче о кёнигсбергских мостах содержит только нечетные вершины, мосты невозможно обойти по непрерывному маршруту, побывав на каждом ровно по одному разу и вернувшись к началу маршрута.

Предложенное Эйлером решение задачи о кенигсбергских мостах зависит только от взаимного расположения мостов. Оно положило формальное начало топологии как разделу математики. К.Гаусс (1777–1855) создал теорию узлов, которой позднее занимались И.Листинг (1808–1882), П.Тэйт (1831–1901) и Дж.Александер. В 1840 А.Мёбиус (1790–1868) сформулировал так называемую проблему четырех красок, которую впоследствии исследовали О.де Морган (1806–1871) и А.Кэли (1821–1895). Первым систематическим трудом по топологии были Предварительные исследования по топологии Листинга (1874).

Основателями современной топологии являются Г.Кантор (1845–1918), А.Пуанкаре (1854–1912) и Л.Брауэр (1881–1966).

Разделы топологии.

Топологию можно подразделить на три области: 1) комбинаторную топологию, изучающую геометрические формы посредством их разбиения на простейшие фигуры, регулярным образом примыкающие друг к другу; 2) алгебраическую топологию, занимающуюся изучением алгебраических структур, связанных с топологическими пространствами, с упором на теорию групп; 3) теоретико-множественную топологию, изучающую множества как скопления точек (в отличие от комбинаторных методов, представляющих объект как объединение более простых объектов) и описывающую множества в терминах таких топологических свойств, как открытость, замкнутость, связность и т.д. Разумеется, такое деление топологии на области в чем-то произвольно; многие топологи предпочитают выделять в ней другие разделы.

Некоторые основные понятия.

Топологическое пространство состоит из множества точек S и набора S подмножеств множества S , удовлетворяющего следующим аксиомам:

(1) все множество S и пустое множество принадлежат набору S;

(2) объединение любой совокупности множеств из S есть множество из S;

(3) пересечение любого конечного числа множеств из S есть множество из S.

Множества, входящие в набор S, называются открытыми множествами , а сам этот набор – топологией в S . См . МНОЖЕСТВ ТЕОРИЯ.

Топологическое преобразование , или гомеоморфизм , одной геометрической фигуры S на другую, S ў, – это отображение (p ® p ў) точек p из S в точки p ў из S ў, удовлетворяющее следующим условиям: 1) устанавливаемое им соответствие между точками из S и S ў взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка p ў из S ў и в каждую точку p ў отображается только одна точка p ; 2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p , q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками p ў, q ў из S ў также стремится к нулю, и наоборот.

Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными . Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны. Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.

Топологическим свойством (или топологическим инвариантом ) геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании.

Любое открытое связное множество, содержащее по крайней мере одну точку, называется областью .

Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной односвязностью . Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной , а соответствующее свойство области – многосвязностью . Представьте себе две круговые области, или диски, одну без дыр, а другую с дырами. Первая область односвязна, вторая многосвязна. Односвязность и многосвязность – топологические свойства. Область с дырой не может перейти при гомеоморфизме в область без дыр. Интересно отметить, что если в многосвязном диске провести по разрезу от каждой из дыр до края диска, то он станет односвязным.

Максимальное число замкнутых простых непересекающихся кривых, по которым можно разрезать замкнутую поверхность, не разделяя ее на отдельные части, называется родом поверхности. Род – топологический инвариант поверхности. Можно доказать, что род сферы равен нулю, род тора (поверхности «бублика») – единице, род кренделя (тора с двумя дырками) – двум, род поверхности с p дырами равен p . Отсюда следует, что ни поверхность куба, ни сфера не гомеоморфны тору.

Среди топологических инвариантов поверхности можно также отметить число сторон и число краев. Диск имеет 2 стороны, 1 край и род 0. Тор имеет 2 стороны, не имеет краев, а его род равен 1.

Введенные выше понятия позволяют уточнить определение топологии: топологией называется раздел математики, изучающий свойства, которые сохраняются при гомеоморфизмах .

Важные проблемы и результаты.

Теорема Жордана о замкнутой кривой.

Если на поверхности проведена простая замкнутая кривая, то существует ли какое-либо свойство кривой, которое сохраняется при деформации поверхности? Существование такого свойства вытекает из следующей теоремы: простая замкнутая кривая на плоскости делит плоскость на две области, внутреннюю и внешнюю . Эта кажущаяся тривиальной теорема очевидна для кривых простого вида, например, для окружности; однако для сложных замкнутых ломаных дело обстоит иначе. Теорема была впервые сформулирована и доказана К.Жорданом (1838–1922); однако доказательство Жордана оказалось ошибочным. Удовлетворительное доказательство было предложено О.Вебленом (1880–1960) в 1905.

Теорема Брауэра о неподвижной точке.

Пусть D – замкнутая область, состоящая из окружности и ее внутренности. Теорема Брауэра утверждает, что для любого непрерывного преобразования, переводящего каждую точку области D в точку этой же области, существует некоторая точка, которая остается неподвижной при этом преобразовании. (Преобразование не предполагается взаимно однозначным.) Теорема Брауэра о неподвижной точке представляет особый интерес потому, что она, по-видимому, является, наиболее часто используемой в других разделах математики топологической теоремой.

Проблема четырех красок.

Проблема заключается в следующем: можно ли любую карту раскрасить в четыре цвета так, чтобы любые две страны, имеющие общую границу, были раскрашены в различные цвета? Проблема четырех красок топологическая, так как ни форма стран, ни конфигурация границ не имеют значения.

Гипотеза о том, что четырех красок достаточно для соответствующей раскраски любой карты, была впервые высказана в 1852. Опыт показал, что четырех красок действительно достаточно, но строгого математического доказательства не удавалось получить на протяжении более ста лет. И только в 1976 К.Аппель и В.Хакен из Иллинойского университета, затратив более 1000 часов компьютерного времени, добились успеха.

Односторонние поверхности.

Простейшей односторонней поверхностью является лист Мёбиуса , названный так в честь А.Мёбиуса, открывшего его необычайные топологические свойства в 1858. Пусть ABCD (рис. 2,а ) – прямоугольная полоска бумаги. Если склеить точку A с точкой B , а точку C с точкой D (рис. 2,б ), то получится кольцо с внутренней поверхностью, наружной поверхностью и двумя краями. Одну сторону кольца (рис. 2,б ) можно окрасить. Окрашенная поверхность будет ограничена краями кольца. Жук может совершить «кругосветное путешествие» по кольцу, оставаясь либо на окрашенной, либо на неокрашенной поверхности. Но если полоску перед склеиванием концов перекрутить на полоборота и склеить точку A с точкой C , а B с D , то получится лист Мёбиуса (рис. 2,в ). У этой фигуры есть только одна поверхность и один край. Любая попытка окрасить только одну сторону листа Мёбиуса обречена на неудачу, так как у листа Мёбиуса всего одна сторона. Жук, ползущий по середине листа Мёбиуса (не пересекая края), вернется в исходную точку в положении «вверх ногами». При разрезании листа Мёбиуса по средней линии он не распадается на две части.

Узлы.

Узел можно представлять себе как запутанный кусок тонкой веревки с соединенными концами, расположенный в пространстве. Простейший пример – из куска веревки сделать петлю, пропустить один из ее концов сквозь петлю и соединить концы. В результате мы получим замкнутую кривую, которая остается топологически той же самой, как бы ее ни растягивать или скручивать, не разрывая и не склеивая при этом отдельные точки. Проблема классификации узлов по системе топологических инвариантов пока не решена.