Вынесение общего множителя за скобки со степенями. Вынесение общего множителя за скобки — Гипермаркет знаний

В рамках изучений тождественных преобразований очень важна тема вынесения общего множителя за скобки. В данной статье мы поясним, в чем именно заключается такое преобразование, выведем основное правило и разберем характерные примеры задач.

Yandex.RTB R-A-339285-1

Понятие вынесения множителя за скобки

Чтобы успешно применять данное преобразование, нужно знать, для каких выражений оно используется и какой результат надо получить в итоге. Поясним эти моменты.

Вынести общий множитель за скобки можно в выражениях, представляющих собой суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один множитель, общий (одинаковый) для всех. Он так и называется – общим множителем. Именно его мы будем выносить за скобки. Так, если у нас есть произведения 5 · 3 и 5 · 4 , то мы можем вынести за скобки общий множитель 5 .

В чем состоит данное преобразование? В ходе него мы представляем исходное выражение как произведение общего множителя и выражения в скобках, содержащего сумму всех исходных слагаемых, кроме общего множителя.

Возьмем пример, приведенный выше. Вынесем общий множитель 5 в 5 · 3 и 5 · 4 и получим 5 (3 + 4) . Итоговое выражение – это произведение общего множителя 5 на выражение в скобках, которое является суммой исходных слагаемых без 5 .

Данное преобразование базируется на распределительном свойстве умножения, которое мы уже изучали до этого. В буквенном виде его можно записать как a · (b + c) = a · b + a · c . Поменяв правую часть с левой, мы увидим схему вынесения общего множителя за скобки.

Правило вынесения общего множителя за скобки

Используя все сказанное выше, выведем основное правило такого преобразования:

Определение 1

Чтобы вынести за скобки общий множитель, надо записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.

Пример 1

Возьмем простой пример вынесения. У нас есть числовое выражение 3 · 7 + 3 · 2 − 3 · 5 , которое является суммой трех слагаемых 3 · 7 , 3 · 2 и общего множителя 3 . Взяв за основу выведенное нами правило, запишем произведение как 3 · (7 + 2 − 5) . Это и есть итог нашего преобразования. Запись всего решения выглядит так: 3 · 7 + 3 · 2 − 3 · 5 = 3 · (7 + 2 − 5) .

Мы можем выносить множитель за скобки не только в числовых, но и в буквенных выражениях. Например, в 3 · x − 7 · x + 2 можно вынести переменную x и получить 3 · x − 7 · x + 2 = x · (3 − 7) + 2 , в выражении (x 2 + y) · x · y − (x 2 + y) · x 3 – общий множитель (x 2 + y) и получить в итоге (x 2 + y) · (x · y − x 3) .

Определить сразу, какой множитель является общим, возможно не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.

Пример 2

Так, к примеру, в выражении 6 · x + 4 · y можно вынести общий множитель 2 , не записанный в явном виде. Чтобы его найти, нам нужно преобразовать исходное выражение, представив шесть как 2 · 3 , а четыре как 2 · 2 . То есть 6 · x + 4 · y = 2 · 3 · x + 2 · 2 · y = 2 · (3 · x + 2 · y) . Или в выражении x 3 + x 2 + 3 · x можно вынести за скобки общий множитель x , который обнаруживается после замены x 3 на x · x 2 . Такое преобразование возможно благодаря основным свойствам степени. В итоге мы получим выражение x · (x 2 + x + 3) .

Еще один случай, на котором следует остановиться отдельно, – это вынесение за скобки минуса. Тогда мы выносим не сам знак, а минус единицу. Например, преобразуем таким образом выражение − 5 − 12 · x + 4 · x · y . Перепишем выражение как (− 1) · 5 + (− 1) · 12 · x − (− 1) · 4 · x · y , чтобы общий множитель был виден более отчетливо. Вынесем его за скобки и получим − (5 + 12 · x − 4 · x · y) . На этом примере видно, что в скобках получилась та же сумма, но с противоположными знаками.

В выводах отметим, что преобразование путем вынесения общего множителя за скобки очень часто применяется на практике, например, для вычисления значения рациональных выражений. Также этот способ полезен, когда нужно представить выражение в виде произведения, например, разложить многочлен на отдельные множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение 1

Сначала давайте вспомним правила умножения одночлена на одночлен:

Для умножения одночлен на одночлен необходимо сначала перемножить коэффициенты одночленов, затем воспользовавшись правилом умножения степеней с одинаковым основанием умножить переменные входящие в состав одночленов.

Пример 1

Найти произведение одночленов ${2x}^3y^2z$ и ${\frac{3}{4}x}^2y^4$

Решение:

Сначала вычислим проиведение коэффициентов

$2\cdot\frac{3}{4} =\frac{2\cdot 3}{4}$ в этом задании мы использовали правило умножения числа на дробь - чтобы умножить целое число на дробь надо умножить число на числитель дроби, а знаменатель ставить без изменений

Теперь воспользуемся основным свойством дроби - числитель и знаменатель дроби можно разделить на одно и то же число, отличное от $0$. Разделим числитель и знаменте6ль этой дроби на $2$, т. е сократим на $2$ данную дробь $2\cdot\frac{3}{4}$ =$\frac{2\cdot 3}{4}=\ \frac{3}{2}$

Получившийся результат оказался неправильной дробью, т. е такой, у которой числитель больше знаменателя.

Преобразуем эту дробь по средствам выделения целой части. Вспомним, что для выделения целой части необходимо неполное частное, получившиеся при делении числителя на знаменатель записать, как целую часть, остаток от деления в числитель дробной части, делитель в знаменатель.

Мы нашли коэффициент будущего произведения.

Теперь последовательно будем перемножать переменные $x^3\cdot x^2=x^5$,

$y^2\cdot y^4 =y^6$. Тут мы воспользовались правилом умножения степеней с одинаковым основанием: $a^m\cdot a^n=a^{m+n}$

Тогда итогом умножения одночленов будет:

${2x}^3y^2z \cdot {\frac{3}{4}x}^2y^4=1\frac{1}{2}x^5y^6$.

Тогда исходя из данного правила можно выполнить следующее задание:

Пример 2

Представить заданный многочлен в виде произведения многочлена и одночлена ${4x}^3y+8x^2$

Преставим каждый из одночленов,входящих в состав многолена как прозведение двух одночленов для того, чтобы выделить общий одночлен, который будет являться множителем и в первом и во втором одночлене.

Сначала начнем с первого одночлена ${4x}^3у$. Разложим его коэффициент на простые множители: $4=2\cdot 2$. Аналогично поступим с коэффициентом второго одночлена $8=2\cdot 2 \cdot 2$. Зметим, что два множителя $2\cdot 2$ входят в состав и первого и второго коэффициентов, значит $2\cdot 2=4$--это чило войдет в общий одночлен как коэффициент

Теперь обратим внимание, что в первом одночлене $x^3$ ,а во втором та же переменная в степени $2:x^2$. Значит, переменную $x^3$ удобно представить так:

Переменная $y$ входит в состав только одного слагаемого многочлена, значит, не может входить в общий одночлен.

Представим первый и второй одночлен, входящий в многочлен как произведение:

${4x}^3y=4x^2\cdot xy$

$8x^2=4x^2\cdot 2$

Заметим, что общий одночлен, который будет являться множителем и в первом и во втором одночлене это $4x^2$.

${4x}^3y+8x^2=4x^2\cdot xy + 4x^2\cdot 2$

Теперь применим распределительный закон умножения, тогда полученное выражение можно представить в виде произведения двух множителей. Одним из множителей будет являться общий множитель: $4x^2$ а другой -- сумма оставшихся множителей: $xy + 2$. Значит:

${4x}^3y+8х^2 = 4x^2\cdot xy + 4x^2\cdot 2 = 4x^2(xy+2)$

Этот метод называется разложением на множители с помощью вынесения общего множителя.

Общим множителем в данном случае выступал одночлен $4x^2$ .

Алгоритм

Замечание 1

    Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен - он будет коэффициентом общего множителя-одночлена, который мы вынесем за скобки

    Одночлен, состящий из коэффициента, найденного в п.2, переменных, найденных в п.3 будет общим множителем. который можно вынести за скобки как общий множитель.

Пример 3

Вынести общий множитель $3a^3-{15a}^2b+4{5ab}^2$

Решение:

    Найдем НОД коэффициентов для этого разложим коэффициенты на простые множители

    $45=3\cdot 3\cdot 5$

    И найдем произведение тех, которые входят в разложение каждого:

    Выявить переменные, которые входят в состав каждого одночлена, и выбрать переменную с наименьшим показателем степени

    $a^3=a^2\cdot a$

    Переменная $b$ входит только во второй и третий одночлен, значит, в общий множитель не войдет.

    Составим одночлен, состоящий из коэффициента, найденного в п.2, переменных, найденных в п.3, получим: $3a$- это и будет общий множитель. тогда:

    $3a^3-{15a}^2b+4{5ab}^2=3a(a^2-5ab+15b^2)$

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

В этой статье мы остановимся на вынесении за скобки общего множителя . Для начала разберемся, в чем состоит указанное преобразование выражения. Дальше приведем правило вынесения общего множителя за скобки и подробно рассмотрим примеры его применения.

Навигация по странице.

Например, слагаемые в выражении 6·x+4·y имеют общий множитель 2 , который не записан явно. Его можно увидеть лишь после того, как представить число 6 в виде произведения 2·3 , а 4 в виде произведения 2·2 . Итак, 6·x+4·y=2·3·x+2·2·y=2·(3·x+2·y) . Еще пример: в выражении x 3 +x 2 +3·x слагаемые имеют общий множитель x , который становится явно виден после замены x 3 на x·x 2 (при этом мы использовали ) и x 2 на x·x . После вынесения его за скобки получим x·(x 2 +x+3) .

Отдельно скажем про вынесение минуса за скобки. Фактически вынесение минуса за скобки означает вынесение за скобки минус единицы. Для примера вынесем за скобки минус в выражении −5−12·x+4·x·y . Исходное выражение можно переписать в виде (−1)·5+(−1)·12·x−(−1)·4·x·y , откуда отчетливо виден общий множитель −1 , который мы и выносим за скобки. В результате придем к выражению (−1)·(5+12·x−4·x·y) , в котором коэффициент −1 заменяется просто минусом перед скобками, в итоге имеем −(5+12·x−4·x·y) . Отсюда хорошо видно, что при вынесении минуса за скобки в скобках остается исходная сумма, в которой изменены знаки всех ее слагаемых на противоположные.

В заключение этой статьи заметим, что вынесение за скобки общего множителя применяется очень широко. Например, с его помощью можно более рационально вычислять значения числовых выражений . Также вынесение за скобки общего множителя позволяет представлять выражения в виде произведения, в частности, на вынесении за скобки основан один из методов разложения многочлена на множители .

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.

Урок алгебры в 7-м классе "Вынесение общего множителя за скобки"

Комарова Галина Александровна

Цель : совершенствование практических умений и навыков учащихся при разложении многочлена множители путем вынесения общего множителя за скобки, применение его при решении уравнений. Провести диагностику усвоения системы знаний и умений и ее применение для выполнения практических заданий стандартного уровня с переходом на более высокий уровень. Развивать умения: применять правила, анализировать, сравнивать, обобщать, выделять главное.

Задачи :

    создать ситуацию успеха на уроке, условия для самостоятельной деятельности учащихся на уроке;

    способствовать пониманию учебного материала урока;

    воспитывать коммуникативность и толерантность в отношениях учащихся между собой.

Тип урока : комбинированный.

Методы: стимулирующие, поисковые, наглядные, практические, словесные, игровые, дифференцированная работа.

Формы проведения: индивидуальные, коллективные, групповые.

Оценка знаний ведется по 5-бальной системе.

Тип урока: обобщение и систематизация знаний с дидактическими играми.

Результаты обучения: Уметь выносить общий множитель за скобки, уметь применять данный способ при разложении на множители, уметь использовать вынесение за скобки общего множителя при решении уравнений.

Ход урока

1. Организационный момент.

Приветствие учащихся.

Когда ученики Пифагора просыпались, они должны были произносить такие стихи:

«Прежде чем встать от сладостных снов, навеваемых ночью,

Думой раскинь, какие дела тебе день приготовил».

2. Разминка - графический тест теоретического материала.

Верно ли утверждение, определение, свойство?

1. Одночленом называют сумму числовых и буквенных множителей. (нет -)

2. Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена. (да Λ)

3. Одинаковые или отличающиеся друг от друга только коэффициентами, называют подобными членами. (да Λ)

4. Алгебраическая сумма нескольких одночленов называется одночленом . (нет -)

5. При умножении любого числа или выражения на ноль получается ноль. (да Λ)

6. В результате умножения одночлена на многочлен получается многочлен. (да Λ)

7. Когда раскрываем скобки, перед которыми стоит знак "-”, скобки опускаем, и знаки членов, которые были заключены в скобки, не меняют на противоположные. (нет-)

8.Общий числовой множитель является наибольшим общим делителем коэффициентов одночленов. (да Λ)

9. Из одинаковых буквенных множителей одночленов выносим за скобку его наименьшую степень . (да Λ)

Проверка: ––ΛΛ- ΛΛ-ΛΛ

Выставите себе оценки:

«5» - ошибок нет «4» - две ошибки «3» - четыре ошибки «2» - больше четырех ошибок

3. Актуализация опорных знаний.

    Индивидуальная работа по карточкам №1, №2, №3 (3 учащихся).

    Фронтальная работа с классом:

Задание 1 . Продолжите фразу:

Одним из способов разложения многочлена на множители является… (вынесение общего множителя за скобки );

При вынесении общего множителя за скобки применяется… (распределительное свойство );

Если все члены многочлена содержат общий множитель, то…(этот множитель можно вынести за скобки )

Задание 2 .

    Какой числовой множитель будет общим в следующих выражениях: 12 y 3 -8 y 2 ; 15х 2 - 75х . (4у 2 ; 15х)

    Какую степень множителей а и х можно вынести за скобки

а 2 х- а 5 х 3 + 3а 3 х 2 (а 2 х )

    Сформулировать алгоритм вынесения общего множителя.

Алгоритм:

    Найти НОД для всех коэффициентов одночленов и вынести его за скобку:

2) наименьшую степень:

разделить :

4. Изучение нового материала.

Определи общий множитель в данных выражениях и вынеси его за скобку:

2а+6=

3 хy-3y=

18m-9nm=

x 2 -x 3 +x 6 =

3y+3xy=

(Работа в парах, взаимопроверка )

Используя ключ к шифру, расшифруй слово.

А

Л

Г

У

Т

3y (x -1) или

-3у(-х+1)

9m (2-n )

2(а+3)

X 2 (1-x +x 4)

3(7c 2 -5a 3)

Ответ: Галуа.

Эварист Галуа (1811-1832)

Галуа - гордость французской науки. Будучи еще ребёнком, он прочитал геометрию Лежандра, как увлекательную книгу. К 16 годам дарования Галуа проявились настолько, что выдвинули его в ряд величайших математиков того времени. Научные труды Галуа по теории алгебраических уравнений высших степеней положили начало развитию современной алгебры.

Всего 20 лет прожил гениальный математик, гордость мировой науки, из которых пять посвятил математике. В 2011 году исполняется 200 лет со дня его рождения.

Предлагаю вам решить уравнение, в левой части которого многочлен второй степени.
12x 2 +6 x =0. Вынесем за скобки 3х. Получим.

6х(2х+1)=0 Произведение равно нулю, когда хотя бы 6х=0 или 2х+1=0. один из множителей равен нулю.

х=0:6 2х=-1

х=0 х = -1:2

х=-0,5

и находим х=0 или х= -0,5

Ответ: х 1 =0, х 2 = -0,5

5. Физкультминутка.

Учащимся зачитываются высказывания. Если высказывание верно, то учащиеся должны поднять руки вверх, а если неверно, то присесть и хлопнуть.

7 2 =49 (Да).

30 = 3 (Нет).

Наибольшим общим множителем многочлена 5а-15в является 5 (Да).

5 2 =10 (Нет).

На руках 10 пальцев. На 10 руках 100 пальцев (Нет).

5 0 =1 (Да)

0 делится на все числа без остатка (Да).

вопрос на засыпку 5:0=0

6. Домашнее задание.

I ,II группа

Правило в тетради, № 709(д,е), 718(г,)719(г),

III группа:

Правило в тетради, № 710(а,б),715(в,г)

Дополнительное задание (по желанию)

    Известно, что при некоторых значениях а и b значение выражения а - b равно 3. Чему равно при тех же a и b значение выражения

а) 5а-5b ; б) 12b - 12а; в) (а - b ) 2 ; г) (b -а) 2 ;

7. Закрепление.

    ,II группа решают номер 710(а,в)

    III группа решает номер 709(а,в)

    Придумайте сами уравнение второй степени

    Работа учащихся по заданию карточки № 5-6 у доски и в тетрадях. (диф)

    Найди ошибку

5. Самостоятельная работа.

Учащимся предлагается выполнение самостоятельной работы обучающего характера в виде теста, с последующей самопроверкой, правильные ответы можно расположить на оборотной стороне доски.

6. Подведение итогов урока.

Рефлексия: Кто сегодня у нас работал лучше всех на уроке?

Какую оценку мы им поставим?

Я работал хорошо

Понял, как решать уравнения вынесением

Общего множителя за скобки

Доволен уроком

Нуждаюсь в помощи учителя или консультанта

МЫ А как мы вместе сегодня поработали?

Примеры карточек.

Карточка №1.

    2х-2 y

    5ab+10a

    2a 3 -a 5

    a(x-2)+b(x-2)

    -7xy+y

Карточка №2.

Вынесите общий множитель за скобки:

    5ab-10ac

    4xy-16x 2

    a 2 -4a+3a 5

    0,3a 2 b+0,6ab 2

    x 2 (y-6)-x(y-6)

Карточка №3.

Вынесите общий множитель

за скобки:

    -3x 2 y-12y 2

    5a 2 -10a 3 +15a 5

    6c 2 x 3 -4c 3 x 3 +2x 2 c

    7a 2 b 3 -1,4a 3 b 4 +2,1a 2 b 5

    3a(x-5)+7(5-x)

Карточка №5- 1

    Вынесите общий множитель за скобки:

    3x + 3y;

    5a – 15b;

    8x+12y;

    Реши уравнение

1) 2x² + 5x = 0

Карточка №5-2

1) 10 а – 10 в

2) 3 ху – х 2 у 2

3) 5 у 2 + 15 у 3

2.Реши уравнение

2x² - 9x = 0

Карточка №6

1. Вынесите общий множитель за скобки:

1) 8 а + 8 в.

2) 4 х у + х 3 у 3

3) 3 в у – 6 в.

2.Реши уравнение

2x² +7x = 0

Дополнительные задания

1.Найдите ошибку:

3х (х-3)=3х 2 -6х; 2х+3ху=х(2+у);

2.Вставьте пропущенное выражение:

5х(2х 2 -х)=10х 3 -…; -3ау-12у=-3у (а+…);

3.Вынеси общий множитель за скобки:

5a - 5b; 3x + 6 y; 15a – 25b; 2,4x + 7,2y.

7a + 7b; 8x – 32a; 21a + 28b; 1,25x – 1,75a .

8x – 8y; 7a + 14b; 24x – 32a; 0,01a + 0, 03y.

4.Замените «М» одночленом так, чтобы полученное равенство было верным:

а) М × (а – b ) = 4 ac – 4 bc ;

б) М × (3а – 1) = 12а 3 – 4а 2 ;

в) М × (2а – b ) = 10а 2 – 5а b .

VIII. Фронтальная работа (на внимательность, на усвоение новых правил).

На доске записаны выражения. Найти в этих равенствах ошибки, если они имеются и исправить.

2 х 3 – 3 х 2 – х = х (2 х 2 – 3 х).

2 х + 6 = 2 (х + 3).

8 х + 12 у = 4 (2 х - 3у).

а 6 – а 2 = а 2 (а 2 – 1).

4 -2а = – 2 (2 – а).

Алгоритм:

    Найти НОД для всех коэффициентов одночленов и вынести его за скобку

2) Из одинаковых буквенных множителей одночленов вынести за скобку его наименьшую степень

3) Каждый одночлен многочлена разделить на общий множитель и результат деления записать в скобки

Лист контроля знаний ученика 7 А класса _________________________________________

    1. Графический

диктант

2.шифровка

3.Индивид. Работа по карточкам

4.тест

5.Всего баллов

6.Отметка учителя

ответ


Тест

1.Какую степень множителя а можно вынести за скобки у многочлена

a²x - аx³

а) а б) a² в) a ³

2 х³ -8x²

а) 4 б) 8 в) 2

a²+ab – ac +a

а) а(a+b-c+1) б) a (a+b-c)

в) a 2 (a+b-c+1)

7m³ + 49m²

а) 7m ² (m +7m 2) б) 7m ² (m +7)

в) 7m ² (7m +7)

5.Разложите на множители:

x(x – y) + a(x – y)

а) (x-y)(x+a) б) (y-x)(x+a)

в) (x+a)(x+y)

6. Реши уравнение

6y-(y-1)=2(2y-4)

а) -9 б) 8 в) 9

г) другой ответ

7.Вынеси общий множитель

x(x – y) + a(y- х)

а) (x-y)(x- a) б) (y-x)(x+a)

в) (x+a)(x+y)

Ответы

Тест

1.Какую степень множителя b можно вынести за скобки у многочлена

b² - a³b³

а) b б) b ² в) b ³

2.Какой числовой множитель можно вынести за скобки у многочлена

15a³ - 25a

а) 15 б) 5 в) 25

3.Вынесите за скобки общий множитель всех членов многочлена

x ² - xy + xp – x

а) x (x -y +p -1) б) x (x -y +p )

в) x 2 (x-y+p-1 )

4.Представьте в виде произведения многочлен

9b² - 81b

а) 9b(b-81) б) 9b 2 (b-9)

в) 9b(b-9)

5.Разложите на множители:

a(a + 3) – 2(a +3)

а) (a+3)(a+2) б) (a+3)(a-2)

в) (a-2)(a-3)

6 . Реши уравнение

3x-(12x-x)=4(5-x)

а) -4 б) 4 в) 2

г) другой ответ

7.Вынеси общий множитель

a (a - 3) – 2(3-а)

а) (a -3)(a+2) б) (a+3)(a-2)

в) (a-2)(a-3)

Ответы

Вариант I

    Выполнить действие:

(3х+10у) – (6х+3у)

а) 9х+7у; б) 7у-3х; в) 3х-7у; г) 9х-7у

6х 2 -3х

а) 3х(2х-1); б) 3х(2х-х); в) 3х 2 (2-х); г)3х(2х+1)

3. Привести к стандартному виду многочлен :

Х+5х 2 +4х-х 2

а) 6х 2 +3х; б) 2 +3х; в)4х 2 +5х; г) 6х 2 -3х

4. Выполнить действие:

3х 2 (2х-0,5у)

а)6х 2 -1,5х 2 у; б) 6х 2 -1,5ху; в) 3 -1,5х 2 у ; г) 6х 3 -0,5х 2 у;

5. Решить уравнение:

8х+5(2-х)=13

а) х=3; б) х=-7; в)х=-1; г) х=1;

6. Вынести общий множитель за скобки:

х(х-у)-6у(х-у)

а) (х-у)(х-6у ) ; б) (х-у)(х+6у) ;

в) (х+у)(х-6у) ; г) (х-у)(6у-х) ;

7. Решить уравнение:

Х 2 +8х=0

а) 0 и-8 б) 0и8; в) 8 и -8

Вариант II

    Выполнить действие:

(2а-1)+(3+6а)

а) 8а+3; б) 8а+4; в) 8а+2 ; г) 6а+2

    Вынести общий множитель за скобки:

7а-7в

а) 7(а-в); б) 7(а+в); в)7(в- а); г) а(7-в);

    Привести к стандартному виду многочлен:

4х 2 +3х-5х 2

а) 2 +3х ; б) 9х 2 +3х; в) 2х 2 ; г) –х 2 -3х;

    Выполнить умножение:

4а 2 (а-в)

а)4а 3 -в; б) 4а 3 -4ав; в) 3 -4а 2 в ; г) 4а 2 -4а 2 в;

    Разложить на множители:

а(в-1)-3(в-1)

а) (в-1)(а-3) ; б) (в-1)(а+3) ; в) (в+1)(а-3) ; г) (в-3)(а-1) ;

    Решить уравнение:

4(а-5)+а=5

а) а=1; б) а=-5; в) а=3; г) а=5;

7. Решить уравнение:

6х 2 -30х=0

а) 0 и 5 б) 0 и -5 в) 5 и -5

Галуа

Заходил паренек в сюртучке небогатом,

Чтобы в лавке табак и мадеру купить.

Приглашала любезно, как младшего брата,

Разбитная хозяйка и впредь заходить.

Провожала до двери, вздыхая устало,

Вслед ему разводила руками: «Чудак!

На четыре сантима опять обсчитала,

А четыре сантима теперь не пустяк!

Кто-то мне наболтал, будто видный ученый,

Математик какой-то мосье Галуа.

Как же может открыть мировые законы

Эта вот, с позволенья сказать, голова?!»

Но всходил на мансарду, обманутый ею,

Брал заветный набросок в чердачной пыли

И доказывал вновь с беспощадностью всею,

Что хозяева сытых желудков - нули. (А. Марков

Вариант 1

1 . 4-2х

А. 2(2 + х).В. 4(1 - х).

Б. 2(2-х).Г. 4(1 + х).

2. а 3 в 2 – а 4 в

А. а 4 в(в - а).В. а 3 в(в - а).

Б. а 3 в 2 (1 - а).Г. а 3 в(1 - а).

3. 15х y 2 + 5х y - 20х 2 y

А. 5хy (3y + 1 - 4х).В. 5хy (3y - 4х).

Б. 5х(3y 2 + у - 2х).Г. 5х(3у 2 + у - 4х).

4. а( b +3) +( b + 3).

А. (b + 3) (а + 1).В. (b + 3)а.

Б. (3 + b ) (a - 1).Г. (3 + b )(1-а).

5. х(y - z ) - (z - y ).

А. (х - 1) (y - z ).В. (х - 1) (z - у).

В.(х + 1)(у-z ).Т.(х + 1)(z -у).

6. Реши уравнение

3y - 12 y 2 =0

Разложение многочленов на множители

Вариант 2

1. 6а-3.

А. 3(2а-1).В. 6(а-1).

Б. 3(2а+1).Г. 3(а-1).

2. а 2 b 3 a 3 b 4

А. а 2 b 3 (1 - аb ).В. а 3 (b 3 – b 4).

Б. аb 3 (1 - а 2 b ).Г. b 3 (х 2 - х 3).

3. 12х 2 у - 6ху - 24ху 2 .

А. 6ху(2х - 1 - 4у).В. 6ху(2х - 4у).

Б. 6ху(6х - 1 - 4у).Г. 6ху(2х + 4у + 1).

4. х( y + 5) + ( y +5).

А. (х - 1) (у + 5).В. (х + 1) (у + 5).

Б.(у + 5)х.Г. (х - 1) (5 - у).

5. а(с- b )- (b -с) .

А. (а - 1) (b + с).В. (а - 1) (b - с).

Б. (а + 1) (с - b ).Г. (а + 1) (b - с).

6. Реши уравнение