Введение в структурированный язык запросов SQL

Последнее обновление: 24.06.2017

SQL Server является одной из наиболее популярных систем управления базами данных (СУБД) в мире. Данная СУБД подходит для самых различных проектов: от небольших приложений до больших высоконагруженных проектов.

SQL Server был создан компанией Microsoft. Первая версия вышла в 1987 году. А текущей версией является версия 16, которая вышла в 2016 году и которая будет использоваться в текущем руководстве.

SQL Server долгое время был исключительно системой управления базами данных для Windows, однако начиная с версии 16 эта система доступна и на Linux.

SQL Server характеризуется такими особенностями как:

    Производительность. SQL Server работает очень быстро.

    Надежность и безопасность. SQL Server предоставляет шифрование данных.

    Простота. С данной СУБД относительно легко работать и вести администрирование.

Центральным аспектом в MS SQL Server, как и в любой СУБД, является база данных. База данных представляет хранилище данных, организованных определенным способом. Нередко физически база данных представляет файл на жестком диске, хотя такое соответствие необязательно. Для хранения и администрирования баз данных применяются системы управления базами данных (database management system) или СУБД (DBMS). И как раз MS SQL Server является одной из такой СУБД.

Для организации баз данных MS SQL Server использует реляционную модель. Эта модель баз данных была разработана еще в 1970 году Эдгаром Коддом. А на сегодняшний день она фактически является стандартом для организации баз данных.

Реляционная модель предполагает хранение данных в виде таблиц, каждая из которых состоит из строк и столбцов. Каждая строка хранит отдельный объект, а в столбцах размещаются атрибуты этого объекта.

Для идентификации каждой строки в рамках таблицы применяется первичный ключ (primary key). В качестве первичного ключа может выступать один или несколько столбцов. Используя первичный ключ, мы можем ссылаться на определенную строку в таблице. Соответственно две строки не могут иметь один и тот же первичный ключ.

Через ключи одна таблица может быть связана с другой, то есть между двумя таблицами могут быть организованы связи. А сама таблица может быть представлена в виде отношения ("relation").

Для взаимодействия с базой данных применяется язык SQL (Structured Query Language). Клиент (например, внешняя программа) отправляет запрос на языке SQL посредством специального API. СУБД должным образом интерпретирует и выполняет запрос, а затем посылает клиенту результат выполнения.

Изначально язык SQL был разработан в компании IBM для системы баз данных, которая называлась System/R. При этом сам язык назывался SEQUEL (Structured English Query Language). Хотя в итоге ни база данных, ни сам язык не были впоследствии официально опубликованы, по традиции сам термин SQL нередко произносят как "сиквел".

В 1979 году компания Relational Software Inc. разработала первую систему управления баз данных, которая называлась Oracle и которая использовала язык SQL. В связи с успехом данного продукта компания была переименована в Oracle.

Впоследствии стали появляться другие системы баз данных, которые использовали SQL. В итоге в 1989 году Американский Национальный Институт Стандартов (ANSI) кодифицировал язык и опубликовал его первый стандарт. После этого стандарт периодически обновлялся и дополнялся. Последнее его обновление состоялось в 2011 году. Но несмотря на наличие стандарта нередко производители СУБД используют свои собственные реализации языка SQL, которые немного отличаются друг от друга.

Выделяются две разновидности языка SQL: PL-SQL и T-SQL. PL-SQL используется в таких СУБД как Oracle и MySQL. T-SQL (Transact-SQL) применяется в SQL Server. Собственно поэтому в рамках текущего руководства будет рассматриваться именно T-SQL.

В зависимости от задачи, которую выполняет команда T-SQL, он может принадлежать к одному из следующих типов:

    DDL (Data Definition Language / Язык определения данных). К этому типу относятся различные команды, которые создают базу данных, таблицы, индексы, хранимые процедуры и т.д. В общем определяют данные.

    В частности, к этому типу мы можем отнести следующие команды:

    • CREATE : создает объекты базы данных (саму базу даных, таблицы, индексы и т.д.)

      ALTER : изменяет объекты базы данных

      DROP : удаляет объекты базы данных

      TRUNCATE : удаляет все данные из таблиц

    DML (Data Manipulation Language / Язык манипуляции данными). К этому типу относят команды на выбору данных, их обновление, добавление, удаление - в общем все те команды, с помощью которыми мы можем управлять данными.

    К этому типу относятся следующие команды:

    • SELECT : извлекает данные из БД

      UPDATE : обновляет данные

      INSERT : добавляет новые данные

      DELETE : удаляет данные

    DCL (Data Control Language / Язык управления доступа к данным). К этому типу относят команды, которые управляют правами по доступу к данным. В частности, это следующие команды:

    • GRANT : предоставляет права для доступа к данным

      REVOKE : отзывает права на доступ к данным

Язык структурированных запросов Structure Query Language (SQL) был создан в результате разработки реляционной модели данных и в настоящее время является фактическим стандартом языка реляционных СУБД. Язык SQL сегодня поддерживается огромным количеством СУБД различных типов.

Название языка SQL произносится обычно по буквам «эс-кью-эль». Иногда используют мнемоническое имя «See-Quel».

Язык SQL предоставляет пользователю (при минимальных усилиях с его стороны) следующие возможности:

Создавать базы данных и таблицы с полным описанием их структуры

Выполнять основные операции манипулирования данными: вставка, изменение, удаление данных

Выполнять как простые, так и сложные запросы.

Язык SQL является реляционно полным.

Структура и синтаксис его команд достаточно просты, а сам язык является универсальным, т. е. синтаксис и структура его команд не меняется при переходе от одной СУБД к другой.

Язык SQL имеет два основных компонента:

Язык DDL (Data Definition Language) для определения структур базы данных и управления доступом к данным

Язык DML (Data Manipulation Language), предназначенный для выборки и обновления данных.

Язык SQL является непроцедурным, т. е. при его использовании необходимо указывать то, какая информация должна быть получена, а не то, как ее можно получить. Команды языка SQL представляют собой обычные слова английского языка (SELECT, INSERT и др.). Рассмотрим вначале операторы SQL DML:

SELECT - выборка данных из базы

INSERT - вставка данных в таблицу

UPDATE - обновление данных в таблице

DELETE - удаление данных из таблицы

Оператор SELECT

Оператор выборки SELECT выполняет действия, эквивалентные следующим операциям реляционной алгебры: выборка, проекция и соединение.

Простейший SQL-запрос с его использованием выглядит следующим образом:

SELECT col_name FROM tbl

После ключевого слова select следует список столбцов, разделенных запятыми, данные которых будут возвращены в результате запроса. Ключевое слово from, указывает, из какой таблицы (или представления) извлекаются данные.

Результатом запроса select всегда является таблица, которая называется результирующей таблицей. Более того, результаты запроса, выполненного при помощи оператора select, могут быть использованы для создания новой таблицы. Если результаты двух запросов к разным таблицам имеют одинаковый формат, их можно объединить в одну таблицу. Также таблица, полученная в результате запроса, может стать предметом дальнейших запросов.

Для выборки всех столбцов и всех строк таблицы достаточно сделать запрос SELECT * FROM tbl;

Рассмотрим таблицу Product, содержащую сведения о цене на различные виды продукции:

Результатом запроса

SELECT * FROM Product;

будет вся таблица Product.

Выбрать конкретные столбцы таблицы можно с помощью запроса

SELECT col1, col2, … , coln FROM tbl;

Так, результатом запроса

SELECT Type, Price FROM Product;

будет таблица

К списку столбцов в операторе select прибегают и в том случае, если необходимо изменить порядок следования столбов в результирующей таблице:

Для того чтобы выбрать лишь те строки таблицы, которые удовлетворяют некоторым ограничениям, используется специальное ключевое слово where, после которого следует логическое условие. Если запись удовлетворяет такому условию, она попадает в результат. В противном случае такая запись отбрасывается.

Например, выбор тех товаров из таблицы Product, цена которых удовлетворяет условию Price <3200, можно осуществить, используя запрос

SELECT * FROM Product where Price <3200;

Его результат:

Условие может быть составным и объединяться при помощи логических операторов NOT , AND, OR, XOR, например: where id_ Price>500 AND Price<3500. Допускается также использование выражений в условии: where Price>(1+1) и строковых констант: where name= "автовесы".

Применение конструкции BETWEEN var1 AND var2 позволяет проверить, попадают ли значения какого-либо выражения в интервал от var1 до var2 (включая эти значения):

SELECT * FROM Product where Price BETWEEN 3000 AND 3500;

По аналогии с оператором NOT BETWEEN существует оператор NOT IN.

Имена столбцов, указанные в предложении SELECT, можно переименовать. Для этого используется ключевое слово AS, которое, впрочем, можно опустить, т. к. неявно подразумевается. Например, запрос

SELECT Type AS model, Type_id AS num FROM Product where Type_id =3

вернет (имена псевдонимов следует записывать без кавычек):

Оператор LIKE предназначен для сравнения строки с образцом:

SELECT * FROM tbl where col_name LIKE "abc"

Этот запрос возвращает лишь те записи, которые содержат в столбце col_name строковое значение abc.

В образце разрешается использовать два трафаретных символа: "_" и "%". Первый из них заменяет в шаблоне один произвольный символ, а второй - последовательность произвольных символов. Так, "abc%" соответствует любой строке, начинающейся на abc, "abc_" - строке из 4-х символов, начинающейся на abc, "%z" - произвольной строке, заканчивающейся на z, и, наконец, "%z%" - последовательности символов, содержащих z.

Найти все записи таблицы Product, в которых значение Type начинается с буквы "a" можно так:

SELECT * FROM Product where Type LIKE "а%";

автовесы

Если искомая строка содержит трафаретный символ, то следует задать управляющий символ в предложении ESCAPE. Этот управляющий символ должен использоваться в образце перед трафаретным символом, сообщая о том, что последний следует трактовать как обычный символ. Например, если в некотором поле следует отыскать все значения, содержащие символ "_", то шаблон "%_%" приведет к тому, что будут возвращены все записи из таблицы. В данном случае шаблон следует записать следующим образом:

"%|_%" ESCAPE "|"

Для проверки значения на соответствие строке "20%" можно воспользоваться таким оператором:

LIKE "20#%" ESCAPE "#"

Оператор IS NULL позволяет проверить отсутствие (наличие) NULL-значения в полях таблицы. Использование в этих случаях обычных операторов сравнения может привести к неверным результатам, так как сравнение со значением NULL дает результат UNKNOWN (неизвестно). Таким образом, условие отбора должно выглядеть так:

where col_name IS NULL, вместо where col_name=NULL.

Результат выборки по умолчанию возвращает записи, расположенные в том же порядке, в котором они хранятся в базе данных. Если требуется отсортировать записи по одному из столбцов, необходимо применить конструкцию ORDER BY, после которой указывается имя этого столбца:

SELECT * FROM tbl ORDER BY col_name;

В результате этого запроса записи будут возвращены в порядке возрастания значения атрибута col_name.

Сортировку записей можно производить и по нескольким столбцам. Для этого их названия надо указать после ORDER BY через запятую:

SELECT * FROM tbl ORDER BY col_name1, col_name2.

Записи будут отсортированы по полю col_name1; если встречается несколько записей с совпадающим значением в колонке col_name1, то они будут отсортированы по полю col_name2.

Если требуется отсортировать записи в обратном порядке (например, по убыванию даты), требуется указать ORDER BY col_name DESC.

Для прямой сортировки существует ключевое слово ASC, которое принято в качестве значения по умолчанию.

Если результат выборки содержит сотни и тысячи записей, их вывод и обработка занимают значительное время.

Поэтому информацию часто разбивают на страницы и предоставляют ее пользователю порциями. Постраничная навигация используется при помощи ключевого слова limit, за которым следует число выводимых записей. В следующем запросе извлекаются первые 10 записей, при этом одновременно осуществляется обратная сортировка по полю col_name1:

SELECT * FROM tbl ORDER BY col_name1 DESC LIMIT 10

Для того чтобы извлечь следующие 10 записей, используется ключевое слово limit с двумя значениями: первое указывает позицию, начиная с которой необходимо вывести результат, а вторая -- количество извлекаемых записей:

SELECT * FROM tbl ORDER BY col_name1 DESC LIMIT 10,10

Для извлечения следующих 10 записей необходимо использовать конструкцию LIMIT 20, 10.

Программы клиенты

Протокол TFTP

TFTP - тоже протокол FTP, но поверх протокола UDP (т.е. протокол без гарантированной доставки). Может использоваться в локальной сети, где скорость передачи важнее. На практике используется редко.

FTP - программа запускается с командной строки.

Windows Comander - может работать как FTP-клиент. Позволяет работать с удаленными каталогами также как с локальными.

NetVampire - Специализированный FTP-клиент, который позволяет качать большие файлы и качать по плохим каналам.

SQL (Structured Query Language) - это структурированный язык запросов к реляционным базам данных. На этом языке можно формулировать выражения (запросы), которые извлекают требуемые данные, модифицируют их, создают таблицы и изменяют их структуры, определяют права доступа к данным и многое другое.

Запросы выполняются системой управления базой данных (СУБД). Если вы не являетесь специалистом по разработке и администрированию баз данных, то вполне можете быть их пользователем, который просматривает или/и изменяет данные в уже имеющихся таблицах. Во многих случаях эти и другие операции с базой данных выполняются с помощью специальных приложений, предоставляющих пользователю удобный интерфейс. Обычно приложения пишутся на специальных языках программирования (С, Pascal, Visual Basic и т. п.) и чаще всего создаются с помощью интегрированных сред разработки, например, Delphi, C++ Builder и др. Однако доступ к базе данных можно получить и без них - с помощью только SQL. Следует заметить также, что и специализированные приложения обычно используют SQL-фрагменты кода при обращениях к базе данных.

Таким образом, SQL - широко распространенный стандартный язык работы с реляционными базами данных. Синтаксис этого языка достаточно прост, чтобы его могли использовать рядовые пользователи, а не только программисты. В настоящее время обычный пользователь компьютера должен владеть, по крайней мере, текстовым редактором (например, Microsoft Word) и электронными таблицами (например, Microsoft Excel). Неплохо, если он также умеет пользоваться базами данных. Различных СУБД существует много, а универсальное средство работы с базами данных одно - SQL. Знание SQL, хотя бы его основ, и умение его применять для поиска и анализа данных является фундаментальной частью компьютерной грамотности даже рядовых пользователей.

Первые разработки систем управления реляционными базами данных (реляционных СУБД) были выполнены в компании IBM в начале 1970-х годов. Тогда же был создан язык данных, предназначенный для работы в этих системах. Экспериментальная версия этого языка называлась SEQUEL - от англ. Structured English QUEry Language (структурированный английский язык запросов). Однако официальная версия была названа короче - SQL (Structured Query Language). Точнее говоря, SQL - это подъязык данных, поскольку СУБД содержит и другие языковые средства.

В 1981 году IBM выпускает реляционную СУБД SQL/DS. К этому времени компания Relation Software Inc. (сегодня это Oracle Corporation) уже выпустила свою реляционную СУБД. Эти продукты сразу же стали стандартом систем, предназначенных для управления базами данных. В состав этих продуктов вошел и SQL, который фактически стал стандартом для подъязыков данных. Производители других СУБД выпустили свои версии SQL. В них имелись не только основные возможности продуктов IBM. Чтобы получить некоторое преимущество для "своей" СУБД, производители вводили некоторые расширения SQL. Вместе с тем, начались работы по созданию общепризнанного стандарта SQL.

В 1986 году Американский национальный институт стандартов (American National Standards Institute, ANSI) выпустил официальный стандарт SQL-86, который в 1989 году был обновлен и получил новое название SQL-89. В 1992 году этот стандарт был назван SQL-92 (ISO/IEC 9075:1992). Последней версией стандарта SQL является SQL:2003 (ISO/IEC 9075X:2003).

Любая реализация SQL в конкретной СУБД несколько отличается от стандарта, соответствие которому объявлено производителем. Так, многие СУБД (например, Microsoft Access 2003, PostgreSQL 7.3) поддерживают SQL-92 не в полной мере, а лишь с некоторым уровнем соответствия. Кроме того, они поддерживают и элементы, которые не входят в стандарт. Однако разработчики СУБД стремятся к тому, чтобы новые версии их продуктов как можно в большей степени соответствовали стандарту SQL.

Внимание. В данном пособии описаны элементы SQL2003, не все из которых поддерживаются существующими СУБД. Прежде чем применять их на практике, следует убедиться, что они будут работать в вашей СУБД. Об этом можно узнать из технической документации. Большинство описанных элементов соответствуют и более ранним версиям SQL, в частности, широко распространенному SQL-92.

SQL задумывался как простой язык запросов к реляционной базе данных, близкий к естественному (точнее, к английскому) языку. Предполагалось, что близость по форме к естественному языку сделает SQL средством, доступным для широкого применения обычными пользователями баз данных, а не только программистами. Первоначально SQL не содержал никаких управляющих структур, свойственных обычным языкам программирования. Запросы, синтаксис которых довольно прост, вводились прямо с консоли последовательно один за другим и в этой же последовательности выполнялись. Однако SQL так и не стал инструментом банковских служащих, продавцов авиа- и железнодорожных билетов, экономистов и других служащих различных фирм, использующих информацию, хранимую в базах данных. Для них простой SQL оказался слишком сложным и неудобным, несмотря на свою близость к естественному языку вопросов.

На практике с базой данных обычно работают посредством приложений, написанных программистами на процедурных языках, например, на С, Visual Basic, Pascal, Java и др. Часто приложения создаются в специальных средах визуальной разработки, таких как Delphi, Microsoft Access, Visual dBase и т. п. При этом разработчику приложения практически не приходится писать коды программ, поскольку за него это делает система разработки. Во всяком случае, работа с программным кодом оказывается минимальной. Эти приложения имеют удобный графический интерфейс, не вынуждающий пользователя непосредственно вводить запросы на языке SQL. Вместо него это делает приложение. Впрочем, приложение может как использовать, так и не использовать SQL для обращения к базе данных. SQL не единственное, хотя и очень эффективное средство получения, добавления и изменения данных, и если есть возможность использовать его в приложении, то это следует делать.

Реляционные базы данных могут существовать и действительно существуют вне зависимости от приложений, обеспечивающих пользовательский интерфейс. Если по каким-либо причинам такого интерфейса нет, то доступ к базе данных можно осуществить с помощью SQL, используя консоль или какое-нибудь приложение, с помощью которого можно соединиться с базой данных, ввести и отправить SQL-запрос (например, Borland SQL Explorer).

Язык SQL считают декларативным (описательным) языком, в отличие от языков, на которых пишутся программы. Это означает, что выражения на языке SQL описывают, что требуется сделать, а не каким образом.

Например, для того чтобы выбрать из таблицы сотрудники сведения о фамилиях и должностях сотрудников 102 отдела, достаточно выполнить следующий запрос:

SELECT Фамилия, Должность FROM Сотрудники WHERE Отдел=102;

По-русски данное выражение звучит так:

ВЫБРАТЬ Фамилия, Должность ИЗ Сотрудники ПРИ УСЛОВИИ, ЧТО Отдел = 102;

Чтобы изменить значение "Иванов " на "Петров " столбца Фамилия , достаточно выполнить следующий запрос:

UPDATE Сотрудники SET Фамилия = "Петров" WHERE Фамилия = "Иванов";

По-русски данное выражение выглядит так:

ОБНОВИТЬ Сотрудники УСТАНОВИВ Фамилия РАВНЫМ "Петров " ГДЕ Фамилия = "Иванов" ;

Вам не нужно подробно описывать действия, которые должна выполнить СУБД, чтобы выбрать из таблицы указанные в запросе данные. Вы просто описываете, что желаете получить. В результате выполнения запроса СУБД возвращает таблицу, содержащую запрошенные вами данные. Если в базе данных не оказалось данных, соответствующих запросу, то будет возвращена пустая таблица.

Однако последние версии SQL поддерживают операторы управления вычислениями, свойственные процедурным языкам управления (операторы условного перехода и цикла). Поэтому SQL сейчас это не чисто декларативный язык.

Кроме выборки, добавления, изменения и удаления данных из таблиц, SQL позволяет выполнять все необходимые действия по созданию, модификации и обеспечению безопасности баз данных. Все эти возможности распределены между тремя компонентами SQL:

· DML (Data Manipulation Language - язык манипулирования данными ) предназначен для поддержки базы данных: выбора (SELECT ), добавления (INSERT ), изменения (UPDATE ) и удаления (DELETE ) данных из таблиц. Эти операторы (команды) могут содержать выражения, в том числе и вычисляемые, а также подзапросы - запросы, содержащиеся внутри другого запроса. В общем случае выражение запроса может быть настолько сложным, что сразу и не скажешь, что он делает. Однако сложный запрос можно мысленно разбить на части, которые легче анализировать. Аналогично, сложные запросы создаются из относительно простых для понимания выражений (подзапросов).

· DDL (Data Definition Language - язык определения данных ) предназначен для создания, модификации и удаления таблиц и всей базы данных. Примерами операторов, входящих в DDL, являются CREATE TABLE (создать Таблицу)," CREATE VIEW (создать представление), CREATE SHEMA (создать схему), ALTER TABLE (изменить таблицу), DROP (удалить) и др.

· DCL (Data Control Language - язык управления данными ) предназначен для обеспечения защиты базы данных от различного рода повреждений. СУБД предусматривает некоторую защиту данных автоматически. Однако в ряде случаев следует предусмотреть дополнительные меры, предоставляемые DCL.

Leran2002 9 апреля 2015 в 12:31

Учебник по языку SQL (DDL, DML) на примере диалекта MS SQL Server. Часть первая

  • Microsoft SQL Server ,
  • SQL
  • Tutorial

О чем данный учебник

Данный учебник представляет собой что-то типа «штампа моей памяти» по языку SQL (DDL, DML), т.е. это информация, которая накопилась по ходу профессиональной деятельности и постоянно хранится в моей голове. Это для меня достаточный минимум, который применяется при работе с базами данных наиболее часто. Если встает необходимость применять более полные конструкции SQL, то я обычно обращаюсь за помощью в библиотеку MSDN расположенную в интернет. На мой взгляд, удержать все в голове очень сложно, да и нет особой необходимости в этом. Но знать основные конструкции очень полезно, т.к. они применимы практически в таком же виде во многих реляционных базах данных, таких как Oracle, MySQL, Firebird. Отличия в основном состоят в типах данных, которые могут отличаться в деталях. Основных конструкций языка SQL не так много, и при постоянной практике они быстро запоминаются. Например, для создания объектов (таблиц, ограничений, индексов и т.п.) достаточно иметь под рукой текстовый редактор среды (IDE) для работы с базой данных, и нет надобности изучать визуальный инструментарий заточенный для работы с конкретным типом баз данных (MS SQL, Oracle, MySQL, Firebird, …). Это удобно и тем, что весь текст находится перед глазами, и не нужно бегать по многочисленным вкладкам для того чтобы создать, например, индекс или ограничение. При постоянной работе с базой данных, создать, изменить, а особенно пересоздать объект при помощи скриптов получается в разы быстрее, чем если это делать в визуальном режиме. Так же в скриптовом режиме (соответственно, при должной аккуратности), проще задавать и контролировать правила наименования объектов (мое субъективное мнение). К тому же скрипты удобно использовать в случае, когда изменения, делаемые в одной базе данных (например, тестовой), необходимо перенести в таком же виде в другую базу (продуктивную).

Язык SQL подразделяется на несколько частей, здесь я рассмотрю 2 наиболее важные его части:
  • DML – Data Manipulation Language (язык манипулирования данными), который содержит следующие конструкции:
    • SELECT – выборка данных
    • INSERT – вставка новых данных
    • UPDATE – обновление данных
    • DELETE – удаление данных
    • MERGE – слияние данных
Т.к. я являюсь практиком, как таковой теории в данном учебнике будет мало, и все конструкции будут объясняться на практических примерах. К тому же я считаю, что язык программирования, а особенно SQL, можно освоить только на практике, самостоятельно пощупав его и поняв, что происходит, когда вы выполняете ту или иную конструкцию.

Данный учебник создан по принципу Step by Step, т.е. необходимо читать его последовательно и желательно сразу же выполняя примеры. Но если по ходу у вас возникает потребность узнать о какой-то команде более детально, то используйте конкретный поиск в интернет, например, в библиотеке MSDN.

При написании данного учебника использовалась база данных MS SQL Server версии 2014, для выполнения скриптов я использовал MS SQL Server Management Studio (SSMS).

Кратко о MS SQL Server Management Studio (SSMS)

SQL Server Management Studio (SSMS) - утилита для Microsoft SQL Server для конфигурирования, управления и администрирования компонентов базы данных. Данная утилита содержит редактор скриптов (который в основном и будет нами использоваться) и графическую программу, которая работает с объектами и настройками сервера. Главным инструментом SQL Server Management Studio является Object Explorer, который позволяет пользователю просматривать, извлекать объекты сервера, а также управлять ими. Данный текст частично позаимствован с википедии.

Для создания нового редактора скрипта используйте кнопку «New Query/Новый запрос»:

Для смены текущей базы данных можно использовать выпадающий список:

Для выполнения определенной команды (или группы команд) выделите ее и нажмите кнопку «Execute/Выполнить» или же клавишу «F5». Если в редакторе в текущий момент находится только одна команда, или же вам необходимо выполнить все команды, то ничего выделять не нужно.

После выполнения скриптов, в особенности создающих объекты (таблицы, столбцы, индексы), чтобы увидеть изменения, используйте обновление из контекстного меню, выделив соответствующую группу (например, Таблицы), саму таблицу или группу Столбцы в ней.

Собственно, это все, что нам необходимо будет знать для выполнения приведенных здесь примеров. Остальное по утилите SSMS несложно изучить самостоятельно.

Немного теории

Реляционная база данных (РБД, или далее в контексте просто БД) представляет из себя совокупность таблиц, связанных между собой. Если говорить грубо, то БД – файл в котором данные хранятся в структурированном виде.

СУБД – Система Управления этими Базами Данных, т.е. это комплекс инструментов для работы с конкретным типом БД (MS SQL, Oracle, MySQL, Firebird, …).

Примечание
Т.к. в жизни, в разговорной речи, мы по большей части говорим: «БД Oracle», или даже просто «Oracle», на самом деле подразумевая «СУБД Oracle», то в контексте данного учебника иногда будет употребляться термин БД. Из контекста, я думаю, будет понятно, о чем именно идет речь.

Таблица представляет из себя совокупность столбцов. Столбцы, так же могут называть полями или колонками, все эти слова будут использоваться как синонимы, выражающие одно и тоже.

Таблица – это главный объект РБД, все данные РБД хранятся построчно в столбцах таблицы. Строки, записи – тоже синонимы.

Для каждой таблицы, как и ее столбцов задаются наименования, по которым впоследствии к ним идет обращение.
Наименование объекта (имя таблицы, имя столбца, имя индекса и т.п.) в MS SQL может иметь максимальную длину 128 символов.

Для справки – в БД ORACLE наименования объектов могут иметь максимальную длину 30 символов. Поэтому для конкретной БД нужно вырабатывать свои правила для наименования объектов, чтобы уложиться в лимит по количеству символов.

SQL - язык позволяющий осуществлять запросы в БД посредством СУБД. В конкретной СУБД, язык SQL может иметь специфичную реализацию (свой диалект).

DDL и DML - подмножество языка SQL:

  • Язык DDL служит для создания и модификации структуры БД, т.е. для создания/изменения/удаления таблиц и связей.
  • Язык DML позволяет осуществлять манипуляции с данными таблиц, т.е. с ее строками. Он позволяет делать выборку данных из таблиц, добавлять новые данные в таблицы, а так же обновлять и удалять существующие данные.

В языке SQL можно использовать 2 вида комментариев (однострочный и многострочный):

Однострочный комментарий
и

/* многострочный комментарий */

Собственно, все для теории этого будет достаточно.

DDL – Data Definition Language (язык описания данных)

Для примера рассмотрим таблицу с данными о сотрудниках, в привычном для человека не являющимся программистом виде:

В данном случае столбцы таблицы имеют следующие наименования: Табельный номер, ФИО, Дата рождения, E-mail, Должность, Отдел.

Каждый из этих столбцов можно охарактеризовать по типу содержащемся в нем данных:

  • Табельный номер – целое число
  • ФИО – строка
  • Дата рождения – дата
  • E-mail – строка
  • Должность – строка
  • Отдел – строка
Тип столбца – характеристика, которая говорит о том какого рода данные может хранить данный столбец.

Для начала будет достаточно запомнить только следующие основные типы данных используемые в MS SQL:

Значение Обозначение в MS SQL Описание
Строка переменной длины varchar(N)
и
nvarchar(N)
При помощи числа N, мы можем указать максимально возможную длину строки для соответствующего столбца. Например, если мы хотим сказать, что значение столбца «ФИО» может содержать максимум 30 символов, то необходимо задать ей тип nvarchar(30).
Отличие varchar от nvarchar заключается в том, что varchar позволяет хранить строки в формате ASCII, где один символ занимает 1 байт, а nvarchar хранит строки в формате Unicode, где каждый символ занимает 2 байта.
Тип varchar стоит использовать только в том случае, если вы на 100% уверены, что в данном поле не потребуется хранить Unicode символы. Например, varchar можно использовать для хранения адресов электронной почты, т.к. они обычно содержат только ASCII символы.
Строка фиксированной длины char(N)
и
nchar(N)
От строки переменной длины данный тип отличается тем, что если длина строка меньше N символов, то она всегда дополняется справа до длины N пробелами и сохраняется в БД в таком виде, т.е. в базе данных она занимает ровно N символов (где один символ занимает 1 байт для char и 2 байта для типа nchar). На моей практике данный тип очень редко находит применение, а если и используется, то он используется в основном в формате char(1), т.е. когда поле определяется одним символом.
Целое число int Данный тип позволяет нам использовать в столбце только целые числа, как положительные, так и отрицательные. Для справки (сейчас это не так актуально для нас) – диапазон чисел который позволяет тип int от -2 147 483 648 до 2 147 483 647. Обычно это основной тип, который используется для задания идентификаторов.
Вещественное или действительное число float Если говорить простым языком, то это числа, в которых может присутствовать десятичная точка (запятая).
Дата date Если в столбце необходимо хранить только Дату, которая состоит из трех составляющих: Числа, Месяца и Года. Например, 15.02.2014 (15 февраля 2014 года). Данный тип можно использовать для столбца «Дата приема», «Дата рождения» и т.п., т.е. в тех случаях, когда нам важно зафиксировать только дату, или, когда составляющая времени нам не важна и ее можно отбросить или если она не известна.
Время time Данный тип можно использовать, если в столбце необходимо хранить только данные о времени, т.е. Часы, Минуты, Секунды и Миллисекунды. Например, 17:38:31.3231603
Например, ежедневное «Время отправления рейса».
Дата и время datetime Данный тип позволяет одновременно сохранить и Дату, и Время. Например, 15.02.2014 17:38:31.323
Для примера это может быть дата и время какого-нибудь события.
Флаг bit Данный тип удобно применять для хранения значений вида «Да»/«Нет», где «Да» будет сохраняться как 1, а «Нет» будет сохраняться как 0.

Так же значение поля, в том случае если это не запрещено, может быть не указано, для этой цели используется ключевое слово NULL.

Для выполнения примеров создадим тестовую базу под названием Test.

Простую базу данных (без указания дополнительных параметров) можно создать, выполнив следующую команду:

CREATE DATABASE Test
Удалить базу данных можно командой (стоит быть очень осторожным с данной командой):

DROP DATABASE Test
Для того, чтобы переключиться на нашу базу данных, можно выполнить команду:

USE Test
Или же выберите базу данных Test в выпадающем списке в области меню SSMS. При работе мною чаще используется именно этот способ переключения между базами.

Теперь в нашей БД мы можем создать таблицу используя описания в том виде как они есть, используя пробелы и символы кириллицы:

CREATE TABLE [Сотрудники]([Табельный номер] int, [ФИО] nvarchar(30), [Дата рождения] date, nvarchar(30), [Должность] nvarchar(30), [Отдел] nvarchar(30))
В данном случае нам придется заключать имена в квадратные скобки […].

Но в базе данных для большего удобства все наименования объектов лучше задавать на латинице и не использовать в именах пробелы. В MS SQL обычно в данном случае каждое слово начинается с прописной буквы, например, для поля «Табельный номер», мы могли бы задать имя PersonnelNumber. Так же в имени можно использовать цифры, например, PhoneNumber1.

На заметку
В некоторых СУБД более предпочтительным может быть следующий формат наименований «PHONE_NUMBER», например, такой формат часто используется в БД ORACLE. Естественно при задании имя поля желательно чтобы оно не совпадало с ключевыми словами используемые в СУБД.

По этой причине можете забыть о синтаксисе с квадратными скобками и удалить таблицу [Сотрудники]:

DROP TABLE [Сотрудники]
Например, таблицу с сотрудниками можно назвать «Employees», а ее полям можно задать следующие наименования:

  • ID – Табельный номер (Идентификатор сотрудника)
  • Name – ФИО
  • Birthday – Дата рождения
  • Email – E-mail
  • Position – Должность
  • Department – Отдел
Очень часто для наименования поля идентификатора используется слово ID.

Теперь создадим нашу таблицу:

CREATE TABLE Employees(ID int, Name nvarchar(30), Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Для того, чтобы задать обязательные для заполнения столбцы, можно использовать опцию NOT NULL.

Для уже существующей таблицы поля можно переопределить при помощи следующих команд:

Обновление поля ID ALTER TABLE Employees ALTER COLUMN ID int NOT NULL -- обновление поля Name ALTER TABLE Employees ALTER COLUMN Name nvarchar(30) NOT NULL

На заметку
Общая концепция языка SQL для большинства СУБД остается одинаковой (по крайней мере, об этом я могу судить по тем СУБД, с которыми мне довелось поработать). Отличие DDL в разных СУБД в основном заключаются в типах данных (здесь могут отличаться не только их наименования, но и детали их реализации), так же может немного отличаться и сама специфика реализации языка SQL (т.е. суть команд одна и та же, но могут быть небольшие различия в диалекте, увы, но одного стандарта нет). Владея основами SQL вы легко сможете перейти с одной СУБД на другую, т.к. вам в данном случае нужно будет только разобраться в деталях реализации команд в новой СУБД, т.е. в большинстве случаев достаточно будет просто провести аналогию.

Создание таблицы CREATE TABLE Employees(ID int, -- в ORACLE тип int - это эквивалент(обертка) для number(38) Name nvarchar2(30), -- nvarchar2 в ORACLE эквивалентен nvarchar в MS SQL Birthday date, Email nvarchar2(30), Position nvarchar2(30), Department nvarchar2(30)); -- обновление полей ID и Name (здесь вместо ALTER COLUMN используется MODIFY(…)) ALTER TABLE Employees MODIFY(ID int NOT NULL,Name nvarchar2(30) NOT NULL); -- добавление PK (в данном случае конструкция выглядит как и в MS SQL, она будет показана ниже) ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY(ID);
Для ORACLE есть отличия в плане реализации типа varchar2, его кодировка зависит настроек БД и текст может сохраняться, например, в кодировке UTF-8. Помимо этого длину поля в ORACLE можно задать как в байтах, так и в символах, для этого используются дополнительные опции BYTE и CHAR, которые указываются после длины поля, например:

NAME varchar2(30 BYTE) -- вместимость поля будет равна 30 байтам NAME varchar2(30 CHAR) -- вместимость поля будет равна 30 символов
Какая опция будет использоваться по умолчанию BYTE или CHAR, в случае простого указания в ORACLE типа varchar2(30), зависит от настроек БД, так же она иногда может задаваться в настройках IDE. В общем порой можно легко запутаться, поэтому в случае ORACLE, если используется тип varchar2 (а это здесь порой оправдано, например, при использовании кодировки UTF-8) я предпочитаю явно прописывать CHAR (т.к. обычно длину строки удобнее считать именно в символах).

Но в данном случае если в таблице уже есть какие-нибудь данные, то для успешного выполнения команд необходимо, чтобы во всех строках таблицы поля ID и Name были обязательно заполнены. Продемонстрируем это на примере, вставим в таблицу данные в поля ID, Position и Department, это можно сделать следующим скриптом:

INSERT Employees(ID,Position,Department) VALUES (1000,N"Директор",N"Администрация"), (1001,N"Программист",N"ИТ"), (1002,N"Бухгалтер",N"Бухгалтерия"), (1003,N"Старший программист",N"ИТ")
В данном случае, команда INSERT также выдаст ошибку, т.к. при вставке мы не указали значения обязательного поля Name.
В случае, если бы у нас в первоначальной таблице уже имелись эти данные, то команда «ALTER TABLE Employees ALTER COLUMN ID int NOT NULL» выполнилась бы успешно, а команда «ALTER TABLE Employees ALTER COLUMN Name int NOT NULL» выдала сообщение об ошибке, что в поле Name имеются NULL (не указанные) значения.

Добавим значения для полю Name и снова зальем данные:


Так же опцию NOT NULL можно использовать непосредственно при создании новой таблицы, т.е. в контексте команды CREATE TABLE.

Сначала удалим таблицу при помощи команды:

DROP TABLE Employees
Теперь создадим таблицу с обязательными для заполнения столбцами ID и Name:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Можно также после имени столбца написать NULL, что будет означать, что в нем будут допустимы NULL-значения (не указанные), но этого делать не обязательно, так как данная характеристика подразумевается по умолчанию.

Если требуется наоборот сделать существующий столбец необязательным для заполнения, то используем следующий синтаксис команды:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(30) NULL
Или просто:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(30)
Так же данной командой мы можем изменить тип поля на другой совместимый тип, или же изменить его длину. Для примера давайте расширим поле Name до 50 символов:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(50)

Первичный ключ

При создании таблицы желательно, чтобы она имела уникальный столбец или же совокупность столбцов, которая уникальна для каждой ее строки – по данному уникальному значению можно однозначно идентифицировать запись. Такое значение называется первичным ключом таблицы. Для нашей таблицы Employees таким уникальным значением может быть столбец ID (который содержит «Табельный номер сотрудника» - пускай в нашем случае данное значение уникально для каждого сотрудника и не может повторяться).

Создать первичный ключ к уже существующей таблице можно при помощи команды:

ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY(ID)
Где «PK_Employees» это имя ограничения, отвечающего за первичный ключ. Обычно для наименования первичного ключа используется префикс «PK_» после которого идет имя таблицы.

Если первичный ключ состоит из нескольких полей, то эти поля необходимо перечислить в скобках через запятую:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY(поле1,поле2,…)
Стоит отметить, что в MS SQL все поля, которые входят в первичный ключ, должны иметь характеристику NOT NULL.

Так же первичный ключ можно определить непосредственно при создании таблицы, т.е. в контексте команды CREATE TABLE. Удалим таблицу:

DROP TABLE Employees
А затем создадим ее, используя следующий синтаксис:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30), CONSTRAINT PK_Employees PRIMARY KEY(ID) -- описываем PK после всех полей, как ограничение)
После создания зальем в таблицу данные:

INSERT Employees(ID,Position,Department,Name) VALUES (1000,N"Директор",N"Администрация",N"Иванов И.И."), (1001,N"Программист",N"ИТ",N"Петров П.П."), (1002,N"Бухгалтер",N"Бухгалтерия",N"Сидоров С.С."), (1003,N"Старший программист",N"ИТ",N"Андреев А.А.")
Если первичный ключ в таблице состоит только из значений одного столбца, то можно использовать следующий синтаксис:

CREATE TABLE Employees(ID int NOT NULL CONSTRAINT PK_Employees PRIMARY KEY, -- указываем как характеристику поля Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
На самом деле имя ограничения можно и не задавать, в этом случае ему будет присвоено системное имя (наподобие «PK__Employee__3214EC278DA42077»):

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30), PRIMARY KEY(ID))
Или:

CREATE TABLE Employees(ID int NOT NULL PRIMARY KEY, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Но я бы рекомендовал для постоянных таблиц всегда явно задавать имя ограничения, т.к. по явно заданному и понятному имени с ним впоследствии будет легче проводить манипуляции, например, можно произвести его удаление:

ALTER TABLE Employees DROP CONSTRAINT PK_Employees
Но такой краткий синтаксис, без указания имен ограничений, удобно применять при создании временных таблиц БД (имя временной таблицы начинается с # или ##), которые после использования будут удалены.

Подытожим

На данный момент мы рассмотрели следующие команды:
  • CREATE TABLE имя_таблицы (перечисление полей и их типов, ограничений) – служит для создания новой таблицы в текущей БД;
  • DROP TABLE имя_таблицы – служит для удаления таблицы из текущей БД;
  • ALTER TABLE имя_таблицы ALTER COLUMN имя_столбца … – служит для обновления типа столбца или для изменения его настроек (например для задания характеристики NULL или NOT NULL);
  • ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY (поле1, поле2,…) – добавление первичного ключа к уже существующей таблице;
  • ALTER TABLE имя_таблицы DROP CONSTRAINT имя_ограничения – удаление ограничения из таблицы.

Немного про временные таблицы

Вырезка из MSDN. В MS SQL Server существует два вида временных таблиц: локальные (#) и глобальные (##). Локальные временные таблицы видны только их создателям до завершения сеанса соединения с экземпляром SQL Server, как только они впервые созданы. Локальные временные таблицы автоматически удаляются после отключения пользователя от экземпляра SQL Server. Глобальные временные таблицы видны всем пользователям в течение любых сеансов соединения после создания этих таблиц и удаляются, когда все пользователи, ссылающиеся на эти таблицы, отключаются от экземпляра SQL Server.

Временные таблицы создаются в системной базе tempdb, т.е. создавая их мы не засоряем основную базу, в остальном же временные таблицы полностью идентичны обычным таблицам, их так же можно удалить при помощи команды DROP TABLE. Чаще используются локальные (#) временные таблицы.

Для создания временной таблицы можно использовать команду CREATE TABLE:

CREATE TABLE #Temp(ID int, Name nvarchar(30))
Так как временная таблица в MS SQL аналогична обычной таблице, ее соответственно так же можно удалить самому командой DROP TABLE:

DROP TABLE #Temp

Так же временную таблицу (как собственно и обычную таблицу) можно создать и сразу заполнить данными возвращаемые запросом используя синтаксис SELECT … INTO:

SELECT ID,Name INTO #Temp FROM Employees

На заметку
В разных СУБД реализация временных таблиц может отличаться. Например, в СУБД ORACLE и Firebird структура временных таблиц должна быть определена заранее командой CREATE GLOBAL TEMPORARY TABLE с указанием специфики хранения в ней данных, дальше уже пользователь видит ее среди основных таблиц и работает с ней как с обычной таблицей.

Нормализация БД – дробление на подтаблицы (справочники) и определение связей

Наша текущая таблица Employees имеет недостаток в том, что в полях Position и Department пользователь может ввести любой текст, что в первую очередь чревато ошибками, так как он у одного сотрудника может указать в качестве отдела просто «ИТ», а у второго сотрудника, например, ввести «ИТ-отдел», у третьего «IT». В итоге будет непонятно, что имел ввиду пользователь, т.е. являются ли данные сотрудники работниками одного отдела, или же пользователь описался и это 3 разных отдела? А тем более, в этом случае, мы не сможем правильно сгруппировать данные для какого-то отчета, где, может требоваться показать количество сотрудников в разрезе каждого отдела.

Второй недостаток заключается в объеме хранения данной информации и ее дублированием, т.е. для каждого сотрудника указывается полное наименование отдела, что требует в БД места для хранения каждого символа из названия отдела.

Третий недостаток – сложность обновления данных полей, в случае если изменится название какой-то должности, например, если потребуется переименовать должность «Программист», на «Младший программист». В данном случае нам придется вносить изменения в каждую строчку таблицы, у которой Должность равняется «Программист».

Чтобы избежать данных недостатков и применяется, так называемая, нормализация базы данных – дробление ее на подтаблицы, таблицы справочники. Не обязательно лезть в дебри теории и изучать что из себя представляют нормальные формы, достаточно понимать суть нормализации.

Давайте создадим 2 таблицы справочники «Должности» и «Отделы», первую назовем Positions, а вторую соответственно Departments:

CREATE TABLE Positions(ID int IDENTITY(1,1) NOT NULL CONSTRAINT PK_Positions PRIMARY KEY, Name nvarchar(30) NOT NULL) CREATE TABLE Departments(ID int IDENTITY(1,1) NOT NULL CONSTRAINT PK_Departments PRIMARY KEY, Name nvarchar(30) NOT NULL)
Заметим, что здесь мы использовали новую опцию IDENTITY, которая говорит о том, что данные в столбце ID будут нумероваться автоматически, начиная с 1, с шагом 1, т.е. при добавлении новых записей им последовательно будут присваиваться значения 1, 2, 3, и т.д. Такие поля обычно называют автоинкрементными. В таблице может быть определено только одно поле со свойством IDENTITY и обычно, но необязательно, такое поле является первичным ключом для данной таблицы.

На заметку
В разных СУБД реализация полей со счетчиком может делаться по своему. В MySQL, например, такое поле определяется при помощи опции AUTO_INCREMENT. В ORACLE и Firebird раньше данную функциональность можно было съэмулировать при помощи использования последовательностей (SEQUENCE). Но насколько я знаю в ORACLE сейчас добавили опцию GENERATED AS IDENTITY.

Давайте заполним эти таблицы автоматически, на основании текущих данных записанных в полях Position и Department таблицы Employees:

Заполняем поле Name таблицы Positions, уникальными значениями из поля Position таблицы Employees INSERT Positions(Name) SELECT DISTINCT Position FROM Employees WHERE Position IS NOT NULL -- отбрасываем записи у которых позиция не указана
То же самое проделаем для таблицы Departments:

INSERT Departments(Name) SELECT DISTINCT Department FROM Employees WHERE Department IS NOT NULL
Если теперь мы откроем таблицы Positions и Departments, то увидим пронумерованный набор значений по полю ID:

SELECT * FROM Positions

SELECT * FROM Departments

Данные таблицы теперь и будут играть роль справочников для задания должностей и отделов. Теперь мы будем ссылаться на идентификаторы должностей и отделов. В первую очередь создадим новые поля в таблице Employees для хранения данных идентификаторов:

Добавляем поле для ID должности ALTER TABLE Employees ADD PositionID int -- добавляем поле для ID отдела ALTER TABLE Employees ADD DepartmentID int
Тип ссылочных полей должен быть каким же, как и в справочниках, в данном случае это int.

Так же добавить в таблицу сразу несколько полей можно одной командой, перечислив поля через запятую:

ALTER TABLE Employees ADD PositionID int, DepartmentID int
Теперь пропишем ссылки (ссылочные ограничения - FOREIGN KEY) для этих полей, для того чтобы пользователь не имел возможности записать в данные поля, значения, отсутствующие среди значений ID находящихся в справочниках.

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID)
И то же самое сделаем для второго поля:

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID)
Теперь пользователь в данные поля сможет занести только значения ID из соответствующего справочника. Соответственно, чтобы использовать новый отдел или должность, он первым делом должен будет добавить новую запись в соответствующий справочник. Т.к. должности и отделы теперь хранятся в справочниках в одном единственном экземпляре, то чтобы изменить название, достаточно изменить его только в справочнике.

Имя ссылочного ограничения, обычно является составным, оно состоит из префикса «FK_», затем идет имя таблицы и после знака подчеркивания идет имя поля, которое ссылается на идентификатор таблицы-справочника.

Идентификатор (ID) обычно является внутренним значением, которое используется только для связей и какое значение там хранится, в большинстве случаев абсолютно безразлично, поэтому не нужно пытаться избавиться от дырок в последовательности чисел, которые возникают по ходу работы с таблицей, например, после удаления записей из справочника.

ALTER TABLE таблица ADD CONSTRAINT имя_ограничения FOREIGN KEY(поле1,поле2,…) REFERENCES таблица_справочник(поле1,поле2,…)
В данном случае в таблице «таблица_справочник» первичный ключ представлен комбинацией из нескольких полей (поле1, поле2,…).

Собственно, теперь обновим поля PositionID и DepartmentID значениями ID из справочников. Воспользуемся для этой цели DML командой UPDATE:

UPDATE e SET PositionID=(SELECT ID FROM Positions WHERE Name=e.Position), DepartmentID=(SELECT ID FROM Departments WHERE Name=e.Department) FROM Employees e
Посмотрим, что получилось, выполнив запрос:

SELECT * FROM Employees

Всё, поля PositionID и DepartmentID заполнены соответствующие должностям и отделам идентификаторами надобности в полях Position и Department в таблице Employees теперь нет, можно удалить эти поля:

ALTER TABLE Employees DROP COLUMN Position,Department
Теперь таблица у нас приобрела следующий вид:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID
1000 Иванов И.И. NULL NULL 2 1
1001 Петров П.П. NULL NULL 3 3
1002 Сидоров С.С. NULL NULL 1 2
1003 Андреев А.А. NULL NULL 4 3

Т.е. мы в итоге избавились от хранения избыточной информации. Теперь, по номерам должности и отдела можем однозначно определить их названия, используя значения в таблицах-справочниках:

SELECT e.ID,e.Name,p.Name PositionName,d.Name DepartmentName FROM Employees e LEFT JOIN Departments d ON d.ID=e.DepartmentID LEFT JOIN Positions p ON p.ID=e.PositionID

В инспекторе объектов мы можем увидеть все объекты, созданные для в данной таблицы. Отсюда же можно производить разные манипуляции с данными объектами – например, переименовывать или удалять объекты.

Так же стоит отметить, что таблица может ссылаться сама на себя, т.е. можно создать рекурсивную ссылку. Для примера добавим в нашу таблицу с сотрудниками еще одно поле ManagerID, которое будет указывать на сотрудника, которому подчиняется данный сотрудник. Создадим поле:

ALTER TABLE Employees ADD ManagerID int
В данном поле допустимо значение NULL, поле будет пустым, если, например, над сотрудником нет вышестоящих.

Теперь создадим FOREIGN KEY на таблицу Employees:

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID)
Давайте, теперь создадим диаграмму и посмотрим, как выглядят на ней связи между нашими таблицами:

В результате мы должны увидеть следующую картину (таблица Employees связана с таблицами Positions и Depertments, а так же ссылается сама на себя):

Напоследок стоит сказать, что ссылочные ключи могут включать дополнительные опции ON DELETE CASCADE и ON UPDATE CASCADE, которые говорят о том, как вести себя при удалении или обновлении записи, на которую есть ссылки в таблице-справочнике. Если эти опции не указаны, то мы не можем изменить ID в таблице справочнике у той записи, на которую есть ссылки из другой таблицы, так же мы не сможем удалить такую запись из справочника, пока не удалим все строки, ссылающиеся на эту запись или, же обновим в этих строках ссылки на другое значение.

Для примера пересоздадим таблицу с указанием опции ON DELETE CASCADE для FK_Employees_DepartmentID:

DROP TABLE Employees CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, ManagerID int, CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID) ON DELETE CASCADE, CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID)) INSERT Employees (ID,Name,Birthday,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219",2,1,NULL), (1001,N"Петров П.П.","19831203",3,3,1003), (1002,N"Сидоров С.С.","19760607",1,2,1000), (1003,N"Андреев А.А.","19820417",4,3,1000)
Удалим отдел с идентификатором 3 из таблицы Departments:

DELETE Departments WHERE ID=3
Посмотрим на данные таблицы Employees:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID ManagerID
1000 Иванов И.И. 1955-02-19 NULL 2 1 NULL
1002 Сидоров С.С. 1976-06-07 NULL 1 2 1000

Как видим, данные по отделу 3 из таблицы Employees так же удалились.

Опция ON UPDATE CASCADE ведет себя аналогично, но действует она при обновлении значения ID в справочнике. Например, если мы поменяем ID должности в справочнике должностей, то в этом случае будет производиться обновление DepartmentID в таблице Employees на новое значение ID которое мы задали в справочнике. Но в данном случае это продемонстрировать просто не получится, т.к. у колонки ID в таблице Departments стоит опция IDENTITY, которая не позволит нам выполнить следующий запрос (сменить идентификатор отдела 3 на 30):

UPDATE Departments SET ID=30 WHERE ID=3
Главное понять суть этих 2-х опций ON DELETE CASCADE и ON UPDATE CASCADE. Я применяю эти опции очень в редких случаях и рекомендую хорошо подумать, прежде чем указывать их в ссылочном ограничении, т.к. при нечаянном удалении записи из таблицы справочника это может привести к большим проблемам и создать цепную реакцию.

Восстановим отдел 3:

Даем разрешение на добавление/изменение IDENTITY значения SET IDENTITY_INSERT Departments ON INSERT Departments(ID,Name) VALUES(3,N"ИТ") -- запрещаем добавление/изменение IDENTITY значения SET IDENTITY_INSERT Departments OFF
Полностью очистим таблицу Employees при помощи команды TRUNCATE TABLE:

TRUNCATE TABLE Employees
И снова перезальем в нее данные используя предыдущую команду INSERT:

INSERT Employees (ID,Name,Birthday,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219",2,1,NULL), (1001,N"Петров П.П.","19831203",3,3,1003), (1002,N"Сидоров С.С.","19760607",1,2,1000), (1003,N"Андреев А.А.","19820417",4,3,1000)

Подытожим

На данным момент к нашим знаниям добавилось еще несколько команд DDL:
  • Добавление свойства IDENTITY к полю – позволяет сделать это поле автоматически заполняемым (полем-счетчиком) для таблицы;
  • ALTER TABLE имя_таблицы ADD перечень_полей_с_характеристиками – позволяет добавить новые поля в таблицу;
  • ALTER TABLE имя_таблицы DROP COLUMN перечень_полей – позволяет удалить поля из таблицы;
  • ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения FOREIGN KEY (поля) REFERENCES таблица_справочник(поля) – позволяет определить связь между таблицей и таблицей справочником.

Прочие ограничения – UNIQUE, DEFAULT, CHECK

При помощи ограничения UNIQUE можно сказать что значения для каждой строки в данном поле или в наборе полей должно быть уникальным. В случае таблицы Employees, такое ограничение мы можем наложить на поле Email. Только предварительно заполним Email значениями, если они еще не определены:

UPDATE Employees SET Email="[email protected]" WHERE ID=1000 UPDATE Employees SET Email="[email protected]" WHERE ID=1001 UPDATE Employees SET Email="[email protected]" WHERE ID=1002 UPDATE Employees SET Email="[email protected]" WHERE ID=1003
А теперь можно наложить на это поле ограничение-уникальности:

ALTER TABLE Employees ADD CONSTRAINT UQ_Employees_Email UNIQUE(Email)
Теперь пользователь не сможет внести один и тот же E-Mail у нескольких сотрудников.

Ограничение уникальности обычно именуется следующим образом – сначала идет префикс «UQ_», далее название таблицы и после знака подчеркивания идет имя поля, на которое накладывается данное ограничение.

Соответственно если уникальной в разрезе строк таблицы должна быть комбинация полей, то перечисляем их через запятую:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения UNIQUE(поле1,поле2,…)
При помощи добавления к полю ограничения DEFAULT мы можем задать значение по умолчанию, которое будет подставляться в случае, если при вставке новой записи данное поле не будет перечислено в списке полей команды INSERT. Данное ограничение можно задать непосредственно при создании таблицы.

Давайте добавим в таблицу Employees новое поле «Дата приема» и назовем его HireDate и скажем что значение по умолчанию у данного поля будет текущая дата:

ALTER TABLE Employees ADD HireDate date NOT NULL DEFAULT SYSDATETIME()
Или если столбец HireDate уже существует, то можно использовать следующий синтаксис:

ALTER TABLE Employees ADD DEFAULT SYSDATETIME() FOR HireDate
Здесь я не указал имя ограничения, т.к. в случае DEFAULT у меня сложилось мнение, что это не столь критично. Но если делать по-хорошему, то, думаю, не нужно лениться и стоит задать нормальное имя. Делается это следующим образом:

ALTER TABLE Employees ADD CONSTRAINT DF_Employees_HireDate DEFAULT SYSDATETIME() FOR HireDate
Та как данного столбца раньше не было, то при его добавлении в каждую запись в поле HireDate будет вставлено текущее значение даты.

При добавлении новой записи, текущая дата так же будет вставлена автоматом, конечно если мы ее явно не зададим, т.е. не укажем в списке столбцов. Покажем это на примере, не указав поле HireDate в перечне добавляемых значений:

INSERT Employees(ID,Name,Email)VALUES(1004,N"Сергеев С.С.","[email protected]")
Посмотрим, что получилось:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID ManagerID HireDate
1000 Иванов И.И. 1955-02-19 [email protected] 2 1 NULL 2015-04-08
1001 Петров П.П. 1983-12-03 [email protected] 3 4 1003 2015-04-08
1002 Сидоров С.С. 1976-06-07 [email protected] 1 2 1000 2015-04-08
1003 Андреев А.А. 1982-04-17 [email protected] 4 3 1000 2015-04-08
1004 Сергеев С.С. NULL [email protected] NULL NULL NULL 2015-04-08

Проверочное ограничение CHECK используется в том случае, когда необходимо осуществить проверку вставляемых в поле значений. Например, наложим данное ограничение на поле табельный номер, которое у нас является идентификатором сотрудника (ID). При помощи данного ограничения скажем, что табельные номера должны иметь значение от 1000 до 1999:

ALTER TABLE Employees ADD CONSTRAINT CK_Employees_ID CHECK(ID BETWEEN 1000 AND 1999)
Ограничение обычно именуется так же, сначала идет префикс «CK_», затем имя таблицы и имя поля, на которое наложено это ограничение.

Попробуем вставить недопустимую запись для проверки, что ограничение работает (мы должны получить соответствующую ошибку):

INSERT Employees(ID,Email) VALUES(2000,"[email protected]")
А теперь изменим вставляемое значение на 1500 и убедимся, что запись вставится:

INSERT Employees(ID,Email) VALUES(1500,"[email protected]")
Можно так же создать ограничения UNIQUE и CHECK без указания имени:

ALTER TABLE Employees ADD UNIQUE(Email) ALTER TABLE Employees ADD CHECK(ID BETWEEN 1000 AND 1999)
Но это не очень хорошая практика и лучше задавать имя ограничения в явном виде, т.к. чтобы разобраться потом, что будет сложнее, нужно будет открывать объект и смотреть, за что он отвечает.

При хорошем наименовании много информации об ограничении можно узнать непосредственно по его имени.

И, соответственно, все эти ограничения можно создать сразу же при создании таблицы, если ее еще нет. Удалим таблицу:

DROP TABLE Employees
И пересоздадим ее со всеми созданными ограничениями одной командой CREATE TABLE:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, HireDate date NOT NULL DEFAULT SYSDATETIME(), -- для DEFAULT я сделаю исключение CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID), CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT UQ_Employees_Email UNIQUE (Email), CONSTRAINT CK_Employees_ID CHECK (ID BETWEEN 1000 AND 1999))

INSERT Employees (ID,Name,Birthday,Email,PositionID,DepartmentID)VALUES (1000,N"Иванов И.И.","19550219","[email protected]",2,1), (1001,N"Петров П.П.","19831203","[email protected]",3,3), (1002,N"Сидоров С.С.","19760607","[email protected]",1,2), (1003,N"Андреев А.А.","19820417","[email protected]",4,3)

Немного про индексы, создаваемые при создании ограничений PRIMARY KEY и UNIQUE

Как можно увидеть на скриншоте выше, при создании ограничений PRIMARY KEY и UNIQUE автоматически создались индексы с такими же названиями (PK_Employees и UQ_Employees_Email). По умолчанию индекс для первичного ключа создается как CLUSTERED, а для всех остальных индексов как NONCLUSTERED. Стоит сказать, что понятие кластерного индекса есть не во всех СУБД. Таблица может иметь только один кластерный (CLUSTERED) индекс. CLUSTERED – означает, что записи таблицы будут сортироваться по этому индексу, так же можно сказать, что этот индекс имеет непосредственный доступ ко всем данным таблицы. Это так сказать главный индекс таблицы. Если сказать еще грубее, то это индекс, прикрученный к таблице. Кластерный индекс – это очень мощное средство, которое может помочь при оптимизации запросов, пока просто запомним это. Если мы хотим сказать, чтобы кластерный индекс использовался не в первичном ключе, а для другого индекса, то при создании первичного ключа мы должны указать опцию NONCLUSTERED:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY NONCLUSTERED(поле1,поле2,…)
Для примера сделаем индекс ограничения PK_Employees некластерным, а индекс ограничения UQ_Employees_Email кластерным. Первым делом удалим данные ограничения:

ALTER TABLE Employees DROP CONSTRAINT PK_Employees ALTER TABLE Employees DROP CONSTRAINT UQ_Employees_Email
А теперь создадим их с опциями CLUSTERED и NONCLUSTERED:

ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY NONCLUSTERED (ID) ALTER TABLE Employees ADD CONSTRAINT UQ_Employees_Email UNIQUE CLUSTERED (Email)
Теперь, выполнив выборку из таблицы Employees, мы увидим, что записи отсортировались по кластерному индексу UQ_Employees_Email:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID HireDate
1003 Андреев А.А. 1982-04-17 [email protected] 4 3 2015-04-08
1000 Иванов И.И. 1955-02-19 [email protected] 2 1 2015-04-08
1001 Петров П.П. 1983-12-03 [email protected] 3 3 2015-04-08
1002 Сидоров С.С. 1976-06-07 [email protected] 1 2 2015-04-08

До этого, когда кластерным индексом был индекс PK_Employees, записи по умолчанию сортировались по полю ID.

Но в данном случае это всего лишь пример, который показывает суть кластерного индекса, т.к. скорее всего к таблице Employees будут делаться запросы по полю ID и в каких-то случаях, возможно, она сама будет выступать в роли справочника.

Для справочников обычно целесообразно, чтобы кластерный индекс был построен по первичному ключу, т.к. в запросах мы часто ссылаемся на идентификатор справочника для получения, например, наименования (Должности, Отдела). Здесь вспомним, о чем я писал выше, что кластерный индекс имеет прямой доступ к строкам таблицы, а отсюда следует, что мы можем получить значение любого столбца без дополнительных накладных расходов.

Кластерный индекс выгодно применять к полям, по которым выборка идет наиболее часто.

Иногда в таблицах создают ключ по суррогатному полю, вот в этом случае бывает полезно сохранить опцию CLUSTERED индекс для более подходящего индекса и указать опцию NONCLUSTERED при создании суррогатного первичного ключа.

Подытожим

На данном этапе мы познакомились со всеми видами ограничений, в их самом простом виде, которые создаются командой вида «ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения …»:
  • PRIMARY KEY – первичный ключ;
  • FOREIGN KEY – настройка связей и контроль ссылочной целостности данных;
  • UNIQUE – позволяет создать уникальность;
  • CHECK – позволяет осуществлять корректность введенных данных;
  • DEFAULT – позволяет задать значение по умолчанию;
  • Так же стоит отметить, что все ограничения можно удалить, используя команду «ALTER TABLE имя_таблицы DROP CONSTRAINT имя_ограничения».
Так же мы частично затронули тему индексов и разобрали понятие кластерный (CLUSTERED ) и некластерный (NONCLUSTERED ) индекс.

Создание самостоятельных индексов

Под самостоятельностью здесь имеются в виду индексы, которые создаются не для ограничения PRIMARY KEY или UNIQUE.

Индексы по полю или полям можно создавать следующей командой:

CREATE INDEX IDX_Employees_Name ON Employees(Name)
Так же здесь можно указать опции CLUSTERED, NONCLUSTERED, UNIQUE, а так же можно указать направление сортировки каждого отдельного поля ASC (по умолчанию) или DESC:

CREATE UNIQUE NONCLUSTERED INDEX UQ_Employees_EmailDesc ON Employees(Email DESC)
При создании некластерного индекса опцию NONCLUSTERED можно отпустить, т.к. она подразумевается по умолчанию, здесь она показана просто, чтобы указать позицию опции CLUSTERED или NONCLUSTERED в команде.

Удалить индекс можно следующей командой:

DROP INDEX IDX_Employees_Name ON Employees
Простые индексы так же, как и ограничения, можно создать в контексте команды CREATE TABLE.

Для примера снова удалим таблицу:

DROP TABLE Employees
И пересоздадим ее со всеми созданными ограничениями и индексами одной командой CREATE TABLE:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, HireDate date NOT NULL CONSTRAINT DF_Employees_HireDate DEFAULT SYSDATETIME(), ManagerID int, CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID), CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID), CONSTRAINT UQ_Employees_Email UNIQUE(Email), CONSTRAINT CK_Employees_ID CHECK(ID BETWEEN 1000 AND 1999), INDEX IDX_Employees_Name(Name))
Напоследок вставим в таблицу наших сотрудников:

INSERT Employees (ID,Name,Birthday,Email,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219","[email protected]",2,1,NULL), (1001,N"Петров П.П.","19831203","[email protected]",3,3,1003), (1002,N"Сидоров С.С.","19760607","[email protected]",1,2,1000), (1003,N"Андреев А.А.","19820417","[email protected]",4,3,1000)
Дополнительно стоит отметить, что в некластерный индекс можно включать значения при помощи указания их в INCLUDE. Т.е. в данном случае INCLUDE-индекс чем-то будет напоминать кластерный индекс, только теперь не индекс прикручен к таблице, а необходимые значения прикручены к индексу. Соответственно, такие индексы могут очень повысить производительность запросов на выборку (SELECT), если все перечисленные поля имеются в индексе, то возможно обращений к таблице вообще не понадобится. Но это естественно повышает размер индекса, т.к. значения перечисленных полей дублируются в индексе.

Вырезка из MSDN. Общий синтаксис команды для создания индексов

CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX index_name ON (column [ ASC | DESC ] [ ,...n ]) [ INCLUDE (column_name [ ,...n ]) ]

Подытожим

Индексы могут повысить скорость выборки данных (SELECT), но индексы уменьшают скорость модификации данных таблицы, т.к. после каждой модификации системе будет необходимо перестроить все индексы для конкретной таблицы.

Желательно в каждом случае найти оптимальное решение, золотую середину, чтобы и производительность выборки, так и модификации данных была на должном уровне. Стратегия по созданию индексов и их количества может зависеть от многих факторов, например, насколько часто изменяются данные в таблице.

Заключение по DDL

Как можно увидеть, язык DDL не так сложен, как может показаться на первый взгляд. Здесь я смог показать практически все его основные конструкции, оперируя всего тремя таблицами.

Главное - понять суть, а остальное дело практики.

Удачи вам в освоении этого замечательного языка под названием SQL.

Сегодня мы обратимся к компьютерной теме, поэтому данная статья будет представлять особый интерес, прежде всего, для программистов. Мы с вами, дорогой читатель, поговорим о языке структурированных запросов, который в английском варианте шифруют как - SQL (Structured Query Language). Итак, ближе к делу. Прямо сейчас поговорим о том, что такое SQL и для чего он нужен.

Язык структурированных запросов - это универсальный язык для создания, модификации и управления информацией, которая входит в состав реляционных баз данных. Первоначально SQL был основным способом работы с данными. С помощью него пользователь мог выполнять следующие действия:

  • создание новой таблицы в базе данных (БД);
  • добавление новых записей в существующие таблицы;
  • редактирование записей;
  • полное удаление записей;
  • выбор записи из разных таблиц, в соответствии с заданными условиями;
  • изменение вида и структур одной или нескольких таблиц.

По мере своего развития, SQL сильно преобразился и обогатился новыми полезными функциями, в результате чего, все больше стал походить на настоящий язык программирования. На сегодняшний день, SQL - это единственный механизм, который способен связать прикладное программное обеспечение и базу данных. Вот, что такое SQL.

SQL обладает несколькими видами запросов. Стоит отметить, что любой запрос SQL подразумевает под собой или запрос данных из нужной базы, или обращение к базе с обязательным изменением в ней данных. В связи с этим принято выделять следующие виды запросов:

  • создание или изменение в базе данных новых или уже существующих в ней объектов;
  • получение данных;
  • добавление новых данных в таблицу;
  • удаление данных;
  • обращение к системе управления базами данных (СУБД).

Немного о преимуществах и недостатках данной системы работы с данными.

Преимущества SQL

  • Независимость от существующей в данной системе СУБД. Тексты SQL являются универсальными для многих СУБД. Однако это правило распространяется на простые задачи, связанные с обработкой данных в таблицах.
  • Наличие стандартов SQL способствует "стабилизации" языка.
  • Декларативность. Это преимущество заключается в том, что при работе с данными, программист выбирает только ту информацию, которая должна быть изменена или модифицирована. То, каким образом это будет сделано, в автоматическом режиме решается на программном уровне самой СУБД.

Недостатки SQL

  • SQL не соответствует реляционной модели построения данных. В этом плане, SQL замещает язык Tutorial D, который является истинно реляционным.
  • Сложность SQL определяет его предназначение. Язык настолько сложен, что им может пользоваться только программист. Хотя изначально он задумывался как средство управления, с которым будет работать обычный пользователь.
  • Некоторое несоответствие стандартов. Многие компании, разрабатывающие СУБД, добавляют свои особенности в диалект языка SQL, что существенно влияет на универсальность языка.

И последнее: что такое SQL Server? Это система управления базами данных, которая была разработана в стенах известной компании Microsoft. Данная система успешно работает с БД, как домашних персональных компьютеров, так и с крупными базами данных огромных предприятий. В этом сегменте рынка система SQL Server является более чем конкурентоспособной.

Ну и буквально в двух словах вспомним о MySQL. Это приложение, как правило, используется в качестве сервера, к которому поступают обращения от локальных или удаленных клиентов. MySQL также можно включать и в автономные программы. Следует отметить, что данное приложение является одним из самых гибких систем управления данными, так как включает в себя множество различных типов таблиц.