Влияние программных факторов на производительность пк. Программы которые помогают компьютеру работать лучше. Настройка BIOS для ускорения компьютера. Что влияет на производительность компьютера. Видео: «Как включить и отключить аппаратное ускорение?»

Не редкость, что проблемы в играх проявляются со временем и буквально возникают ниоткуда. Бывает и иначе - торможение компьютера проявляет с себя ещё в начале, сразу после установки какого-либо приложения. На все есть свои причины, но оба таких случая объединяет одно - они мешают получать удовольствие пользователю Windows 7. Для устранения этого можно попробовать увеличить производительность ПК.

Почему тормозят игры на Windows 7

Сначала пользователю необходимо обратить внимание на настройки самой игры, в частности, графические. Все дело в том, что игроки пытаются установить и играть в такие игры, системные требования которых не соответствуют техническим характеристикам устройства. Это самая простая и очевидная проблема, с которой может столкнуться каждый владелец ПК или ноутбука. Устранить такую проблему можно легко - изменить графические настройки используемого приложения, поставить все значения на минимум.

Часто пользователи ПК и ноутбуков просто забывают следить за обновлениями драйверов видеокарты и других компонентов системы, что, естественно, негативным образом сказывается на оптимизации компьютера в целом и приводит к появлению проблем в играх.

Пользователи ноутбуков, в отличие от тех людей, которые сидят за персональными компьютерами, могут испытывать проблемы, связанные с сильным нагреванием устройства. Для ноутбуков - это очень актуально, так как чаще всего они эксплуатируются не так, как было бы нужно. Наверняка вряд ли если у вас есть такое устройство, то вы поставите его на стол и будете сидеть за ним так же, как за стационарным ПК. Скорее всего, вы устроитесь удобнее, например, ляжете на диван или кровать и поставите ноутбук на себя. У большинства моделей таких девайсов система охлаждения находится в нижней части либо сбоку. Это означает то, что при работе на различных мягких поверхностях, устройство может «поглощать» пыль в больших количествах, а это крайне вредно для системы охлаждения и, как итог - для всего устройства.

Стационарные компьютеры тоже могут перегреваться, но обычно у них это обусловлено другими причинами - большими показателями производительности центрального процессора и других компонентов и отсутствие эффективной системы охлаждения - кулера, который просто физически не может выработать все тепло, поступающее от ЦП.

Оптимизация работы компьютера: как увеличить производительность

Оптимизация операционной системы в наше время доступна не только высококвалифицированным инженерам, но и абсолютно рядовым пользователям. Она позволит добиться наилучшей работоспособности всей системы в целом и улучшит работу игр как на стационарном компьютере, так и на ноутбуке .

Работа с системным реестром

Реестр присутствует в каждом компьютере. Это своеобразная база данных, которая содержит в себе различного рода сведения о конфигурации персонального компьютера или ноутбука, настройки используемой операционной системы, параметры программного обеспечения. Вполне естественно, что фрагментированный и захламлённый системный реестр может стать причиной появления ошибок в работе компьютера, значительного ухудшения производительности ПК. Информация заносится в системный реестр каждый раз при установке и удалении программного обеспечения, поэтому здесь может оставаться ненужный мусор. Найти проблемы в реестре можно с помощью специальных программ, в частности, CCleaner:

  • После установки и запуска, вам следует открыть вкладку под названием «Реестр» и нажать на кнопку «Поиск проблем». Время выполнения этого процесса напрямую зависит от объёма информации, которая хранится на вашем компьютере, поэтому наберитесь терпения.

    Поиск проблем в реестре

  • Когда эта процедура завершится, нажимайте на кнопку «Исправить», при этом может появиться оповещение, в котором вам будет предложено сохранить резервные копии данных. Лучше согласиться с этим, если вы не уверены в том, что удаляете, чтобы избежать возможных проблем в будущем.

    Исправление проблем в реестре

  • Последний шаг - нажмите кнопку «Исправить отмеченные» и дожидайтесь завершения процедуры.

    Удаление ненужных данных в реестре

  • Помните, что реестр этой операционной системы подвержен фрагментации, почему и происходит регулярное ухудшение работоспособности компьютеров на Windows 7. Системные утилиты, к сожалению, не могут эффективно работать с системным реестром, поэтому вам придётся установить дополнительную программу, например, Auslogics Registry Defrag.

    Дефрагментация и чистка жёсткого диска

    Для очистки жёсткого диска и его дефрагментации вам не потребуется никакого дополнительного ПО. Все можно сделать с помощью традиционных системных средств Windows 7. Для выполнения дефрагментации произведите следующие манипуляции:

  • Откройте меню «Пуск»;
  • Выберите «Мой компьютер»;

    «Компьютер» в меню «Пуск»

  • Выделяйте диск нажатием правой кнопки мыши, на котором хранится системная информация (по умолчанию - диск С) и заходите в «Свойства»;

    Выбираем «Свойства» диска

  • Переходите во вкладку «Сервис»;

    Дефрагментация диска во вкладке «Сервис»

  • В разделе «Дефрагментация диска» нажимайте на соответствующую кнопку.

    Выполняем дефрагментацию выбранного диска

  • Эта процедура позволяет не только провести дефрагментацию для улучшения работоспособности и оптимизации всей системы, но также изменить файловую систему диска (обычно используется NTFS).

    Время выполнения дефрагментации напрямую зависит от объёма выбранного диска, количества информации на ней и степени фрагментации файлов. Таким образом, процесс может занимать от нескольких минут, до нескольких часов. Желательно в это время отказаться от использования компьютера, так как это приведёт к сильному замедлению работы ПК.

    Чистка и освобождение оперативной памяти для ускорения процессов

    Количество работающих программ и приложений существенно влияют на производительность. Все они оказывают воздействие на оперативную память компьютера, поэтому перед запуском требовательного к системным ресурсам программного обеспечения следует закрывать все, что можно.

    Сначала требуется закрыть те программы, которые вам в настоящий момент не нужны. Как правило, все активные приложения отображаются в диспетчере задач. Открыть его можно с помощью простой комбинации клавиш Ctrl + Alt + Del либо нажать на панель задач снизу и выбрать «Диспетчер задач».

    Запуск диспетчера задач

    Сразу же появится окно со списком всех запущенных приложений. Выделяете то, которое вам не нужно в настоящее время и нажимаете на кнопку «Снять задачу».

    Чистим ОЗУ, отключая не нужные приложения

    Конечно, кроме активных и видимых приложений, в работе компьютера участвуют и другие, работающие в так называемом фоновом режиме. Все эти программы можно увидеть в том же диспетчере задач, если перейти во вкладку «Процессы».

    Отключение процессов для освобождения памяти

    Как правило, некоторые из них могут оказывать существенное влияние на производительность ПК, его оптимизацию, но помните о том, что отключение неизвестных вам процессов может привести к потере данных либо ухудшению работы компьютера (особенно если завершить системный процесс). Именно по этой причине желательно отключать только те процессы, которые вы знаете.

    Оптимизация визуальных эффектов

    В Windows 7 предусмотрен обновлённый графический интерфейс - Aero, который потребляет внушительное количество системных ресурсов. Соответственно, он может влиять на оптимизацию системы, а его отключение позволит добиться наилучших показателей производительности. Проблемы с этим интерфейсом обычно возникают только на слабых компьютерах и ноутбуках, обладающих интегрированной или просто старой видеокартой. Во всех остальных случаях, изменение визуальных эффектов практически ничего не изменит.

    Для того чтобы сократить потребление системных ресурсов, вовсе не обязательно полностью отключать Aero. Вы можете изменить некоторые настройки в специальном меню:

  • Открываете меню «Пуск» и «Панель управления»;

  • В списке всех утилит найдите и откройте «Систему»;

    Открываем параметр «Система»

  • Далее, необходимо выбрать «Дополнительные параметры системы» и перейти во вкладку «Дополнительно»;

    Нажимаем на вкладку «Дополнительные параметры системы»

  • Нажмите на кнопку «Параметры» и выберите «Быстродействие».

    Настройка Быстродействия

  • Итак, здесь будет представлен полный список особых визуальных эффектов. Если вы не хотите полностью отключать интерфейс Aero, то можете убрать галочку только со следующих пунктов: анимированные элементы управления, затухание, отбрасывание теней, их отображение, отображение прямоугольного выделения.

    Отключаем визуальные эффекты интерфейса

    Отключение этих параметров позволит оптимизировать систему и оставит приятный внешний вид интерфейса операционной системы. Конечно, можно отключить и другие настройки, но помните о том, что в таком случае эффект будет заметен намного сильнее.

    Настройка BIOS

    BIOS - интегрированная среда, предназначенная для изменения аппаратных настроек компьютера. С помощью настройки BIOS’а вы можете добиться наилучших показателей производительности ПК или ноутбука . Перепрошивать BIOS или изменять такие параметры, как частота процессора, скорость шины и прочее - не рекомендуется, так как вы рискуете тем, что ваш ЦП просто сгорит. Поэтому рассмотрим наиболее простые, оптимальные даже для рядовых пользователей возможности.

    Во-первых, обратите внимание на настройку системы охлаждения (в зависимости от версии БИОСа наименования пунктов могут меняться). Для этого:

  • Войдите в БИОС с помощью клавиши Del во время запуска компьютера;
  • Откройте меню Advanced;

    Входим в настройки БИОС

  • Здесь обратите своё внимание на опцию Fan Speed. Она может иметь три настройки: Enable (кулер будет работать всегда на высоких оборотах), Auto (кулер будет подстраиваться под нагрузку на систему), Disable (отключает кулер);

    Настраиваем работу кулера в БИОСЕ

  • Выбираете то, что вам нужно, сохраняете и выходите из «БИОСа».
  • Во-вторых, если на вашем устройстве установлено две видеокарты (интегрированная и дискретная), то в меню «БИОСа» Advanced вы можете изменить настройки переключаемой графики. Для этого выбираете пункт VGA Mode SELECT и в списке указываете то, что вам нужно: dGPU Mode - активируется встроенная видеокарта или Power Xpress Mode - активируется дискретная видеокарта.

    Параметры переключаемой графики в БИОС

    Настройка файла подкачки

    Файл подкачки - своеобразное дополнение к оперативной памяти. Можно сказать, что это виртуальная память, которую пользователь может настраивать самостоятельно. Файл подкачки берётся из жёсткого диска, указанного пользователем объёма. Как известно, скорость передачи работы винчестера намного ниже, чем ОЗУ, поэтому сказать о том, что файл подкачки может полностью заменить собой оперативную память - нельзя, но он благоприятно влияет на общую оптимизацию. Для изменения и настройки файла подкачки следует:

  • Открыть меню «Пуск» и выбрать «Панель управления»;

    Открываем «Панель управления»

  • Далее, переходим во вкладку «Система» и открываем «Дополнительные параметры»;

    Открываем параметр «Система»

  • Переходим в «Быстродействие» и нажимаем на кнопку «Параметры»;

    Настройка Быстродействия

  • Во вкладке «Дополнительно» есть раздел «Виртуальная память», которая нам и нужна;
  • Нажимаем кнопку «Изменить».

    Нажимаем «Изменить» в разделе «Виртуальная память»

  • Появится окно настроек, где вы выбираете раздел диска, файл подкачки которого нужно изменить, нажимаете на кнопку «Указать размер» и задаёте его. Помните о том, что файл подкачки по своей сути представляет определённую область, занятую на жёстком диске. Не рекомендуется устанавливать большое значение, ведь система автоматически будет размещать данные о программах в этом файле, а доступ к нему намного медленнее, чем к ОЗУ, соответственно, производительность может упасть. Оптимальный размер составляет примерно 30% от количества оперативной памяти. Последний шаг - нажимаете кнопку «Задать» и перезагружаете компьютер для того, чтобы изменения вступили в силу.

    Настройка видеокарты

    Снижению производительности на Windows 7 может способствовать неправильная настройка графического адаптера. Такая проблема наиболее актуальна для ноутбуков, так как они обладают интегрированной и дискретной видеокартами. Ни для кого не будет секретом то, что современные производители регулярно выпускают не только драйвера, но и системные настройки для своих продуктов. Например, для Nvidia - Geforce Experience, а для видеокарт ATI Radeon - Catalyst Control Center. С помощью этого программного обеспечения можно изменять множество настроек, в том числе добиться оптимизации устройства в целом.

    Итак, если у вас дискретная и встроенная видеокарта, то необходимо изменить опции в используемом программном обеспечении. Для видеокарт от Nvidia:

  • Щёлкнуть правой кнопкой мыши в свободном месте и выбрать «Панель управления Nvidia»:

    Открываем панель Nvidia

  • Появится окно настроек, в левом меню которого следует найти опцию «Управление параметрами 3D»;

    Настройка видеокарты Nvidia

  • Далее, выбрать вкладку «Программные настройки» и нажать кнопку «Добавить»;

    Программные настройки Nvidia

  • После щелчка появится список приложений, установленных на вашем компьютере, выбираете нужное и указываете предпочтительный графический адаптер в соответствующем списке.
  • Таким образом можно настроить любое приложение, и теперь после его запуска вся работа будет перенаправляться на ту видеокарту, которую вы указали.

    Для видеокарт от ATI Radeon все немножко иначе:

  • Щёлкнуть правой кнопкой мыши на рабочем столе и выбрать «Catalyst Control Center»:

    Открываем Catalyst Control Center

  • Появится окно настроек, где сперва нужно изменить представление на «Расширенное» и выбрать параметр «Настройка 3D-приложений»;

    Изменяем представление Catalyst Control Center

  • После щелчка появится список настроек. Выбираете тот параметр, который вам нужен и в появившемся списке выбираете опцию «Высокая производительность».

    Настройка производительности в Catalyst Control Center

  • Таким образом система автоматически будет запускать самый мощный графический адаптер после активации определённого приложения.

    Функция ReadyBoost

    Мало кто знает, но в операционной системе Windows 7 предусмотрена возможность использования флеш-накопителей в качестве дополнительного устройства кэширования данных. Так пользователи могут значительно увеличить скорость выполнения функций чтения-записи данных, соответственно, оптимизировать свой компьютер или ноутбук, улучшить производительность. Активировать ReadyBoost можно следующим способом:

  • Вставляйте USB-накопитель в соответствующий разъем системного блока;
  • После отображения окна автозапуска, выберите «Ускорить работу системы используя Windows ReadyBoost»;

    Запуск опции ReadyBoost

  • В окне активируйте параметр «Использовать это устройство» и укажите максимальный объем памяти;

    Настраиваем параметры ReadyBoost

  • Нажмите кнопку «Применить».
  • Все готово к использованию, на флешке будет создан специальный файл, в котором и будет размещаться информация программ и приложений. Помните о том, что флеш-накопитель ни в коем случае нельзя вытаскивать, по крайней мере, до завершения работы с компьютером.

    Использование дополнительного ПО

    Большинство указанных выше манипуляций можно выполнять с помощью специального программного обеспечения. К тому же такие программы зачастую обладают дополнительным функционалом, расширенными настройками, которые позволяют оптимизировать работу системы самым лучшим образом.

    Razer Game Booster

    Razer Game Booster - одно из самых популярных приложений, которое предоставляет большой набор опций для оптимизации игр и других программ, установленных на компьютере. Утилита бесплатная и её можно без проблем найти на просторах интернета. Для работы потребуется зарегистрироваться на сайте разработчиков, что ни для кого не составит труда, а потом войти в интерфейс программы под своим логином и паролем.

    Настройка выполняется в несколько кликов - достаточно указать «Игровой режим», после чего системные ресурсы будут направляться только на запущенную пользователем игру:

  • Выберите вкладку «Запуск»;
  • Нажмите кнопку «Добавить» и выберите игру;
  • Выделите игру и в меню снизу активируйте игровой режим.
  • Конечно, все бы ничего, но программа идеально работает только с мощными компьютерами. Поэтому на старых ПК лучше воспользоваться другими утилитами для оптимизации.

    Эта программа появилась давно и получила хорошую репутацию. Её используют повсюду, так как она обладает приятным и понятным интерфейсом, а также всем необходимым функционалом для оптимизации системы. Программа распространяется бесплатно. Поэтому любой пользователь может без проблем найти её в сети и скачать. CCleaner позволяет производить анализ системы, в том числе, находит информацию, которая может быть скрыта в некоторых приложениях. Эту информацию можно посмотреть после запуска функции «Очистка». Также с помощью такой утилиты можно сканировать реестр, о чём было сказано чуть раньше, соответственно, выбирается эта вкладка. Недостатков у этой программы мало, собственно, поэтому к её использованию и прибегают многие пользователи ПК. Пожалуй, единственное, что здесь можно отметить - возможность удаления важных данных из реестра, но и тут пользователя своевременно оповестят о создании резервной копии.

    GameGain

    GameGain - программное обеспечение, которое позволяет выжать максимум из компьютера или ноутбука. Она обладает вполне приятным и понятным интерфейсом, минимумом настроек, значит, сложностей в работе с GameGain почти ни у кого не будет. Эта утилита так же бесплатна и её можно без труда найти в сети и скачать. После запуска появится окно, в котором будет предложено выбрать операционную систему, а также тип процессора. Как вы укажите эти данные, передвигайте ползунок до тех пор, пока не получите оптимальную производительность. Следует сказать о том, что работа компьютера на максимальных параметрах «разгона», а в случае с этой программой будет именно «разгон», ведёт к снижению времени эксплуатации компьютера или ноутбука. Вы рискуете тем, что можете лишиться своего «железного друга» раньше положенного времени.

    System Care

    System Care - программа, предназначенная для очистки системных фалов операционной системы от различного мусора. К сожалению, программа является платной, а также не имеет возможности смены языка, а для некоторых русскоязычных пользователей это может быть преградой. К тому же System Care имеет довольно сложный интерфейс, отдалённо напоминающий CCleaner, но в отличие от этой программы, пользователям придётся разбираться - что и где здесь находится. К сожалению, эта программа не несёт никакой пользы. Она распространяется вирусным, обманным путём, а после первой же проверки компьютера, во время которой якобы находятся вирусы и огромное количество ненужного хлама, вам предоставляют возможность её купить.

    Driver Booster

    Driver Booster - программа, которая выполняет в автоматическом режиме поиск самых свежих драйверов для ключевых элементов персонального компьютера или ноутбука. Эта утилита будет полезна всем, так как обновлять драйвера нужно регулярно, но каждый раз искать их для своей модели комплектующих - весьма скучное занятие. Это бесплатное программное обеспечение можно без труда найти на просторах сети и установить на свой компьютер. Driver Booster обладает понятным и простым интерфейсом, осуществляет быструю и удобную проверку на наличие обновлений, не нуждается в постоянном контроле пользователя. К сожалению, пакетное обновление драйверов с этой утилитой зачастую тратить очень много времени и регулярно возникает потребность в перезагрузке системы. Тем не менее это очень удобная и хорошая программа.

    Что делать, чтобы игры снова не тормозили? Как поддерживать систему в порядке?

    Чтобы игры перестали тормозить, вам следует регулярно поддерживать свой компьютер или ноутбук в хорошем состоянии. Старайтесь избегать установки множества ненужных программ, производите полную очистку системы от ПО, а также не забывайте про системный реестр, в котором даже после удаления могут быть остаточные файлы и данные. Для этого пользуйтесь CCleaner и сделайте его своим «лучшим другом». Раз в месяц проводите дефрагментацию и анализ системы, тогда игры на вашем компьютере перестанут тормозить.

    Выполнение указанных операций позволит каждому пользователю, вне зависимости от конфигурации персонального компьютера оптимизировать работу устройства, повысить производительность как в онлайн, так и одиночных играх. Регулярно выполняйте проверку на наличие остаточных данных, файлов и удаляйте их, тогда компьютер будет работать эффективно.

    Скорость и производительность работы компьютера определяется множеством факторов. Невозможно добиться ощутимого повышения производительности за счёт улучшения характеристик какого-либо одного устройства, например, за счёт повышения тактовой частоты процессора. Только тщательно подобрав и сбалансировав все компоненты компьютера можно добиться существенного повышения производительности работы компьютера.

    Следует помнить, что компьютер не может работать быстрее, чем самое медленное из устройств, задействованных для выполнения этой задачи.

    Тактовая частота процессора

    Наиболее важный параметр производительности компьютера - скорость процессора , или, как её называют, тактовая частота , которая влияет на скорость выполнения операций в самом процессоре . Тактовой частотой называют рабочую частоту ядра процессора (т. е. той части, которая выполняет основные вычисления) при максимальной загрузке. Отметим, что другие компоненты компьютера могут работать на частотах, отличных от частоты процессора.

    Измеряется тактовая частота в мегагерцах (MHz) и гигагерцах (GHz) . Количество тактов в секунду, выполняемых процессором, не совпадает с количеством операций, выполняемых процессором за секунду, поскольку для реализации многих математических операций требуется несколько тактов. Понятно, что в одинаковых условиях процессор с более высокой тактовой частотой должен работать эффективнее, чем процессор с более низкой тактовой частотой.

    С увеличением тактовой частоты процессора увеличивается и число операций, совершаемых компьютером за одну секунду, а следовательно, возрастает и скорость работы компьютера.

    Объем оперативной памяти

    Важным фактором, влияющим на производительность компьютера, является объем оперативной памяти и её быстродействие (время доступа, измеряется в наносекундах). Тип и объем оперативной памяти оказывает большое влияние на скорость работы компьютера.


    Самым быстро работающим устройством в компьютере является процессор . Вторым по скорости работы устройством компьютера является оперативная память, однако, оперативная память значительно уступает процессору по скорости.

    Чтобы сравнить скорость работы процессора и оперативной памяти, достаточно привести только один факт: почти половину времени процессор простаивает в. ожидании ответа от оперативной памяти. Поэтому чем меньше время доступа к оперативной памяти (т. е. чем она быстрее), тем меньше постаивает процессор, и тем быстрее работает компьютер.

    Чтение и запись информации из оперативной памяти осуществляется значительно быстрее, чем с любого другого устройства для хранения информации, например, с винчестера, поэтому увеличение объёма оперативной памяти и установка более быстрой памяти приводит к увеличению производительности компьютера при работе с приложениями.

    Объем жёсткого диска и скорость работы жёсткого диска

    На производительность компьютера влияет скорость связи шины жёсткого диска и свободный объем дискового пространства.


    Объем жёсткого диска, как правило, влияет на количество программ, которые вы можете установить на компьютер, и на количество хранимых данных. Ёмкость накопителей для жёстких дисков измеряется, как правило, десятками и сотнями гигабайт.

    Жёсткий диск работает медленнее, чем оперативная память . Так как скорость обмена данными для жёстких дисков Ultra DMA 100 не превышает 100 мегабайт в секунду (133 Мбайт/сек для Ultra DMA 133). Ещё медленнее происходит обмен данными в DVD и CD-приводах.

    Важными характеристиками винчестера, влияющими на Скорость работы компьютера, являются:

    • Скорость вращения шпинделя;
    • Среднее время поиска данных;
    • Максимальная скорость передачи данных.

    Размер свободного места на жёстком диске

    При нехватке места в оперативной памяти компьютера Windows и многие прикладные программы вынуждены размещать часть данных, необходимых для текущей работы, на жёстком диске, создавая так называемые временные файлы (swap files) или файлы подкачки .

    Поэтому важно, чтобы на диске было достаточно свободного места для записи временных файлов. При недостатке свободного места на диске многие приложения просто не могут корректно работать или их скорость работы значительно падает.

    После завершения работы приложения все временные файлы, как правило, автоматически удаляются с диска, освобождая место на винчестере. Если размер оперативной памяти достаточен для работы (не менее нескольких Гб), то размер файла подкачки для персонального компьютера не так существенно влияет на быстродействие компьютера и может быть установлен минимальным.

    Дефрагментация файлов

    Операции удаления и изменения файлов на диске приводят к фрагментации файлов, выражающейся в том, что файл занимает не соседние области на диске, а разбивается на несколько частей, хранящихся в разных областях диска. Фрагментация файлов приводит к дополнительным затратам на поиск всех частей открываемого файла, что замедляет доступ к диску и уменьшает (как правило, не существенно) общее быстродействие диска.

    Например, для выполнения дефрагментации в операционной системе Windows 7 щёлкните по кнопке Пуск и в раскрывшемся главном меню выберите последовательно команды Все программы, Стандартные, Служебные, Дефрагментация диска .

    Количество одновременно работающих приложений

    Windows - многозадачная операционная система , которая позволяет одновременно работать сразу с несколькими приложениями. Но чем больше приложений одновременно работают, тем сильнее возрастает нагрузка на процессор, оперативную память, жёсткий диск, и тем самым замедляется скорость работы всего компьютера, всех приложений.

    Поэтому те приложения, которые не используются в данный момент, лучше закрыть, освобождая ресурсы компьютера для оставшихся приложений.

    Процессор – это основной вычислительный компонент, который сильно влияет на производительность компьютера. Но на сколько производительность в играх зависит от процессора? Стоит ли менять процессор для повышения производительности в играх? Какой прирост это даст? На эти вопросы мы и попытаемся найти ответ в этой статье.

    1. Что менять видеокарту или процессор

    Не так давно я опять столкнулся с нехваткой производительности компьютера и стало ясно, что настало время очередного апгрейда. На тот момент моя конфигурация была следующей:

    • Phenom II X4 945 (3 ГГц)
    • 8 Гб DDR2 800 МГц
    • GTX 660 2 Гб

    В целом производительность компьютера меня вполне устраивала, система работала довольно шустро, большинство игр шли на высоких или средне/высоких настройках графики, а видео я монтировал не так часто, так что 15-30 минут рендеринга меня не напрягали.

    Первые проблемы возникли еще в игре World of Tanks, когда смена настроек графики с высоких на средние не давала ожидаемого прироста производительности. Частота кадров периодически просаживалась с 60 до 40 FPS. Стало ясно, что производительность упирается в процессор. Тогда было решено до 3.6 ГГц, что решило проблемы в WoT.

    Но шло время, выходили новые тяжелые игры, а с WoT я пересел на более требовательную к системным ресурсам (Армата). Ситуация повторилась и стал вопрос что менять – видеокарту или процессор. Смысла менять GTX 660 на 1060 не было, нужно было брать хотя бы GTX 1070. Но такую видеокарту старичок Phenom точно не потянул бы. Да и при смене настроек в Армате было ясно, что производительность опять уперлась в процессор. Поэтому было решено заменить сначала процессор с переходом на более производительную в играх платформу Intel.

    Замена процессора тянула за собой замену материнской платы и оперативной памяти. Но другого выхода не было, кроме того была надежда на то, что более мощный процессор позволит полнее раскрыться старой видеокарте в процессорозависимых играх.

    2. Выбор процессора

    Процессоров Ryzen на тот момент еще не было, их выход только ожидался. Для того, чтобы полноценно оценить их, нужно было дождаться их выхода и массового тестирования для выявления сильных и слабых сторон.

    Кроме того, уже было известно, что цена на момент их выхода будет довольно высокой и нужно было ждать еще около полугода пока цены на них станут более адекватными. Желания столько ждать не было, ровно как и спешно переходить на еще сырую платформу AM4. А, учитывая вечные ляпы AMD, это было еще и рискованно.

    Поэтому процессоры Ryzen не рассматривались и предпочтение отдавалось уже проверенной, отточенной и хорошо себя зарекомендовавшей платформе Intel на сокете 1151. И, как показала практика, не зря, так как процессоры Ryzen оказались хуже в играх, а в других задачах производительности мне и так было достаточно.

    Сначала выбор был между процессорами Core i5:

    • Core i5-6600
    • Core i5-7600
    • Core i5-6600K
    • Core i5-7600K

    Для игрового компьютера среднего класса i5-6600 был вариантом минимум. Но на перспективу замены видеокарты хотелось иметь какой-то запас. Core i5-7600 отличался не сильно, поэтому изначально планировалось приобрести Core i5-6600K или Core i5-7600K с возможностью разгона до стабильных 4.4 ГГц.

    Но, ознакомившись с результатами тестов в современных играх, где загрузка этих процессоров приближалась к 90%, было ясно, что в перспективе их может немного не хватить. А хотелось иметь хорошую платформу с запасом на долго, так как прошли те времена, когда можно было делать апгрейд ПК каждый год

    Поэтому я начал присматриваться к процессорам Core i7:

    • Core i7-6700
    • Core i7-7700
    • Core i7-6700K
    • Core i7-7700K

    В современных играх они загружаются еще не на полную, а где-то на 60-70%. Но, у Core i7-6700 базовая частота всего 3.4 ГГц, а у Core i7-7700 не многим больше – 3.6 ГГц.

    По результатам тестов в современных играх с топовыми видеокартами наибольший прирост производительности наблюдается на отметке 4 ГГц. Дальше он уже не столь значительный, иногда практически незаметный.

    Несмотря на то, что процессоры i5 и i7 оснащены технологией авторазгона (), рассчитывать на нее особо не стоит, так как в играх, где задействованы все ядра, прирост будет незначительный (всего 100-200 МГц).

    Таким образом, процессоры Core i7-6700K (4 ГГц) и i7-7700K (4.2 ГГц) являются более оптимальными, а учитывая возможность разгона до стабильных 4.4 ГГц, еще и значительно более перспективными чем i7-6700 (3.4 ГГц) и i7-7700 (3.6 ГГц), так как разница в частоте уже составит 800-1000 МГц!

    На момент апгрейда процессоры Intel 7-го поколения (Core i7-7xxx) только появились и стоили ощутимо дороже процессоров 6-го поколения (Core i7-6xxx), цены на которые уже начали снижаться. При этом в новом поколении обновили только встроенную графика, которая для игр не нужна. А возможности разгона у них практически одинаковые.

    Кроме того, материнки на новых чипсетах тоже стоили дороже (хотя можно поставить процессор на более старый чипсет, это может быть сопряжено с некоторыми проблемами).

    Поэтому было решено брать Core i7-6700K с базовой частотой 4 ГГц и возможностью разгона до стабильных 4.4 ГГц в будущем.

    3. Выбор материнской платы и памяти

    Я, как большинство энтузиастов и технических экспертов, отдаю предпочтение качественным и стабильным материнкам от ASUS. Для процессора Core i7-6700K с возможностью разгона оптимальным вариантом являются материнские платы на чипсете Z170. Кроме того, хотелось иметь более качественную встроенную звуковую карту. Поэтому было решено взять самую недорогую игровую материнку от ASUS на чипсете Z170 – .

    Память, с учетом поддержки материнкой частоты модулей до 3400 МГц, хотелось также побыстрее. Для современного игрового ПК оптимальным вариантом является комплект памяти DDR4 2×8 Гб. Оставалось найти оптимальный по соотношению цена/частота комплект.

    Изначально выбор пал на AMD Radeon R7 (2666 МГц), так как цена была весьма заманчива. Но, на момент заказа, ее не оказалось на складе. Пришлось выбирать между гораздо более дорогой G.Skill RipjawsV (3000 МГц) и чуть менее дорогой Team T-Force Dark (2666 МГц).

    Это был сложный выбор, так как память хотелось побыстрее, а средства были ограничены. По результатам тестов в современных играх (которые я изучил), разница в производительности между памятью с частотой 2133 МГц и 3000 МГц составляла 3-13% и в среднем 6%. Это не так много, но хотелось получить максимум.

    Но дело в том, что быстрая память делается путем заводского разгона более медленных чипов. Память G.Skill RipjawsV (3000 МГц) не исключение и, для достижения такой частоты, напряжение питания у нее составляет 1.35 В. Кроме того, процессоры тяжело переваривают память со слишком высокой частотой и уже на частоте 3000 МГц система может работать не стабильно. Ну и повышенное напряжение питания приводит к более быстрому износу (деградации) как чипов памяти, так и контроллера процессора (об этом официально заявляла компания Intel).

    В тоже время память Team T-Force Dark (2666 МГц) работает при напряжении 1.2 В и, по заявлениям производителя, допускает повышение напряжения до 1.4 В, что при желании позволит разогнать ее вручную. Взвесив все за и против, выбор был сделан в пользу памяти со стандартным напряжением 1.2 В.

    4. Тесты производительности в играх

    Перед сменой платформы я сделал тесты производительности старой системы в некоторых играх. После смены платформы те же тесты были произведены повторно.

    Тесты производились на чистой системе Windows 7 с одной и той же видеокартой (GTX 660) на высоких настройках графики, так как целью замены процессора было повышение производительности без снижения качества изображения.

    Для достижения более точных результатов в тестах использовались только игры со встроенным бенчмарком. В качестве исключения тест производительности в танковом онлайн шутере Armored Warfare производился путем записи реплея и дальнейшего его проигрывания со снятием показателей с помощью Fraps.

    Высокие настройки графики.

    Тест на Phenom X4 (@3.6 ГГц).

    По результатам теста видно, что средний FPS изменился незначительно (с 36 до 38). Значит производительность в данной игре упирается в видеокарту. Тем не менее, минимальные просадки FPS во всех тестах значительно уменьшились (с 11-12 до 21-26), а значит играть все равно будет немного комфортнее.

    В надежде на повышение производительности с DirectX 12 позже я сделал тест в Windows 10.

    Но результаты оказались даже хуже.

    Batman: Arkham Knight

    Высокие настройки графики.

    Тест на Phenom X4 (@3.6 ГГц).

    Тест на Core i7-6700K (4.0 ГГц).

    Игра очень требовательна как к видеокарте, так и к процессору. Из тестов видно, что замена процессора привела к существенному росту среднего FPS (с 14 до 23), и уменьшению минимальных просадок (с 0 до 15), максимальное значение также выросло (с 27 до 37). Тем не менее, эти показатели не позволяют комфортно играть, поэтому я решил провести тесты со средними настройками и отключил различные эффекты.

    Средние настройки графики.

    Тест на Phenom X4 (@3.6 ГГц).

    Тест на Core i7-6700K (4.0 ГГц).

    На средних настройках средний FPS также немного вырос (с 37 до 44), и существенно снизились просадки (с 22 до 35), перекрыв минимально допустимый для комфортной игры порог в 30 FPS. Разрыв в максимальном значении также сохранился (с 50 до 64). В результате смены процессора играть стало вполне комфортно.

    Переход на Windows 10 абсолютно ничего не изменил.

    Deus Ex: Mankind Divided

    Высокие настройки графики.

    Тест на Phenom X4 (@3.6 ГГц).

    Тест на Core i7-6700K (4.0 ГГц).

    Результатом замены процессора стало лишь снижение просадок FPS (с 13 до 18). Тесты со средними настройками, я к сожалению забыл провести Но провел тест на DirectX 12.

    В результате лишь просел минимальный FPS.

    Armored Warfare : Проект Армата

    Я частенько играю в эту игру и она стала одной из основных причин обновления компьютера. На высоких настройках игра выдавала 40-60 FPS с редкими, но неприятными просадками до 20-30.

    Снижение настроек до средних устраняло серьезные просадки, но средний FPS оставался почти таким же, что является косвенным признаком нехватки производительности процессора.

    Был записан реплей и произведены тесты в режиме воспроизведения с помощью FRAPS на высоких настройках.

    Их результаты я свел в табличку.

    Процессор FPS (мин ) FPS (сред ) FPS (макс )
    Phenom X4 (@3.6 ГГц) 28 51 63
    Core i7-6700K (4.0 ГГц) 57 69 80

    Замена процессора полностью исключила критичные просадки FPS и серьезно повысила среднюю частоту кадров. Это позволило включить вертикальную синхронизацию, сделав картинку более плавной и приятной. При этом игра выдает стабильные 60 FPS без просадок и играть очень комфортно.

    Другие игры

    Я не проводил тесты, но в целом похожая картина наблюдается в большинстве онлайн и процессорозависимых игр. Процессор серьезно влияет на FPS в таких онлайн играх как Battlefield 1 и Overwatch. А также в играх с открытым миром типа GTA 5 и Watch Dogs.

    Сам я ради эксперимента устанавливал GTA 5 на старый ПК с процессором Phenom и новый с Core i7. Если раньше при высоких настройках FPS держался в пределах 40-50, то теперь стабильно держится выше отметки 60 практически без просадок и часто доходит до 70-80. Эти изменения заметны невооруженным глазом, а вооруженный просто гасит всех подряд

    5. Тест производительности в рендеринге

    Я не много занимаюсь монтажом видео и провел всего один простейший тест. Отрендерил Full HD видео длиной 17:22 и объемом 2.44 Гб в меньший битрейт в программе Camtasia, которой я пользуюсь. В результате получился файл объемом 181 Мб. Процессоры справились с задачей за следующее время.

    Процессор Время
    Phenom X4 (@3.6 ГГц) 16:34
    Core i7-6700K (4.0 ГГц) 3:56

    Само собой, в рендеринге была задействована видеокарта (GTX 660), ибо я ума не приложу кому придет в голову проводить рендеринг без видеокарты, так как это занимает в 5-10 раз больше времени. Кроме того, плавность и скорость воспроизведения эффектов при монтаже также очень сильно зависит от видеокарты.

    Тем не менее, зависимость от процессора никто не отменял и Core i7 справился с этой задачей в 4 раза быстрее, чем Phenom X4. С повышением сложности монтажа и эффектов это время может значительно возрастать. То с чем Phenom X4 будет пыхтеть 2 часа, Core i7 осилит за 30 минут.

    Если вы планируете серьезно заниматься монтажом видео, то мощный многопоточный процессор и большой объем памяти существенно сэкономят вам время.

    6. Заключение

    Аппетиты современных игр и профессиональных приложений очень быстро растут, требуя постоянных вложений в модернизацию компьютера. Но если у вас слабый процессор, то нет смысла менять видеокарту, он просто ее не раскроет, т.е. производительность упрется в процессор.

    Современная платформа на основе мощного процессора с достаточным объемом оперативной памяти обеспечит высокую производительность вашего ПК на годы вперед. При этом снижаются затраты на апгрейд компьютера и отпадает необходимость полностью менять ПК через несколько лет.

    7. Ссылки

    Процессор Intel Core i7-8700
    Процессор Intel Core i5-8400
    Процессор Intel Core i3 8100

    * всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

    Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

    Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

    Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

    Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

    Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

    Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

    Intel vs. AMD

    *догонялки навсегда

    Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

    Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

    Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

    Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

    Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

    Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

    Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

    Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

    Частота процессора, количество ядер, многопоточность.

    Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

    Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

    Что же нам даёт многоядерность ?

    Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

    * при условии одинаковых архитектур и количества кэш памяти

    Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

    Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

    Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

    Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

    При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

    Кэш память процессора.

    – это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

    Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

    Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

    Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

    Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

    При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

    В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

    Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

    Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

    Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

    Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

    Фирменные технологии.

    (гипер-поточность, HT )–

    впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

    Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

    Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

    Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

    , 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

    3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

    *А именно возможность потоковой обработки вещественных чисел одинарной точности.

    Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

    * Пример — SSE 4.1(Intel) — SSE 4A(AMD).

    К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

    Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

    Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

    Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

    Intel Virtualization Technology и AMD Virtualization .

    Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

    Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

    Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

    Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

    * Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

    Дополнительно.

    Пара слов о .

    На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

    Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

    Встроенное в процессор .

    Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

    К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

    Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

    Сокеты для процессоров. Сроки жизни платформ .


    Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

    Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

    Охлаждение процессора.

    В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

    Заключение.

    Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

    • Выбрать производителя
    • Архитектура процессора
    • Техпроцесс
    • Частота процессора
    • Количество ядер процессора
    • Размер и тип кэш-памяти процессора
    • Поддержка технологий и инструкций
    • Качественное охлаждение

    Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

    анонс новой утилиты измерения производительности с точки зрения приложений, зависимых от скорости работы памяти

    Как правило, при тестировании производительности платформ акцент делается на процессорозависимые приложения. Но скорость системы зависит не только от центрального процессора. И сейчас мы даже не вспоминаем о графически насыщенных приложениях и использовании GPU для вычислений общего назначения, в которых значимую роль играет выбор видеокарты. Речь, как нетрудно догадаться, пойдет о влиянии производительности памяти, и нашей попытке количественно оценить это влияние.

    Зависимость общей производительности системы от памяти имеет сложный характер, что затрудняет прямую оценку скорости памяти, то есть сравнения различных модулей. Например, память с частотой 1600 МГц имеет вдвое большую пропускную способность, чем 800-мегагерцовая. И синтетические тесты памяти прилежно выведут столбик в два раза выше. Но если вы протестируете целую систему с этими двумя видами памяти с помощью популярных тестовых приложений, на которых обычно тестируют процессоры, то и близко не получите двухкратной разницы в производительности. Интегральный индекс быстродействия может отличаться максимум на несколько десятков процентов.

    Это делает синтетические тесты памяти малоинформативными с практической точки зрения. Нельзя, однако, поручиться и за то, что подход с применением реальных приложений дает нам стопроцентно достоверную картину, поскольку велика вероятность, что какие-то режимы, где производительность памяти действительно критична, остались без внимания и не были учтены.

    Краткая теория

    Чтобы понять специфику проблемы, рассмотрим принципиальную схему взаимодействия приложения, ЦП и подсистемы памяти. Уже давно для описания работы центрального процесса считается удачной аналогия с заводским конвейером. И движутся по этому конвейеру инструкции из программного кода, а функциональные модули процессора обрабатывают их словно станки. Тогда современные многоядерные ЦП будут подобны заводам с несколькими цехами. Например, работу технологии Hyper-Threading можно сравнить с конвейером, по которому едут вперемешку детали сразу нескольких автомобилей, и умные станки обрабатывают их одновременно, по метке на деталях определяя, к какой модели машины они относятся. Например, собирается красная и синяя машины, тогда красящий станок использует красную краску для деталей красной машины и синюю краску для синей. И поток деталей сразу для двух моделей позволяет лучше загрузить станки. А если аппарат для покраски будет иметь два распылителя, и сможет красить одновременно две детали в разные цвета, конвейер сможет работать на полную мощность вне зависимости от того, в каком порядке будут поступать детали. Наконец, последний писк моды, реализуемый в будущих процессорах AMD, в которых различные ядра ЦП будут иметь некоторые общие функциональные блоки, можно сравнить с идеей сделать часть особо громоздких и дорогих станков общей для двух цехов, чтобы сэкономить заводскую площадь и сократить капитальные затраты.

    С точки зрения данной аналогии, системная память будет являться внешним миром, который поставляет на завод сырье и принимает готовый продукт, а кэш-память - это некий склад непосредственно на заводской территории. Чем больше у нас системной памяти, тем больший виртуальный мир мы можем обеспечивать выпускаемой продукцией, и чем больше частота ЦП и количество ядер, тем мощнее и производительнее наш завод. А чем больше размер кэш-памяти, то есть заводского склада, тем меньше будет обращений в системную память - запросов на поставку сырья и комплектующих.

    Производительность памяти в этой аналогии будет соответствовать скорости транспортной системы по доставке сырья и отправке деталей во внешний мир. Допустим, доставка на завод осуществляется при помощи грузовиков. Тогда параметрами транспортной системы будут вместимость грузовика и скорость движения, то есть время доставки. Это хорошая аналогия, так как работа ЦП с памятью осуществляется с помощью отдельных транзакций с блоками памяти фиксированного размера, причем данные блоки расположены рядом, в одном участке памяти, а не произвольно. И для общей производительности завода важна не только скорость работы конвейера, но и оперативность подвоза компонентов и вывоза готовых изделий.

    Произведение объема кузова на скорость движения, то есть количество грузов, которые можно перевезти в единицу времени, будет соответствовать пропускной способности памяти (ПСП). Но очевидно, что системы с одинаковой ПСП не обязательно равноценны. Важно значение каждого компонента. Скоростной маневренный грузовичок может оказаться лучше, чем большой, но медленный транспорт, так как необходимые данные могут лежать в различных участках памяти, расположенных далеко друг от друга, а вместимость грузовика (или объем транзакции) много меньше общего объема (памяти), и тогда даже большому грузовику придется совершить два рейса, и его вместимость не будет востребована.

    Другие же программы имеют так называемый локальный доступ к памяти, то есть они читают или пишут в близко расположенные ячейки памяти - им относительно безразлична скорость случайного доступа. Это свойство программ объясняет эффект от наращивания объемов кэш-памяти в процессорах, которая, благодаря близкому расположению к ядру, в десятки раз быстрее. Даже если программа требует, например, 512 МБ общей памяти, в каждый отдельный небольшой промежуток времени (например, миллион тактов, то есть одна миллисекунда), программа может работать только с несколькими мегабайтами данных, которые успешно помещаются в кэше. И потребуется только обновлять время от времени содержимое кэша, что, в общем, происходит быстро. Но может быть и обратная ситуация: программа занимает всего 50 МБ памяти, но постоянно работает со всем этим объемом. А 50 МБ значительно превышают типичный размер кэша существующих настольных процессоров, и, условно говоря, 90% обращений к памяти (при размере кэша в 5 МБ) не кэшируются, то есть 9 из 10 обращений идут непосредственно в память, так как необходимых данных нет в кэше. И общая производительность будет почти полностью лимитирована скоростью памяти, так как процессор практически всегда будет находиться в ожидании данных.

    Время доступа к памяти в случае, когда данных нет в кэше, составляет сотни тактов. И одна инструкция обращения к памяти по времени равноценна десяткам арифметических.

    «Памятенезависимые» приложения

    Позволим себе один раз использовать такой корявый термин для приложений, производительность в которых на практике не зависит от смены модулей на более высокочастотные и низколатентные. Откуда вообще такие приложения берутся? Как мы уже отметили, все программы имеют различные требования к памяти, в зависимости от используемого объема и характера доступа. Каким-то программам важна только общая ПСП, другие, наоборот, критичны к скорости доступа к случайным участкам памяти, которая иначе называется латентностью памяти. Но очень важно также, что степень зависимости программы от параметров памяти во многом определяется характеристиками центрального процессора - прежде всего, размером его кэша, так как при увеличении объема кэш-памяти рабочая область программы (наиболее часто используемые данные) может поместиться целиком в кэш процессора, что качественно ускорит программу и сделает её малочувствительной к характеристикам памяти.

    Кроме того, важно, как часто в коде программы встречаются сами инструкции обращения к памяти. Если значительная часть вычислений происходит с регистрами, велик процент арифметических операций, то влияние скорости памяти снижается. Тем более что современные ЦП умеют изменять порядок выполнения инструкций и начинают загружать данные из памяти задолго до того, как те реально понадобятся для вычислений. Такая технология называется предвыборкой данных (prefetch). Качество реализации данной технологии также влияет на памятезависимость приложения. Теоретически, ЦП с идеальным prefetch не потребуется быстрая память, так как он не будет простаивать в ожидании данных.

    Активно развиваются технологии спекулятивной предвыборки, когда процессор, даже ещё не имея точного значения адреса памяти, уже посылает запрос на чтение. Например, процессор для номера некоторой инструкции обращения к памяти запоминает последний адрес ячейки памяти, которая читалась. И когда ЦП видит, что скоро потребуется исполнить данную инструкцию, он посылает запрос на чтение данных по последнему запомненному адресу. Если повезет, то адрес чтения памяти не изменится, или изменится в пределах читаемого за одно обращение к памяти блока. Тогда латентность доступа к памяти отчасти скрадывается, поскольку параллельно с доставкой данных процессор исполняет инструкции, предшествующие чтению из памяти. Но, разумеется, такой подход не является универсальным и эффективность предвыборки сильно зависит от особенностей алгоритма программы.

    Однако разработчики программ также в курсе характеристик современного поколения процессоров, и зачастую в их силах (при желании) оптимизировать объем данных таким образом, чтобы он помещался в кэш-памяти даже бюджетных процессоров. Если мы работаем с хорошо оптимизированным приложением - для примера можно вспомнить некоторые программы кодирования видео, графические или трехмерные редакторы, - у памяти, с практической точки зрения, не будет такого параметра, как производительность, будет только объем.

    Еще одна причина, по которой пользователь может не обнаружить разницы при смене памяти, состоит в том, что она и так слишком быстрая для используемого процессора. Если бы сейчас все процессоры вдруг замедлились в 10 раз, то для производительности системы в большинстве программ стало бы абсолютно все равно, какой тип памяти в ней установлен - хоть DDR-400, хоть DDR3-1600. А если бы ЦП радикально ускорились, то производительность значительной части программ наоборот стала бы гораздо существеннее зависеть от характеристик памяти.

    Таким образом, реальная производительность памяти есть величина относительная, и определяется в том числе и используемым процессором, а также особенностями ПО.

    «Памятезависимые» приложения

    А в каких пользовательских задачах производительность памяти имеет большее значение? По странной, но на самом деле имеющей глубокие основания причине - в случаях, которые сложно тестировать.

    Тут сразу вспоминаются игрушки-стратегии со сложным и «медленным» искусственным интеллектом (ИИ). Ими никто не любит тестировать ЦП, так как инструменты для оценки либо отсутствуют, либо характеризуются большими погрешностями. На скорость выработки решения алгоритмом ИИ влияют множество факторов - например, иногда закладываемая в ИИ вариативность решений, чтобы сами решения выглядели более «человеческими». Соответственно, и реализация различных вариантов поведения занимает разное время.

    Но это не значит, что у системы в данной задаче нет производительности, что она не определена. Просто её сложно точно вычислить, для этого потребуется собрать большое количество статистических данных, то есть провести множество испытаний. Кроме того, такие приложения сильно зависят от скорости памяти из-за использования сложной структуры данных, распределенных по оперативной памяти зачастую непредсказуемым образом, поэтому упомянутые выше оптимизации могут просто не работать или действовать неэффективно.

    Достаточно сильно от производительности памяти могут зависеть и игры других жанров, пусть не со столь умным искусственным интеллектом, зато с собственными алгоритмами имитации виртуального мира, включая физическую модель. Впрочем, они на практике чаще всего упираются в производительность видеокарты, поэтому тестировать на них память также бывает не очень удобно. Кроме того, важным параметром комфортного игрового процесса в трехмерных играх от «первого лица» является минимальное значение fps: его возможное проседание в пылу жестокой битвы может иметь самые плачевные для виртуального героя последствия. А минимальный fps тоже, можно сказать, невозможно измерить. Опять же - из-за вариативного поведения ИИ, особенностей расчета «физики» и случайных системных событий, которые тоже могут приводить к проседанию. Как прикажете в таком случае анализировать полученные данные?

    Тестирование скорости игр в демо-роликах имеет ограниченное применение еще и потому, что не все части игрового движка бывают задействованы для воспроизведения демки, и в реальной игре на скорость могут влиять иные факторы. Причем даже в таких наполовину искусственных условиях минимальный fps непостоянен, и его редко приводят в отчетах о тестировании. Хотя, повторимся, это наиболее важный параметр, и в тех случаях, когда идет обращение к данным, проседание fps весьма вероятно. Ведь современные игры, в силу своей сложности, разнообразия кода, включающего помимо поддержки физического движка и искусственного интеллекта также подготовку графической модели, обработку звука, передачу данных через сеть и пр., очень зависят как от объема, так и от производительности памяти. Кстати, будет заблуждением считать, что графический процессор обрабатывает сам всю графику: он только рисует треугольники, текстуры и тени, а формированием команд все равно занимается ЦП, и для сложной сцены это вычислительно емкая задача. К примеру, когда вышел Athlon 64 с интегрированным контроллером памяти, наибольший прирост в скорости по сравнению со старым Athlon был именно в играх, хотя там не использовались 64-битность, SSE2 и другие новые «фишки» Athlon 64. Именно существенное повышение эффективности работы с памятью благодаря интегрированному контроллеру сделало тогдашний новый процессор AMD чемпионом и лидером по производительности в первую очередь в играх.

    Многие другие сложные приложения, прежде всего серверные, в случае которых имеет место обработка случайного потока событий, также существенно зависят от производительности подсистемы памяти. Вообще, используемое в организациях ПО, с точки зрения характера кода программы, зачастую не имеет аналогов среди популярных приложений для домашних персоналок, и поэтому весьма существенный пласт задач остается без адекватной оценки.

    Ещё одним принципиальным случаем усиленной зависимости от памяти является режим многозадачности, то есть запуск нескольких ресурсоемких приложений одновременно. Вспомним снова все тот же AMD Athlon 64 с интегрированным контроллером памяти, который к моменту анонса Intel Core выпускался уже в двухъядерном варианте. Когда вышел Intel Core на новом ядре, процессоры AMD стали проигрывать везде, кроме SPEC rate - многопоточном варианте SPEC CPU, когда запускается столько копий тестовой задачи, сколько ядер в системе. Новое интеловское ядро, обладая большей вычислительной мощностью, тупо затыкалось в этом тесте в производительность памяти, и даже большой кэш и широкая шина памяти не помогали.

    Но почему это не проявлялось в отдельных пользовательских задачах, в том числе многопоточных? Главной причиной было то, что большинство пользовательских приложений, которые в принципе хорошо поддерживают многоядерность, всячески оптимизированы. Вспомним в очередной раз пакеты для работы с видео и графикой, которые больше всех получают прирост от многопоточности - всё это оптимизированные приложения. К тому же объем используемой памяти меньше, когда код параллелится внутри программы - по сравнению с вариантом, когда запускаются несколько копий одной задачи, а тем более - разные приложения.

    А вот если запустить на ПК сразу несколько различных приложений, нагрузка на память возрастет многократно. Это произойдет по двум причинам: во-первых, кэш-память будет поделена между несколькими задачами, то есть каждой достанется только часть. В современных ЦП кэш L2 или L3 - общий для всех ядер, и если одна программа использует много потоков, то они все могут выполняться на своем ядре и работать с общим массивом данных в L3-кэше, а если программа однопоточна, то ей достается весь объем L3 целиком. Но если потоки принадлежат различным задачам, объем кэша будет вынужденно делиться между ними.

    Вторая причина заключается в том, что большее количество потоков создаст больше запросов на чтение-запись памяти. Возвращаясь к аналогии с заводом, понятно, что если на заводе работают все цеха на полную мощность, то сырья потребуется больше. А если они делают различные машины, то заводской склад будет переполнен различными деталями, и конвейер каждого цеха не сможет воспользоваться деталями, предназначенными для другого цеха, так как они от разных моделей.

    Вообще, проблемы с ограниченной производительностью памяти - главная причина низкой масштабируемости многоядерных систем (после, собственно, приципиальных ограничений возможности распараллеливания алгоритмов).

    Типичным примером такой ситуации на ПК будет одновременный запуск игры, «скайпа», антивируса и программы кодирования видеофайла. Пусть не типичная, но совсем не фантастическая ситуация, в которой очень сложно корректно измерить скорость работы, так как на результат влияют действия планировщика в составе ОС, который при каждом замере может по-иному распределять задачи и потоки по разным ядрам и давать им различные приоритеты, временны́е интервалы и делать это в разной последовательности. И опять-таки, наиболее важным параметром будет пресловутая плавность работы - характеристика, по аналогии с минимальным fps в играх, которую в данном случае измерить еще сложнее. Что толку от запуска игры или какой-то другой программы одновременно с кодированием видеофайла, если поиграть нормально не удастся из-за рывков изображения? Пусть даже видеофайл быстро сконвертируется, поскольку многоядерный процессор в данном случае может быть и недогружен. Здесь нагрузка на систему памяти будет гораздо больше, чем при исполнении каждой из перечисленных задач по отдельности.

    В случае использования ПК как рабочей станции, ситуация одновременного исполнения нескольких приложений даже более типична, чем для домашнего ПК, и сама скорость работы ещё более важна.

    Проблемы тестирования

    Сразу целая группа факторов снижает чувствительность ЦП-ориентированных тестов к скорости памяти. Очень чувствительные к памяти программы представляют собой плохие тесты ЦП - в том смысле, что они слабо реагируют на модель ЦП. Такие программы могут различать процессоры с контроллером памяти, снижающим латентность доступа к памяти, и без оного, но при этом в пределах одного семейства почти не реагировать на частоту процессора, показывая сходные результаты при работе на частоте 2500 и 3000 МГц. Часто такие приложения отбраковываются как тесты ЦП, ибо тестеру просто непонятно, что лимитирует их производительность, и кажется, что дело в «чудачествах» самой программы. Будет удивительно, если все процессоры (и AMD, и Intel) покажут в тесте одинаковый результат, но такое вполне возможно для приложения, очень сильно зависимого от памяти.

    Чтобы избежать упреков в необъективности и вопросов, почему выбрана та или иная программа, в тесты стараются включать только наиболее популярные приложения, которыми все пользуются. Но такая выборка не совсем репрезентативна: наиболее популярные приложения из-за своей массовости часто очень хорошо оптимизированы, а оптимизация программы начинается с оптимизации её работы с памятью - она важнее, например, чем оптимизация под SSE1-2-3-4. Но совсем не все на свете программы так хорошо оптимизируются; попросту на все программы не хватит программистов, которые умеют писать быстрый код. Опять возвращаясь к популярным программам кодирования, многие из них были написаны при непосредственном активном участии инженеров фирм-изготовителей ЦП. Как и некоторые другие популярные ресурсоемкие программы, в частности медленные фильтры двухмерных графических редакторов и движки рендеринга студий трехмерного моделирования.

    В свое время было популярно сравнивать компьютерные программы с дорогами. Эта аналогия потребовалась, чтобы объяснить, почему на некоторых программах быстрее работает Pentium 4, а на некоторых Athlon. Интеловский процессор не любил ветвления и быстрее «ехал» по прямым дорогам. Это очень упрощенная аналогия, но она удивительно хорошо передает суть. Особенно интересно, когда две точки на карте соединяют две дороги - «оптимизированная» прямая качественная дорога и «неоптимизированная» кривая ухабистая. В зависимости от выбора одной из дорог, ведущих к цели, выигрывает тот или иной процессор, хотя в каждом случае они делают одно и тоже. То есть на неоптимизированном коде выигрывает Athlon, а при простой оптимизации приложения выигрывает Pentium 4 - и сейчас мы даже не говорим о специальной оптимизации под архитектуру Netburst: в таком случае Pentium 4 мог бы посоревноваться даже с Сore. Другое дело, что хорошие «оптимизированные» дороги строить дорого и долго, и это обстоятельство во многом предопределило печальную участь Netburst.

    Но если мы отойдем от популярных наезженных трасс, то окажемся в лесу - там вообще нет никаких дорог. И немало приложений написаны безо всякой оптимизации, что почти неминуемо влечет сильную зависимость от скорости памяти в случае, если объем рабочих данных превышает размер кэша ЦП. К тому же множество программ пишутся на языках программирования, которые в принципе не поддерживают оптимизацию.

    Специальный тест памяти

    Для того чтобы корректно оценить влияние скорости памяти на производительность системы в случае, когда память имеет значение (для упомянутых «памятезависимых» приложений, мультизадачности и т. п.), исходя из всех вышеперечисленных обстоятельств и решено было создать специальный тест памяти, который по структуре кода представляет собой некое обобщенное сложное, зависимое от памяти приложение и имеет режим запуска нескольких программ.

    Какие плюсы есть у такого подхода? Их очень много. В отличие от «натуральных» программ, возможен контроль над объемом используемой памяти, контроль над её распределением, контроль над количеством потоков. Специальное контролируемое выделение памяти позволяет нивелировать влияние особенностей менеджера памяти программы и операционной системы на производительность, чтобы результаты были не зашумлены, и можно было корректно и быстро тестировать. Точность измерения позволяет производить тест за относительно небольшое время и оценить большее количество конфигураций.

    Тест основан на измерении скорости работы алгоритмов из типичных для сложных приложений программных конструкций, работающих с нелокальными структурами данных. То есть данные распределены в памяти достаточно хаотично, а не составляют один небольшой блок, и доступ в память не является последовательным.

    В качестве модельной задачи была взята модификация теста Astar из SPEC CPU 2006 Int (кстати, предложенный для включения в этот пакет автором статьи; для теста памяти использован адаптированный для графов алгоритм) и задача сортировки данных с помощью различных алгоритмов. Программа Astar имеет сложный алгоритм с комплексным доступом к памяти, а алгоритмы сортировки числового массива - базовая задача программирования, использующаяся во множестве приложений; она включена, в том числе, для дополнительного подтверждения результатов сложного теста данными производительности простой, но распространенной и классической задачи.

    Интересно, что существует несколько алгоритмов сортировки, но они отличаются по типу шаблона доступа к памяти. В некоторых доступ к памяти в целом локален, а другие используют сложные структуры данных (например, бинарные деревья), и доступ к памяти хаотичен. Интересно сравнить, насколько параметры памяти влияют при различном типе доступа - при том, что обрабатывается одинаковый размер данных и количество операций не сильно отличается.

    Согласно исследованиям набора тестов SPEC CPU 2006, тест Astar - один из нескольких, в наибольшей мере коррелирующих с общим результатом пакета на x86-совместимых процессорах. Но в нашем тесте памяти объем используемых программой данных был увеличен, так как со времени выпуска теста SPEC CPU 2006 типичный объем памяти возрос. Также программа приобрела внутреннюю многопоточность.

    Программа Astar реализует алгоритм нахождения пути на карте с помощью одноименного алгоритма. Сама по себе задача типична для компьютерных игр, прежде всего стратегий. Но используемые программные конструкции, в частности множественное применение указателей, также типичны для сложных приложений - например, серверного кода, баз данных или просто кода компьютерной игры, не обязательно искусственного интеллекта.

    Программа осуществляет операции с графом, соединяющим пункты карты. То есть каждый элемент содержит ссылки на соседние, они как бы соединены дорогами. Есть два подтеста: в одном граф строится на основе двухмерной матрицы, то есть плоской карты, а во втором - на основе трехмерной матрицы, которая представляет собой некий сложный массив данных. Структура данных аналогична так называемым спискам - популярному способу организации данных в программах с динамическим созданием объектов. Такой тип адресации в целом характерен для объектно-ориентированного ПО. В частности, это практически все финансовые, бухгалтерские, экспертные приложения. И характер их обращений к памяти разительно контрастирует с типом доступа у оптимизированных на низком уровне вычислительных программ, вроде программ видеокодирования.

    Каждый из подтестов имеет два варианта реализации многопоточности. В каждом из вариантов запускается N потоков, но в одном каждая из нитей осуществляет поиск пути на собственной карте, а в другом все нити ищут пути одновременно на одной карте. Так получаются несколько различных шаблонов доступа, что делает тест более показательным. Объем используемой памяти по умолчанию в обоих вариантах одинаков.

    Таким образом, в первой версии теста получается 6 подтестов:

    • Поиск пути на 2D-матрице, общая карта
    • Поиск пути на 2D-матрице, отдельная карта для каждого потока
    • Поиск пути на 3D-матрице, общая карта
    • Поиск пути на 3D-матрице, отдельная карта для каждого потока
    • Сортировка массива с использованием алгоритма quicksort (локальный доступ к памяти)
    • Сортировка массива с использованием алгоритма heapsort (сложный доступ к памяти)

    Результаты теста

    Результаты теста отражают время нахождения заданного количества путей и время сортировки массива, то есть меньшее значение соответствует лучшему результату. В первую очередь качественно оценивается: реагирует ли в принципе данный процессор на заданной частоте на изменение частоты памяти или её настройки, частоту шины, тайминги и т. п. То есть отличаются ли результаты теста на данной системе при использовании различных типов памяти, или процессору хватает минимальной скорости.

    Количественные результаты в процентах относительно конфигурации по умолчанию дают оценку прироста или падения скорости работы памятезависимых приложений или мультизадачной конфигурации при использовании различных типов памяти.

    Тест сам по себе не предназначен для точного сравнения различных моделей ЦП, так как из-за того, что организация кэшей и алгоритмы предвыборки данных могут у них существенно отличаться, тест может отчасти благоволить определенным моделям. Но качественная оценка семейств ЦП между собой вполне возможна. А память производства различных компаний устроена одинаково, поэтому здесь субъективная составляющая исключена.

    Также тест может быть использован для оценки масштабируемости процессоров по частоте при разгоне или внутри модельного ряда. Он позволяет понять, с какой частоты процессор начинает «затыкаться» в память. Часто процессор формально разгоняется сильно, и синтетические тесты, основанные на выполнении простых арифметических операций, показывают соответствующий изменению частоты прирост, но в памятезависимом приложении прироста может и не быть вообще из-за отсутствия соответствующего прироста в скорости памяти. Другая причина заключается в том, что ядро ЦП теоретически может потреблять больше энергии в случае сложного приложения и начнет либо сбоить, либо само снижать частоту, что не всегда возможно выявить в простых арифметических тестах.

    Заключение

    Если бы платформы и сокеты не менялись столь часто, то всегда можно было бы рекомендовать покупать самую быструю память, так как после апгрейда на новый более мощный и быстрый процессор возрастут и требования к памяти. Однако оптимальной стратегией все же является покупка сбалансированной конфигурации, поскольку сама память тоже прогрессирует, пусть и не так быстро, но ко времени смены процессора, вполне возможно, потребуется обновить и память. Поэтому тестирование производительности подсистемы памяти в сочетании с разными процессорами, в том числе в режиме разгона, остается актуальной и даже насущной задачей, которая позволит выбрать оптимальную связку, не переплачивая за лишние мегагерцы.

    На самом деле, проблема ускорения доступа к данным - краеугольный камень современного процессоростроения. Узкое место здесь будет всегда, если только, конечно, сам процессор не будет состоять полностью из кэш-памяти, что, кстати, недалеко от истины - львиную долю площади кристаллов современных ЦП занимает как раз кэш-память разных уровней. (В частности, Intel заработал свои рекордные миллиарды, в том числе, благодаря тому, что в свое время разработал метод более плотного размещения кэшей на кристалле, то есть на единицу площади кристалла помещается больше ячеек кэша и больше байт кэш-памяти.) Однако всегда будут существовать приложения, которые либо невозможно оптимизировать таким образом, чтобы данные умещались в кэш-памяти, либо этим просто некому заниматься.

    Поэтому быстрая память зачастую является столь же практичным выбором, как покупка внедорожника для человека, который хочет иметь возможность с комфортом передвигаться как по асфальту, так и по дорогам с «неоптимизированным» покрытием.