Верификация и валидация имитационных моделей систем. Верификация и валидация: что это простыми словами? В чем разница между валидацией и верификацией? Работа со сборкой

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

По дисциплине « Имитационное моделирование »

На тему: « Валидация и верификация имитационной модели »

Введение

2. Валидация

Заключение

Введение

Качество информации является одним из важнейших параметров для потребителя информации. Оно определяется следующими характеристиками:

Репрезентативность - правильность отбора информации в целях адекватного отражения источника информации.

Достаточность (полнота) - минимальный, но достаточный состав данных для достижения целей, которые преследует потребитель информации.

Доступность - простота (или возможность) выполнения процедур получения и преобразования информации.

Актуальность - зависит от динамики изменения характеристик информации и определяется сохранением ценности информации для пользователя в момент ее использования.

Своевременность - поступление не позже заранее назначенного срока.

Точность - степень близости информации к реальному состоянию источника информации.

Достоверность - свойство информации отражать источник информации с необходимой точностью.

Устойчивость - способность информации реагировать на изменения исходных данных без нарушения необходимой точности.

Вопросы получения качественной информации в результате имитационного эксперимента встают и перед специалистами в области имитационного моделирования.

Имитационные модели получают все большее применение в процессе решения задач и принятия решений. В том, что модель и полученные с ее помощью результаты являются верными, в полной мере заинтересованы как разработчики модели, ее пользователи и лица, принимающие решения, так и люди, на которых оказывают влияние решения, принятые на основе данной модели. Эта заинтересованность в первую очередь относится к верификации и валидации модели. Под верификацией чаще всего понимают проверку правильности преобразования концептуальной имитационной модели в программную модель, под валидацией - проверку правильности её поведения и представления концептуальной модели. В Министерстве Обороны США широко применяются имитационные модели. В последние годы Министерство Обороны проявляет интерес к верификации, валидации и концепции, известной как аккредитация (VV&A- Validation, Veryfication and Accreditation). Аккредитация определяется как «официальное засвидетельствование того, что модель, симуляция, или объединение моделей и симуляций является допустимым для использования для определенной цели».

Аккредитация - это официальное свидетельство (спонсора проекта) того, что имитационная модель применима для данной задачи. Министерство Обороны поддержало концепцию аккредитации, так как кто-то должен нести ответственность за принятие решения о возможности использования модели для данной задачи - от этого зависит большие суммы денег и жизни людей.

По одному из принципов тестирования полное тестирование систем имитационного моделирование невозможно (Balci). Исчерпывающее (полное) тестирование требует тестирования систем имитационного моделирования при всех возможных значениях входных параметров. Комбинации возможных значений входных параметров для систем имитационного моделирования в ходе исполнения программы могут привести к миллионам логических цепочек. Но в силу временных и денежных ограничений тестирование правильности такого большого количества логических цепочек невозможно.

Поэтому можно сказать, что «единственный существующий способ исчерпывающего тестирования - это тестирование до тех пор, пока тестеры не исчерпают все свои силы».

Следовательно, целью тестирования систем имитационного моделирования является увеличение уверенности в правильности системы в той мере, как это диктуется планируемым использованием системы и целями проекта, а не попытка полного тестирования системы имитационного моделирования.

Несмотря на то, что существуют более 100 методов верификации и валидации , в связи с временными и ресурсными ограничениями, для тестирования систем имитационного моделирования используется только очень ограниченный набор методов. Ограниченное тестирование не позволяет доказать достаточную точность систем имитационного моделирования. Поскольку использование только лишь валидации имеет хорошо известные ограничения, некоторые исследователи предлагают использовать оценку правильности вместе с характеристиками качества имитационных моделей.

верификация валидация имитационный модель

1. Этапы имитационного моделирования

Процесс построения имитационных моделей представляет собой последовательное выполнение этапов имитационного моделирования. Эти этапы процесса моделирования приведены в книге А.Прицкера:

Формулирование проблемы-описание исследуемой проблемы и определение целей исследования.

Разработка модели - логико-математическое описание моделируемой системы в соответствии с формулировкой проблем.

Подготовка данных - идентификация, спецификация данных.

Трансляция модели - перевод модели на язык, приемлемый для используемой ЭВМ

Верификация модели - Установление правильности машинных программ

Валидация модели - оценка требуемой точности и соответствия имитационной модели реальной системе.

Стратегическое и тактическое планирование - определение условии проведения машинного эксперимента с имитационной моделью.

Экспериментирование - прогон имитационной модели на ЭВМ для получения требуемой информации.

Анализ результатов - изучение результатов имеет моделирование для подготовки выводов, для решения проблемы.

Названные выше этапы имитационного исследования редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационного исследования могут быть сбои в прогонах модели, ошибочные допущения, от которых в последствии приходится отказываться, переформулировки целей исследования. То есть, на каждом этапе возможно возвращение назад, к предыдущим этапам. Именно такой итеративный процесс даёт возможность получить модель, которая позволяет принимать решения. Рассмотрим более подробно этапы верификации и валидации имитационной модели. Упрощенный процесс разработки имитационной модели приведён на рис..

Рассмотрим более подробно этапы верификации и валидации имитационной модели. Эти этапы связаны с оценкой функционирования имитационной модели. На этапе верификации определяется, соответствует ли запрограммированная модель замыслу разработчика. Установление адекватности имитационной модели выполняется на этапе валидации. Валидация модели обычно выполняется на различных уровнях (например, на уровне входных данных, элементов модели, подсистем и их взаимосвязи). Проверка адекватности модели включает сравнение её структуры со структурой системы, сравнения того, как реализованы элементарные функции и рушения в модели и системе.

Существуют специальные методы валидации (например, путём оценивания чувствительности выходных данных к изменению значений входных), различные парадигмы, подходы и методики. Рассмотрим некоторые из них. Но прежде постараемся дать основные определения, а именно, более подробно рассмотрим различные подходы к валидации, а затем и алгоритм построения валидной модели, предложенный Лоу.

2. Валидация

Итак, валидация - это процесс определения того, является ли имитационная модель точным представлением данной системы для конкретной задачи. Существует несколько точек зрения на валидацию:

Валидная модель может быть использована для принятия решений, сходных с теми, которые были бы приняты на реальной и недорогой системе.

Сложность процесса валидации зависит от сложности моделируемой системы, а так же от того, существует ли реальная система. Например, валидация модели смежного банка относительно проста, эту модель смежного банка можно хорошо изучить. А вот полная валидация модели системы морского оружия в 2025 году фактически невозможна ввиду того что, неизвестно ни место проведения сражения, ни оружие противника. Так же обычно для построения и валидации модели можно собирать данные о существующей системе.

Имитационная модель сложной системы может быть лишь аппроксимацией реальной системы, не зависимо от того, как много времени и средств потрачено на ее создание. Не существует абсолютно точных моделей, как бы того не хотелось. Модель - это абстракция, упрощение реальной системы. Чем больше времени (а следовательно и финансовых затрат) тратится на разработку модели, тем более валидная в целом будет модель. Но наиболее валидная модель не обязательно является и наиболее выгодной. Например, так как для улучшения валидности модели до определенного уровня может потребоваться сбор подробных данных, то такое улучшение может быть достаточно затратным. Но в то же время такое улучшение валидности может и не привести к принятию решений, которые значительно лучше существующего.

Имитационная модель всегда должна разрабатываться для конкретного набора задач. Фактически модель, валидная для одной задачи, может не быть валидной для другой задачи.

Валидация не должна осуществляться после окончания разработки имитационной модели, при условии наличия времени и средств. К сожалению, на практике эта рекомендация не всегда выполняется.

Каждый раз, когда имитационная модель применяется к другой задаче, необходимо перепроверять валидность данной модели. Данная задача может существенно отличаться от первоначальной, либо параметры модели могут измениться.

Имитационная модель и результаты ее выполнения надежны, если лицо, принимающее решение и другие ведущие специалисты проекта приняли ее как «точная».

Заметим, что надежная модель не всегда является валидной, и наоборот, валидная модель не всегда является надежной. Для упрощения установления надежности модели необходимо следующее:

Понимание и принятие принимающим решение лицом допущений модели.

Демонстрация того, что была осуществлена валидация и верификация модели (то есть того, что программа отлажена).

Вовлеченность и ответственность за проект лица, принимающего решения.

Репутация "84разработчиковЃE модели.

Убедительная анимация.

3. Подход к управлению успешным исследованием системы методами имитационного моделирования

На рис. представлены этапы построения имитационной модели (они уже были приведены ранее). Далее более подробно рассматриваются рекомендации А. Лоу по проведению каждого из этапов. Приведённая ниже информация используется А. Лоу при чтении курса лекций.

Этапы исследования имитационной модели

Шаг 1. Формулировка задачи

* Задача формулируется лицом, принимающим решение

Задача может быть сформулирована нечетко либо только на качественном уровне.

Обычно задача формулируется итеративно.

* Организационное совещание таких проектов возглавляются руководителем проекта, в присутствие аналитика в области имитационного моделирования и эксперта в данной предметной области. На собрании обсуждаются следующие положения:

Общие цели исследования.

Специфические вопросы, на которые необходимо ответить во время исследования (без такой специфики невозможно определить необходимый уровень детализации).

Критерии качества, используемые для определения эффективности различных конфигураций системы.

Размеры системы.

Моделируемая конфигурация системы.

Изучаемый временной кадр и необходимый ресурсы (люди, компьютеры и т.д.)

Шаг 2. Сбор данных и создание концептуальной модели

* Сбор информации о макете системы и способе эксплуатации.

* Сбор данных для определения параметров модели и распределении вероятностей (например, для времени отказов и времени восстановления машины).

* Документация допущений модели, алгоритмов, краткое изложение данных на письменной концептуальной модели.

* Уровень детализации модели должен зависеть от следующего:

Цели проекта

Критерий решения задачи

Доступность данных

Технические ограничения

Мнения экспертов в данной предметной области

Временные и финансовые ограничения

Между моделью и системой не должно быть соотношения один-к-одному.

Степень достоверности.

Сбор данных о рабочих характеристиках (выходных) на основе существующей системы (если таковая существует) для последующей валидации модели на шаге 5.

Шаг 3. Определение валидности концептуальной модели

* Структурированный просмотр концептуальной модели в присутствии руководителя проекта, аналитика и эксперта. Этот просмотр называется валидацией концептуальной модели.

* Если в концептуальной модели выявлены ошибки или упущения, которые есть практически всегда, то до того как приступить к этапу программирования необходимо обновить модель.

Шаг 4. Программирование модели

* Программирование модели на коммерческих пакетах для имитационного моделирования или на универсальных языках программирования (например, С, С++ или Java).

* Проверка (откладка) программы.

Шаг 5. Определение валидности запрограммированной модели

* При наличии реальной системы необходимо сравнить выходные данные имитационной модели с соответствующими выходными данными реальной модели (см. шаг 2). Этот процесс называется валидацией результатов.

* Независимо от того, существует ли реальная система или нет, аналитик по имитационному моделированию и эксперт в данной предметной области должны просмотреть результаты моделирования на корректность. Если результаты согласуются с тем, какими они должны быть в реальной системе, то говорят, что имитационная модель имеет внешнюю (лицевую) валидность.

* Для определения параметров модели, более всего влияющих на критерии качества, необходимо произвести анализ чувствительности. Полученные параметры требуют более тщательного моделирования.

Шаг 6. Проектирование, управление и анализ экспериментов

* Для каждой исследуемой конфигурации системы необходимо выбрать временные параметры (выходы) такие как время работы, время разогрева системы и количество независимых репликаций модели.

* Проанализировать результаты и решить, нужны ли дополнительные эксперименты.

Шаг 7. Документирование и представление результатов моделирования

* Документация модели (и связанных с ней исследования) должна включать в себя концептуальную модель (необходима для дальнейшего переиспользования модели), детальное описание программы и результаты данного исследования.

* Для повышения надежности модели окончательное представление исследования должно включать в себя анимацию и описание обсуждений процесса построения/валидации модели.

Заключение

Необходима валидация всех имитационных моделей, иначе решения, принятые на основе этих моделей, будут неверными. Ниже приводятся наиболее важные идей разработки валидных и надежных моделей:

Точная формулировка проблемы.

Проведение интервью с экспертами в данной предметной области.

Постоянное взаимодействие лица, принимающего решения с участниками проекта, что гарантирует корректность решаемой задачи, а также увеличивает надежность модели.

Разработки письменной концептуальной модели.

Структурированный просмотр концептуальной модели. Если не существует реальной системы, то это может быть единственным методом валидации.

Применение анализа чувствительности для определения наиболее важных (существенных) параметров системы.

Использование теста Тьюринга для сравнения выходных данных модели и системы.

Проверка результатов работы системы и анимации на корректность.

Список использованной литературы

1. Лоу, А. Имитационное моделирование / А. Лоу, В. Кельтон. - СПб. : Питер, 2004.

2. Рыжиков, Ю.И. Имитационное моделирование. Теория и технологии / Ю.И. Рыжиков. - СПб: Корона принт, 2004.

3. Советов, Б.Я. Моделирование систем: практикум / Б.Я. Советов, С.А. Яковлев. - М. : Высш. шк., 2005.

4. Шрайбер, Т. Дж. Моделирование на GPSS/ Т.Дж. Шрайбер. - М.: Машиностроение, 1980.

5. Харин Ю.С. Основы имитационного и статистического моделирования. Учебное пособие/ Ю.С. Харин, В.И. Малюгин, В.П.Кирлица и др. - Мн.:Дизайн ПРО, 1997.

6. Кудрявцев Е.М. GPSS World. Основы имитационного моделирования различных систем/ Е.М. Кудрявцев. - М.: ДМК, 2004.

7. Максимей И.В. Имитационное моделирование на ЭВМ/ И.В. Максимей. - М.: Радио и связь, 1988.

8. Методические требования к содержанию и оформлению курсовых работ/ Л.П. Харлап, Е.М. Сибогатова. - Гомель, БТЭУ, 2004. (мет. №1365)

9. Лабораторный практикум по имитационному моделированию /Еськова О.И. - размноженные материалы в кааб 3-35.

Размещено на Allbest.ru

...

Подобные документы

    Создание математической модели системы массового обслуживания на примере банка. Разработка имитационной модели на языке программирования С++. Блок-схема программы, перевод модели на язык программирования. Верификация и валидация имитационной модели.

    курсовая работа , добавлен 01.06.2015

    Понятие верификации моделирующих компьютерных программ. Классификация математических моделей. Языки программирования, используемые для имитационных моделирующих программ. Способы исследования реальных систем. Методы повышения валидации и доверия к модели.

    шпаргалка , добавлен 02.10.2013

    Разработка имитационной модели "Перекресток" для анализа бизнес-процессов предприятия и принятия решения в сложных условиях. Алгоритм построения имитационной модели на основе CASE-средств. Обзор программного обеспечения для имитационного моделирования.

    дипломная работа , добавлен 22.11.2015

    Ознакомление с современными концепциями построения моделирующих систем. Характеристика основных приемов имитационного моделирования. Перевод алгоритма на язык программирования. Понятие и этапы верификации: установления правильности машинной программы.

    курсовая работа , добавлен 30.03.2011

    Процесс моделирования имитационной модели функционирования класса персональных компьютеров на языке GPSS World. Поиск линейной зависимости и оценка полученного уравнения. Отчет по результатам работы имитационной модели. Листинг разработанной программы.

    курсовая работа , добавлен 07.09.2012

    Понятие компьютерной модели и преимущества компьютерного моделирования. Процесс построения имитационной модели. История создания системы GPSS World. Анализ задачи по прохождению турникета на стадион посредством языка имитационного моделирования GPSS.

    курсовая работа , добавлен 11.01.2012

    Основы технологии моделирования Arena. Построение простой имитационной модели. Моделирование работы системы обслуживания покупателей на кассе супермаркета. Построение модели IDEF3. Анализ результатов имитационного моделирования и аналитического решения.

    курсовая работа , добавлен 24.03.2012

    Терминологическая база для построения модели, имитирующей работу маршрутных микроавтобусов. Обоснование выбора программного средства. Алгоритм работы имитационной модели, особенности ее функционирования. Анализ результатов работы имитационной модели.

    курсовая работа , добавлен 29.04.2014

    Построение концептуальной модели и метод имитационного моделирования. Определение переменных уравнений математической модели и построение моделирующего алгоритма. Описание возможных улучшений системы и окончательный вариант модели с результатами.

    курсовая работа , добавлен 25.06.2011

    Общая характеристика ателье "Вита", схема модели рабочего процесса. Исследование заданной системы с помощью моделирования динамических рядов, модели типа "система массового облуживания". Построение имитационной модели деятельности данного ателье.

Адекватность – степень соответствия модели и исследуемой системы. Модель не может быть 100 % адекватна системе.

Валидация – процесс, позволяющий установить является ли имитационная модель точным представлением системы для конкретных целей исследования.

Валидация выходных данных всей имитационной модели:

Самая окончательная проверка адекватности имитационной модели подтверждается, если установлено, что ее выходные данные идентичны выходным данным от реальной системы.

Сам процесс сравнения модельных и системных выходных данных называется валидацией результатов.

#: Есть два станка в системе и по результатам сравнения модели с реальной системой получены отклонения:

0,4% 1,1% - производит

По результатам было понятно, что модель адекватна. И применение 3-его станка нецелесообразно.

Если адекватность модели не подтверждена, то любые ее результаты имеют сомнительную ценность.

Необходимость разработки модели «as is» (то, как есть сейчас на данный момент)

1) Для проверки адекватности

2) Модель может «подсказать» слабые места и усовершенствования в системе.

Для проверки модели на адекватность можно использовать тест Тьюринга (подробнее еще есть инфа на http://ru.wikipedia.org/wiki/ Тест_Тьюринга):

Он заключается в том, что спецам хорошо знакомым с системой дают возможность изучить группы системных и модельных данных без указания, какие из них к чему относятся.

При этом все группы данных должны быть представлены на отдельных листах бумаги в одинаковом формате.

Если спецы могут отличить системные данные от модельных и объяснить, как они это сделали, их разъяснения помогут найти пути усовершенствования модели.

Если результаты моделирования согласуются с поведением системы, то считается, что модели свойственна внешняя адекватность.

Если решения, которые будут приниматься на основе имитационной модели будут иметь особые значения, то прибегают к испытаниям в полевых условиях, чтобы получить системные выходные данные.

Более точная проверка модели состоит в определении ее способности прогнозировать поведение будущей системы. Т.к. модели часто развиваются во времени, то существует возможность предполагаемой валидации. После того, как будет создана система и пройдет время для сбора ее выходных данных, эти данные можно сравнить с прогнозированными. Если есть разумное соответствие, то увеличивается доверие к модели.

Дополнительно (из инета):

Термин валидация (англ. Validation ) используется в различных сферах деятельности человека в несколько различных смыслах. Ключевым моментом в валидации является сверка выставленных требований с необходимыми для достижения определённой (поставленной) цели требованиями. Если же эта цель и есть конечное требование, то возникает циклическая проблема (планирование плана или проблема инициализации). Сверка требований может происходить на их полноту и/или точность.



Валидацию не следует путать с верификацией.

В технике или в системе менеджмента качества валидация подтверждает, что требования внешнего потребителя или пользователя продукта, услуги или системы удовлетворены. Верификация - это обычно внутренний процесс управления качеством, обеспечивающий согласие с правилами, стандартами или спецификацией. Простой способ запомнить разницу между валидацией и верификацией заключается в том, что валидация подтверждает, что «вы создали правильный продукт», а верификация подтверждает, что «вы создали продукт так, как и намеревались это сделать».

В различных сферах деятельности человека под верификацией могут подразумеваться разные понятия. Например:

Верификация (от лат. verus - истинный, facere - делать) - проверка, проверяемость, способ подтверждения каких-либо теоретических положений, алгоритмов, программ и процедур путем их сопоставления с опытными (эталонными или эмпирическими) данными, алгоритмами и программами.

Верификация (от лат. verus - истинный, facere - делать) - это подтверждение соответствия конечного продукта предопределённым эталонным требованиям.

Понятия, которые мы будем основательно разбирать, довольно часто встречаются как в обыденной жизни, так и в специализированной литературе, профессиональной деятельности. Многие хотят знать, верификация и валидация - что это простыми словами? В чем разница между этими терминами? Давайте порассуждаем вместе.

Валидация и верификация - что это простыми словами?

Оба понятия связаны с тестированием какого-либо продукта и обеспечением его качества. Если мы будем говорить простым языком, то выведем следующее:

  • Валидация - гарантированная уверенность производителя в том, что он создал продукт по всем необходимым стандартам.
  • Верификация - помогает увериться в том, что изделие соответствует всем изначально заданным требованиям к нему.

Рассказывая простыми словами, что это - верификация и валидация, нужно сделать упор и на такие факты:

  • Для потребителя важнее всего валидация - уверенность в том, что он получает правильный продукт, соответствующий его требованиям.
  • Для производителя более ценной будет верификация - подтверждение того, что изделие, которое он отправляет на реализацию, отвечает всем необходимым стандартам и нормам.

Еще одно значение

Мы еще разберем различие в понятиях "верификация" и "валидация" в тестировании. Ведь по большому счету они связаны с международными требованиями к проверке, приемке технологий и различной продукции.

Однако вместе с тем слова плотно вошли в жизнь и интернет-пользователей. Например, регистрируясь в платежных системах типа "Киви", "Яндекс. Деньги", вы должны пройти процесс верификации. В данном случае это обозначает проверку подлинности указанных данных о себе, идентификацию вас системой.

А те, кто активно пользуются социальными сетями ("ВКонтакте", "Одноклассники" и проч.), рано или поздно видят перед собой окошко с просьбой пройти валидацию. Это такая же проверка истинности введенных вами данных. К примеру, на привязанный к аккаунту телефон приходит СМС с кодом, который нужно напечатать в определенное поле, чтобы подтвердить, что вы являетесь владельцем указанного номера.

Таким образом, в данном случае трудно выделить разницу между валидацией и верификации. И то и другое, по сути, здесь является проверкой на указание соответствующих действительности данных. Хотим также указать на факт, что валидацию/верификацию успешно используют разработчики различных вирусов с целью выманивания у вас личной информации. Отчего такие данные следует вводить на надежных ресурсах, с компьютера, защищенного современным качественным антивирусом.

Определение стандарта ИСО 9000:2000

Объяснить простыми словами, что это - верификация и валидация, поможет характеристика этих терминов, данная в документах ИСО (ISO - Международная организация по стандартизации). Здесь мы видим следующее:

  • Верификация - подтверждение на основе объективных предоставленных фактов того, что установленные нормы были выполнены.
  • Валидация - подтверждение на основе объективных предоставленных фактов того, что установленные нормы для конкретного применения выполнены.

Вот из этих определений уже вытекает разница валидации и верификации:

  • Первая процедура проводится только по необходимости. Продукт анализируется в заданных условиях эксплуатации. Результатом будет вердикт: возможно ли его использовать в данной обстановке.
  • Вторая процедура практически обязательна. Это проверка на соответствие продукта требованиям, которые будут актуальны при любых условиях, при любом использовании.

Прочие определения верификации

Помочь разобраться в теме нам поможет ряд распространенных определений рассматриваемых понятий. Приведем характеристики верификации:

  • Подтверждение соответствия выпущенного товара, продукта определенным эталонам.
  • Практически обязательная процедура; сличение характеристик произведенной единицы с рядом заданных требований. Результат - вердикт соответствия или несоответствия последним.
  • Провозглашение подтверждения, что установленные нормы в отношении изделия были выполнены.
  • Простыми словами - создан продукт, который соответствует необходимым стандартам.

Прочие определения валидации

Рассмотрим теперь определения валидации:

  • Практическое определение того, насколько тот или иной продукт соответствует ожиданиям его непосредственных пользователей.
  • Процедура, которую проводят при необходимости. Это распространенный анализ заданных условий и оценка характеристик продукта касательно его эксплуатации в данной среде. Результат - вывод о возможности использования товара, изобретения в определенной сфере.
  • Подтверждение соблюдения требований системы стандартов, заказчика, непосредственного пользователя и проч.
  • Простыми словами - создан правильный продукт, удовлетворяющий потребителя.

Отличия на основе перевода

Определить, в чем разница между валидацией и верификацией, поможет и обращение к переводу этих слов, имеющих английские корни:

  • Verification - какая-либо проверка.
  • Validation - придание чему-либо законной силы.

Даже из этого следует, что верификация предшествует валидации, не является конечной. Окончательный вердикт продукту, имеющий законную силу, дает именно последняя.

Отличия верификации и валидации в сравнении

В сравнительной таблице легче обозначить различия этих в чем-то схожих терминов.

Верификация Валидация
Делаем ли мы продукцию правильно? Произвели ли мы правильный продукт?
Вся ли функциональность была реализована? Верно ли функциональность была реализована?
Верификация предшествует валидации: она включает в себя полную проверку правильности написания, производства и прочего сотворения. Случается уже после верификации - качества произведенного продукта.
Проводят разработчики. Проводят тестировщики.
Статистический тип анализа: сравнение с установленными требованиями к продукту. Динамический тип анализа: продукт тестируется в эксплуатации для выяснения его соответствия нормам.
Объективная оценка: выносится на основе соответствия определенным стандартам. Субъективная оценка: личная оценка, которую ставит специалист-тестировщик.

Давайте еще немного порассуждаем, чем отличается валидация от верификации, в следующем разделе.

Ключевые различия понятий

Итак, расставим все точки над i. Верификация - это любое тестирование, через которое проходит продукт. Проверка правильности технологии его производства, а также качества изделия. Валидация же - понятие, более близкое к аттестации. Это соответствие каким-то конкретным, а не общим требованиям. Насколько хорош продукт не вообще, а именно для определенного потребителя, заказчика или заданных условий.

Еще можно отметить, что верификация - это бумажное, теоретические тестирование технологии или продукта. Валидация же - реальная, физическая проверка, осуществляемая на практике, в конкретных условиях.

Если изделие прошло верификацию, значит, оно соответствует каким-то заданным технологическим требованиям. Если же успешно пройдена валидация, выходит, что на практике оно также без нареканий применимо. Отсюда можно вынести, что последнее понятие несколько важнее, показательнее, нежели первое.

Примеры верификации

Давайте посмотрим на конкретные примеры, чтобы закрепить в голове разницу между этими понятиями.

Фармацевтический завод проверяет лекарства на соответствие конкретным требованиям. На вводе в производство устанавливается их безопасность для пациента в определенных дозах, отсутствие эффекта плацебо, неимение возможности проявления губительного привыкания и проч. Таким образом, верификация препаратом пройдена. А валидацию в этом случае проводит уже лечащий доктор: он определяет, поможет ли лекарство конкретному пациенту, не приведет ли его применение к риску для жизни и здоровья этого человека и т. д.

Рассмотрим на примере велосипеда. Проверяем, есть ли руль, сидение, цепи, колеса, тормозная система и проч. Все на месте? Верификация пройдена!

Примеры валидации

Теперь примеры, чем отличается валидация от верификации.

Какое-либо предприятие в соответствии с определенными требованиями производит универсальные трубы. Поступает вопрос от заказчика: возможно ли данный продукт проложить по дну моря? Производитель должен провести валидацию своих труб в соответствии с предложенными условиями, чтобы объективно ответить на этот вопрос.

На примере того же велосипеда рассмотреть валидацию тоже очень легко. На устройстве можно кататься? Можно затормозить? Можно повернуть вправо, влево? Переключить скорость? Если все возможно, валидация пройдена. Не смогли затормозить, упало сидение, расшатан руль - увы, велосипед данную процедуру не прошел.

Вот мы и разобрали понятия "верификация" и "валидация", постаравшись выразить все простым языком. Надеемся, что это поможет вам четко проследить разницу между ними, особенности каждого.

При выполнении ответственных инженерных расчетов численными методами для обоснования корректности расчетных моделей рекомендуется применять процедуру верификации и валидации модели , разработанную и предложенную ведущими мировыми организациями в области инженерных расчетов - NAFEMS (International Association for the Engineering Modelling, Analysis and Simulation Community) и ASME (American Society of Mechanical Engineers).

Исследователь-расчетчик последовательно создает расчетную схему и два вида моделей – математическую и численную. Математическая модель - математическое представление реального объекта или системы. Численная модель - программный код, реализующий представление объекта или системы в форме, приближенной к алгоритмическому описанию, включающей набор данных, характеризующих свойства системы и динамику их изменения со временем.

Применительно к данным видам моделей для проверки их адекватности используются подход верификации и валидации . Верификация проводится в области математики, а валидация – в области физики.

Верификация

Верификация – процесс установления соответствия между численной моделью и математической моделью.

Как следует из данного определения, процесс верификации позволяет достичь уверенности в корректности численной модели. Процесс верификации модели состоит из двух шагов:

- Верификация программного кода для подтверждения того, что математические модели и алгоритмы численного решения систем уравнений работают корректно;

- Верификация вычислений для подтверждения того, что дискретизация расчетной области выполнена корректно, и дискретное решение с необходимой степенью точности соответствует математической модели.

Верификация программного кода

Проведение верификации программного кода относится к области ответственности разработчика программного обеспечения, который должен использовать современные методики и системы управления качеством, а также проводить тщательное тестирование каждого релиза программного кода.

Пользователи программного обеспечения также должны осозновать, что несут часть ответственности за верификацию программного кода, даже в случаях, когда у них нет доступа к исходному коду. Одним из распространенных способов верификации программного кода является сравнение результатов расчета с аналитическим решением. Подобное сравнение является основным способом пользовательского тестирования. К сожалению, сложность большинства доступных аналитических решений задач физики затрудняет их использование даже для относительно стандартных возможностей большинства современных коммерческих программных продуктов. Сравнение численного и аналитического решений возможно только для простых - модельных и тестовых задач.

Верификация вычислений

Второй составляющей процесса верификации является верификация вычислений – определение точности численного решения для заданной дискретизации расчетной области. Численное и аналитическое решения apriori отличаются, поскольку дискретное решение является лишь аппроксимацией аналитического. Поэтому целью верификации вычислений является установление количественного значения погрешности для заданной дискретной модели.

Погрешности, связанные с дискретизацией, наиболее часто определяются путем сравнения полученного численного решения с другими численными решениями на двух дополнительных дискретных моделях (вычислительных сетках) с уменьшенным размером ячейки (элемента). Целью сравнений решений на различных сетках является определение практической сходимости решения в интересующей исследователя области. Основная ответственность за верификацию вычислений лежит на исследователе – пользователе программного продукта. При том, что разработчик программного кода, несомненно, должен отвечать за корректность разработанных алгоритмов, он не может нести ответственность за то, что созданная пользователем расчетная сетка (дискретная модель) будет достаточно качественной для достижения алгоритмической точности. Таким образом, за ошибки в расчетах вследствие грубой или некорректно созданной расчетной сетки, полностью отвечает пользователь программного продукта. Недостаточные исследования чувствительности численного решения к размеру элемента расчетной сетки являются наиболее часто встречающимся упущением исследователей при проведении расчетов численными методами, при том, что данная техника верификации достаточно проста для реализации.

Валидация

Валидация – процесс определения степени соответствия расчетной модели реальному физическому объекту в рамках области планируемого использования данной модели.

Ни один из этапов верификации не позволяет определить, насколько выбранные модели адекватны объекту исследования. Оценка соответствия численной модели реальному миру относится к задачам валидации, которая позволяет определить, насколько физические явления и законы, включенные исследователем в расчетную модель, соответствуют постановке исходной задачи и достаточны для получения требуемых решений.

Способ взаимодействия физической и математической дисциплин в процессе верификации и валидации схематически представлен на рисунке.

После выбора расчетной схемы процесс верификации и валидации расходится на две ветви. Левая ветвь относится к области математического моделирования, а правая – к области физического эксперимента. В конечном итоге лишь физические наблюдения могут подтвердить или опровергнуть адекватность выбранной расчетной схемы и математической модели для представления объекта исследования. Тесное взаимодействие инженеров-расчетчиков и экспериментаторов требуется на всех стадиях процедуры верификации и валидации, т.к. математическая и физическая модели обязательно будут отличаться. Как простой пример, рассмотрим задачу нагружения балки, заделанной на одном конце. С точки зрения математика граничное условие заделки является тривиальным, но в физической лаборатории не существует оборудования, обеспечивающего такое явление как полная заделка, вследствие конечной жесткости оборудования и трехмерного характера физической модели, в отличие от математической модели балки. Таким образом, некоторые элементы расчетной схемы достаточно просто включить как в математическую, так и в физическую модель, а иные – гораздо сложнее. Для понимания природы этих расхождений и их возможного устранения должны проводиться предварительные расчеты, что отражено на схеме.

Также крайне важно, чтобы результаты эксперимента не были бы известны расчетчикам заранее, до получения численного решения. Основная причина этого – убедиться в "предсказательных возможностях" численной модели. Если результаты эксперимента известны расчетчику заранее, что естественным будет желание «настроить» модель на конкретный результат. Это снижает уровень доверия к численной модели.

Дополнительно важно отметить, что в моделировании и эксперименте важна роль неопределенности и, как следствие - повторяемости реузльтатов. Ожидается, что при проведении одного и того же эксперимента результаты должны в определенной степени коррелировать между собой. Степень корреляции необходимо измерять. Точно также любая численная модель содержит ряд параметров (например, свойства материалов), которые являются в реальном мире не детерминистическими, а стохастическими величинами. Соответственно, при проведении численного моделирования необходимо проводить оценку чувствительности решения к неопределенности исходных данных.

При подготовке статьи использованы материалы сайта www.nafems.org

Моделирование экономическое – воспроизведение экономических объектов и процессов в ограниченных, малых, экспериментальных формах, в искусственно созданных условиях. В экономике чаще используется математическое моделирование посредством описания экономических процессов математическими зависимостями.

Моделирование основывается на принципе аналогии и позволяет изучать объект при определенных условиях и с учетом неизбежной односторонней точки зрения.

Процесс экономико- математического моделирования включает: ●идентификацию объекта или процесса; ●спецификацию модели; ●идентификацию и оценку параметров модели; ●установление зависимостей между параметрами модели; ●проверку модели.

Идентификация объекта или процесса заключается в определении характеристик объекта и выявлении приложенных к нему воздействий и его реакций с помощью наблюдения за его входами и выходами и статистической обработки полученных данных. В процессе идентификации объекта должны быть выявлены параметры, определяющие процесс его функционирования (параметризация).

На основании предварительного анализа рассматриваемого экономического объекта или процесса, т. е. его идентификации, составляется спецификация модели. Спецификация модели есть выбор формы связи переменных.

Под идентификацией параметров модели понимается выбор переменных модели, а также вида и параметров ее уравнений с последующей их оценкой на основе статистических данных, полученных в результате наблюдения или эксперимента.

Оценка параметров модели – это количественное значение оцененных параметров, которая может быть точечной и интервальной. Этот этап заключается в определении числовых значений существенных параметров модели, выявленных на предварительных этапах анализа исследуемого объекта или процесса.

Существенные параметры – параметры, отобранные в процессе анализа моделируемого объекта как необходимые и достаточные для его характеристики с учетом цели моделирования. Существенные переменные – элементы экономико-математической модели, значениях которых (показатели, называемые координатами системы) служат характеристикой моделируемой системы.

После построения модели определяется ее тип и выбирается соответствующий этому типу метод решения.

Валидация – процесс проверки того, что модель является достаточным описанием системы целей конкретного исследования.