Способы беспроводной передачи электричества на расстояние. Беспроводная передача электричества

Открыл закон (после названный в честь открывателя законом Ампера), показывающий, что электрический ток производит магнитное поле.

  • В 1831 году Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • В 1864 году Джеймс Максвелл систематизировал результаты наблюдений и экспериментов, изучил уравнения по электричеству, магнетизму и оптике, создал теорию и составил строгое математическое описание поведения электромагнитного поля (см. уравнения Максвелла).
  • В 1888 году Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца представлял собой искровой передатчик «радиоволн» и создавал волны в диапазонах частот СВЧ или УВЧ .
  • В 1891 году Никола Тесла улучшил и запатентовал (патент номер 454,622; «Система электрического освещения») передатчик волн Герца для радиочастотного энергоснабжения.
  • В 1893 году Никола Тесла на всемирной выставке , проходившей в 1893 году в Чикаго , продемонстрировал беспроводное освещение люминесцентными лампами .
  • В 1894 году Никола Тесла зажёг без проводов фосфорную лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хаустон-стрит в Нью-Йорке с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • В 1894 году Джагдиш Чандра Боше дистанционно воспламенил порох , что привело к удару по колоколу, с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов .
  • 25 апреля (7 мая) года Александр Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества .
  • В 1895 году Боше передал сигнал на расстояние около одной мили .
  • 2 июня 1896 года Гульельмо Маркони подал заявку на изобретение радио.
  • В 1896 году Тесла передал сигнал на расстояние около 48 километров .
  • В 1897 году Гульельмо Маркони передал текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • В 1897 году зарегистрирован первый из патентов Тесла по применению беспроводной передачи.
  • В 1899 году в Колорадо-Спрингс Тесла писал: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха » .
  • В 1900 году Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • В 1901 году Маркони передал сигнал через Атлантический океан , используя аппарат Тесла.
  • В 1902 году Тесла и Реджинальд Фессенден конфликтовали из-за американского патента номер 21,701 («Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом») .
  • В 1904 году на Всемирной выставке, проходившей в Сент-Луисе , предложена премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт ) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м ) .
  • В 1917 году разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • В 1926 году Синтаро Уда и Хидэцугу Яги опубликовали первую статью «о регулируемом направленном канале связи с высоким усилением » , хорошо известном как «антенна Яги-Уда» или антенна «волновой канал ».
  • В 1945 году Семён Тетельбаум опубликовал статью «О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн», в которой впервые рассматривал эффективность микроволновой линии для беспроводной передачи электроэнергии .
  • В 1961 году Уильям Браун опубликовал статью по исследованию возможности передачи энергии посредством микроволн .
  • В 1964 году Уильям Браун и Уолтер Кроникт в эфире телеканала CBS News продемонстрировали модель вертолёта, получающего всю необходимую ему энергию от микроволнового луча.
  • В 1968 году Питер Глейзер предложил использовать беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч» . Это считается первым описанием орбитальной энергетической системы .
  • В 1973 году в Лос-Аламосской Национальной лаборатории продемонстрирована первая в мире пассивная система RFID .
  • В 1975 году на комплексе дальней космической связи обсерватории Голдстоун проведены эксперименты по передаче мощности в десятки киловатт .
    • В 2007 году исследовательская группа под руководством профессора Марина Солячича из передала беспроводным способом на расстояние 2 м энергию мощностю, достаточной для свечения лампочки мощностью 60 ватт , с КПД , равным 40 % , с помощью двух катушек диаметром 60 см .
    • В 2008 году фирма «Bombardier» предложила систему для беспроводной передачи энергии, названную «primove» и предназначенную для применения в трамваях и двигателях малотоннажной железной дороги .
    • В 2008 году сотрудники фирмы Intel воспроизвели опыты Никола Тесла 1894 года и опыты группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с КПД , равным 75 % .
    • В 2009 году консорциум заинтересованных компаний, названный «Wireless Power Consortium», разработал стандарт беспроводного питания для малых токов, названный « » . Qi стал применяться в портативной технике.
    • В 2009 году норвежская компания «Wireless Power & Communication» представила разработанный ею промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом.
    • В 2009 году фирма «Haier Group» представила первый в мире полностью беспроводной LCD-телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI) .
    • В 2011 году «Wireless Power Consortium» приступил к расширению спецификаций стандарта Qi для средних токов.
    • В 2012 году начал работу частный петербургский музей «Гранд Макет Россия », в котором миниатюрные модели автомобилей получали электропитание беспроводным способом через модель дорожного полотна.
    • В 2015 году учёные из Вашингтонского университета выяснили, что электричество можно передавать посредством технологии Wi-Fi .

    Технологии

    Ультразвуковой способ

    Ультразвуковой способ передачи энергии изобретён студентами университета Пенсильвании и впервые широкой публике представлен на выставке «The All Things Digital» (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, использовался приёмник и передатчик. Передатчик излучал ультразвук; приёмник, в свою очередь, преобразовывал слышимое в электричество. На момент презентации расстояние передачи достигало 7-10 метров , и была необходима прямая видимость приёмника и передатчика. Передаваемое напряжение достигало 8 вольт ; получаемая сила тока не сообщается. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии ультразвуковых частот на животных.

    Метод электромагнитной индукции

    При беспроводной передаче энергии методом электромагнитной индукции используется ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создаёт переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, всё большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

    Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция . Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щёток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приёмник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

    Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приёмник настроены на одну частоту. Производительность может быть улучшена ещё больше путём изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приёмная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

    Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких, как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приёмника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi .

    Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких, как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющемуся беспроводным передатчиком электрической энергии.

    Электростатическая индукция

    Лазерный метод

    В том случае, если длина волны электромагнитного излучения приближается к видимой области спектра (от 10 мкм до 10 нм ), энергию можно передать путём её преобразования в луч лазера , который затем может быть направлен на фотоэлемент приёмника.

    Лазерная передача энергии по сравнению с другими методами беспроводной передачи обладает рядом преимуществ:

    • передача энергии на большие расстояния (за счёт малой величины угла расходимости между узкими пучками монохроматической световой волны);
    • удобство применения для небольших изделий (благодаря небольшим размерам твердотельного лазера - фотоэлектрического полупроводникового диода);
    • отсутствие радиочастотных помех для существующих средств связи, таких, как Wi-Fi и сотовые телефоны (лазер не создаёт таких помех);
    • возможность контроля доступа (получить электроэнергию могут только приёмники, освещённые лазерным лучом).

    У данного метода есть и ряд недостатков:

    • преобразование низкочастотного электромагнитного излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 % , хотя эффективность преобразования монохроматического света значительно выше, чем эффективность солнечных панелей;
    • потери в атмосфере;
    • необходимость прямой видимости между передатчиком и приёмником (как и при микроволновой передаче).

    Технология передачи мощности с помощью лазера ранее, в основном, исследовалась при разработке новых систем вооружений и в аэрокосмической промышленности, а в настоящее время разрабатывается для коммерческой и потребительской электроники в маломощных устройствах. Системы беспроводной передачи энергии с применением в потребительских целях должны удовлетворять требованиям лазерной безопасности стандарта IEC 60825. Для лучшего понимания лазерных систем следует принимать во внимание то, что распространение лазерного луча гораздо в меньшей степени зависит от дифракционных ограничений, как пространственное и спектральное согласование характеристик лазеров позволяют увеличить рабочую мощность и дистанцию, как длина волны влияет на фокусировку.

    Драйденский лётно-исследовательский центр НАСА продемонстрировал полёт лёгкого беспилотного самолёта-модели, питаемого лазерным лучом. Это доказало возможность периодической подзарядки посредством лазерной системы без необходимости приземления летательного аппарата.

    Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст . Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях (3,2-4,8 километрах ) над уровнем моря и благодаря потоку ионов, то есть электрической проводимости через ионизированную область, расположенную на высоте выше 5 км . Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через неё и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря ёмкостному плазменному разряду в ионизированной атмосфере .

    Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывалась как коммерческий проект по трансатлантической беспроводной телефонии и стала реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования .

    Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4,5 миль (7,2 км ) .

    Глобальная система передачи электроэнергии без проводов, так называемая „Всемирная беспроводная система“, основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате „короткого замыкания“ между заряженной атмосферой и землей .

    Всемирная беспроводная система

    Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

    В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успеха можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приёмниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения её полной исключительности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учётом физических свойств нашей планеты».

    Одним из условий создания всемирной беспроводной системы является строительство резонансных приёмников. Заземлённый винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приёмной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732 от 18 января 1902 года, «Аппарат для передачи электрической энергии»). Тесла предложил установить более тридцати приёмо-передающих станций по всему миру. В этой системе приёмная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приёмной.

    Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействовало бы объединению электрических генераторов в глобальном масштабе.

    См. также

    • WiTricity

    Примечания

    1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
    2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
    3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
    4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
    5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
    6. Jagadish Chandra Bose (англ.)
    7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
    8. June 5, 1899, Nikola Tesla Colorado Spring Notes  1899-1900, Nolit, 1978 (англ.)
    9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
    10. The Electrician (London), 1904 (англ.)
    11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
    12. Тетельбаум С. И. О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн // Электричество. - 1945. - № 5 . - С. 43-46 .
    13. Костенко А. А. Квазиоптика: исторические предпосылки и современные тенденции развития // Радиофизика и радиоастрономия. - 2000. - Т. 5 , № 3 . - С. 231 .
    14. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
    15. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
    16. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
    17. Solar Power Satellite patent (англ.)
    18. History of RFID (англ.)
    19. Space Solar Energy Initiative (англ.)
    20. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
    21. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
    22. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года. ,
      Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года.
    23. Bombardier PRIMOVE Technology
    24. Intel imagines wireless power for your laptop (англ.)
    25. wireless electricity specification nearing completion
    26. Global Qi Standard Powers Up Wireless Charging - HONG KONG, Sept. 2 /PRNewswire/
    27. TX40 and CX40, Ex approved Torch and Charger (англ.)
    28. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
      Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Проверено 6 сентября 2010.
    До сих пор не решена проблема передачи энергии на расстояние. Хотя была поставлена на рубеже веков. Первым, кто смог осуществить эту мечту стал Никола Тесла: "Передача энергии без проводов - не теория и не просто вероятность, как это представляется большинству людей, но явление, которое я экспериментально демонстрировал в течение ряда лет. Сама идея появилась у меня не сразу, а в результате длительного и постепенного развития и стала логическим следствием моих исследований, которые были убедительно продемонстрированы в 1893 году, когда я впервые представил миру схему моей системы беспроводной передачи энергии для всевозможных целей. Мои опыты с токами высокой частоты были первыми за всё время, проведенными публично, и они вызвали острейший интерес по причине тех возможностей, которые они открывали, а также поразительной природы самих явлений. Немногие из специалистов, знакомых с современной аппаратурой, по достоинству оценят трудность задачи, когда у меня в распоряжении были примитивные устройства”.

    В 1891 Никола Тесла сконструировал резонансный трансфоpматоp (тpансфоpматоp Тесла), позволяющий получать высокочастотные колебания напряжения с амплитудой до миллиона вольт, и первым указал на физиологическое воздействие токов высокой частоты. Наблюдаемые во время грозы стоячие волны электрического поля привели Тесла к идее о возможности создания системы для обеспечения электроэнеpгией удаленных от генеpатоpа потребителей энергии без использования проводов. Изначально катушка Тесла использовалась с целью передачи энергии на большие расстояния без проводов, но вскоре эта идея отошла на последний план, так как передать таким образом энергию на расстояние практически невозможно, причиной этому является маленький КПД катушки Тесла.

    Трансформатор Тесла, или катушка Тесла, - единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Это устройство использовалось ученым в нескольких размерах и вариациях для его экспериментов. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

    Существует 3 вида катушек Тесла:

    SGTC-spark gap Tesla coil - катушка Тесла на искровом промежутке.
    VTTC-vacuum tube Tesla coil - катушка Тесла на радиолампе.
    SSTC-solid state Tesla coil - катушка тесла на более сложных деталях.

    Описание конструкции трансформатора. В элементарной форме состоит из двух катушек - первичной и вторичной, а также обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора и терминала (на схеме показан как «выход»). В отличие от многих других трансформаторов, здесь нет никакого ферримагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферримагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов.

    Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Тесла сильно влияют на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

    Ещё одно интересное устройство - генератор Ван де Граафа. Это генератор высокого напряжения, принцип действия которого основан на электризации движущейся диэлектрической ленты. Первый генератор был разработан американским физиком Робертом Ван де Граафом в 1929 и позволял получать разность потенциалов до 80 киловольт. В 1931 и 1933 были построены более мощные генераторы, позволившие достичь напряжения до 7 миллионов вольт. Схема генератора Ван де Граафа:


    Большой полый металлический электрод, имеющий вид полусферического купола, установлен на высоковольтной изолирующей колонне. В полость электрода заходит верхний конец ленточного транспортера электрических зарядов, представляющий собой бесконечный резиновый ремень на текстильной основе, натянутый на два металлических шкива и движущийся обычно со скоростью 20 - 40 м/сек. Нижний шкив, установленный на металлической плите, вращается электродвигателем. Верхний шкив размещается под высоковольтным электродом-куполом и находится под полным напряжением машины. Там же находится система питания источника ионов и сам источник. Нижний конец ленты проходит мимо электрода поддерживаемого обычным высоковольтным источником под высоким относительно земли напряжением до 100 кВ. В результате коронного разряда электроны с ленты переносятся на электрод. Положительный заряд поднимаемой транспортером ленты компенсируется вверху электронами купола, который получает положительный заряд. Максимально достижимый потенциал ограничивается изолирующими свойствами колонны и воздуха вокруг нее. Чем больше электрод, тем выше потенциал он может выдержать. Если установка герметически закрыта и внутреннее пространство наполнено сухим сжатым газом, размеры электрода для данного потенциала могут быть уменьшены. Заряженные частицы ускоряются в откачанной трубке, расположенной между высоковольтным электродом и «землей» или между электродами, если их два. С помощью генератора Ван-де-Граафа может быть получен очень высокий потенциал, что позволяет ускорять электроны, протоны и дейтроны до энергии 10 Мэв, а альфа-частицы, несущие двойной заряд до 20 Мэв. Энергию заряженных частиц на выходе генератора можно легко контролировать с большой точностью, что делает возможными точные измерения. Ток пучка протонов в постоянном режиме 50 мкА, а в импульсном режиме может быть доведен до 5 мА.

    Питающиеся неосязаемым способом бытовые приборы, освобождённые от электрических проводов, не первый раз будоражат умы изобретателей. Но именно теперь специалисты подошли к тому, чтобы научить серийные пылесосы, торшеры, телевизоры, автомобили, имплантаты, мобильные роботы и лэптопы эффективно и безопасно получать ток из беспроводного источника.

    Недавно команда учёных из Массачусетского технологического института (MIT), возглавляемая Марином Солячичем (Marin Soljačic), совершила очередной шаг на пути превращения технологии беспроводного электричества из лабораторного «фокуса» в пригодную для тиражирования технологию. Совершенно неожиданно они обнаружили эффект, позволяющий поднять КПД передачи. Но прежде чем рассказать о новом эксперименте, стоит сделать отступление.

    В качестве переносчика энергии в данном случае используется ближнее магнитное поле, осциллирующее с высокой частотой в несколько мегагерц. Для переброски необходимы две магнитные катушки, настроенные на одинаковую частоту резонанса. Перекачку энергии между ними учёные сравнивают с разрушением резонирующего стеклянного бокала, когда он «слышит» звук строго определённой частоты.

    Идеализированные (на данном рисунке) магнитные катушки (жёлтый цвет), окружённые своими полями (красный и синий), передают друг другу энергию на расстоянии D, многократно большем, чем размер самих катушек. Это учёные и называют резонансной магнитной связью (или сцеплением) – Resonant Magnetic Coupling (иллюстрация WiTricity).

    В результате взаимодействия катушек и получается то, что было названо «Беспроводным электричеством» (WiTricity). Кстати, слово это — торговая марка, которая принадлежит одноимённой корпорации , основанной Солячичем и рядом его коллег из MIT. Корпорация указывает, что данный термин применим только к её технологии и к продуктам, созданным на её основе. Большая просьба – не использовать «уайтрисити» как синоним беспроводной передачи энергии вообще.

    Изобретатели также просят не путать WiTricity с передачей энергии посредством электромагнитных волн: мол, новый метод — «неизлучающий».

    И ещё несколько важных «не», указанных создателями. WiTricity — не аналог трансформатора с разведёнными на несколько метров обмотками (последний в таком случае перестаёт работать). Это не улучшенная электрическая зубная щётка: она хоть и умеет заряжаться без электрического контакта, но всё равно требует помещения в «док-станцию» для сближения передающей и приёмной индуктивных катушек до расстояния в миллиметр. «Уайтрисити» – не микроволновка, способная поджарить живой объект, поскольку пульсирующее магнитное поле, работающее в системе WiTricity, на человека не влияет. Наконец, «Беспроводное электричество» – даже не «таинственная и ужасная» башня Теслы (Wardenclyffe Tower), при помощи которой великий изобретатель намеревался продемонстрировать передачу энергии на большое расстояние.

    Первый опыт по беспроводной передаче энергии методом WiTricity на 60-ваттную лампочку, удалённую на два с лишним метра от источника, Марин и его коллеги провёли в 2007 году . КПД был невелик – порядка 40%, зато уже тогда изобретатели указывали на ощутимый плюс новинки — безопасность.

    Применяемое в системе поле в 10 тысяч раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа. Так что ни живые организмы, ни медицинские имплантаты, ни кардиостимуляторы и прочая чувствительная техника такого рода, ни бытовая электроника почувствовать на себе действие этого поля не могут.


    Главные авторы WiTricity: Марин Солячич (слева), Аристеидис Каралис (Aristeidis Karalis) и Джон Иоаннополус (John Joannopoulos). Справа: принципиальная схема WiTricity. Передающая катушка (левая) включена в розетку. Приёмная – соединена с потребителем. Линии магнитного поля первой катушки (голубой цвет) способны огибать относительно небольшие проводящие препятствия (а дерево, ткань, стекло, бетон или человека они и вовсе не замечают), успешно переправляя энергию (жёлтые линии) к приёмному кольцу (фото MIT/Donna Coveney, иллюстрация WiTricity).

    Теперь же Солячич и его соратники открыли, что на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей. Парадоксально, на первый взгляд, однако два приёмных прибора, размещённые на расстоянии от 1,6 до 2,7 метра по обе стороны от передающей «антенны», показали на 10% лучший КПД, чем в случае если связь осуществлялась только между одним источником и потребителем, как было в предыдущих опытах.

    Причём улучшение прослеживалось независимо от того, каков был КПД для пар передатчик-приёмник по отдельности. Учёные предположили, что при дальнейшем добавлении новых потребителей КПД будет ещё повышаться, хотя пока не вполне ясно — насколько. (Детали эксперимента раскрывает в Applied Physics Letters.)

    Передающая катушка в новом эксперименте насчитывала площадь в 1 квадратный метр, а приёмные — всего по 0,07 м 2 каждая. И это тоже интересно: громоздкость «приёмников» в прежних опытах ставила под сомнение желание производителей техники снабжать такими системами свою аппаратуру — едва ли вам понравился бы самозаряжающийся ноутбук, блок WiTricity которого по размеру сопоставим с самим компьютером.


    Слева: 1 – специальная схема переводит обычный переменный ток в высокочастотный, он питает передающую катушку, создающую осциллирующее магнитное поле. 2 – приёмная катушка в устройстве-потребителе должна быть настроена на ту же частоту. 3 – резонансная связь между катушками превращает магнитное поле обратно в электрический ток, который питает лампочку.
    Справа: по мнению авторов системы, одна катушка на потолке может снабжать энергией все приборы и устройства в комнате – от нескольких светильников и телевизора до ноутбука и DVD-проигрывателя (иллюстрация WiTricity).

    Но главное – эффект улучшения общего КПД при одновременной работе с несколькими потребителями означает зелёную улицу для голубой мечты Солячича — дома, заполненного разнообразной техникой, получающей питание из невидимых «неизлучающих излучателей», спрятанных в потолках или стенах комнат.

    А может быть, и не только в комнатах, но и в гараже? Конечно, зарядить электромобиль можно и обычным способом. Но прелесть WiTricity в том, что ничего никуда не нужно подключать и даже помнить об этом — теоретически машину можно научить самой по прибытию в гараж (или на автостоянку компании) посылать «запрос» системе и подпитывать аккумулятор от магнитной катушки, уложенной в полу.

    Кстати, в некоторых экспериментах специалисты WiTricity довели мощность передачи до трёх киловатт (а начинали, напомним, с 60-ваттной лампочки). КПД же варьируется в зависимости от целого набора параметров, однако, как утверждает корпорация, при достаточно близких катушках он может превышать 95%.

    Нетрудно догадаться, что перспективный метод передачи электроэнергии на несколько метров без проводов и необходимости в прицеливании каких-нибудь «силовых лучей» должен заинтересовать широкий спектр компаний. Некоторые уже работают в этом направлении самостоятельно.

    Например, отталкиваясь от принципов, обоснованных и испытанных Солячичем и его коллегами, Intel ныне развивает свою модификацию резонансной передачи электроэнергии — Wireless Resonant Energy Link (WREL). Ещё в 2008 году компания достигла на данном поприще блестящего результата, продемонстрировав «магнитную» передачу тока с КПД 75% .


    Одна из опытных установок Intel WREL, без проводов передающая электропитание (наряду с аудиосигналом) с MP3-плеера на небольшую колонку (фото с сайта gizmodo.com).

    Собственные опыты, воспроизводящие эксперименты физиков из Массачусетского технологического, ставит сейчас и Sony .

    Однако Солячич уверен, что его инновация не затеряется среди продукции коллег-конкурентов. Ведь именно первооткрыватели технологии больше всех набили с ней шишек и готовы к углублённому её изучению и совершенствованию. Скажем, настройка даже пары катушек не так проста, как кажется на поверхностный взгляд. Учёный несколько лет подряд ставил опыты в лаборатории, прежде чем построил систему, которая работает действительно надёжно.

    Демонстрационный образец ЖК-экрана, получающего электрическое питание через первый прототип бытового набора WiTricity. Передающая катушка лежит на полу, приёмная – на столе (фото WiTricity).

    «Беспроводное электричество», по словам его авторов, изначально задумывалось как OEM-продукт . Потому в будущем можно ожидать появления данной технологии в товарах других компаний.

    И пробный шар в сторону потенциальных потребителей уже запущен. В январе в Лас-Вегасе на выставке CES 2010 китайская компания Haier показала первый в мире полностью беспроводной HDTV-телевизор. На его экран по воздуху передавался не только видеосигнал с проигрывателя (для чего применялся официально родившийся буквально месяцем раньше стандарт Wireless Home Digital Interface), но и электропитание. Последнее обеспечивала именно технология WiTricity.

    А ещё компания Солячича ведёт переговоры с производителями мебели об установке катушек в столы и стены шкафов. Первое объявление о серийном продукте партнёра WiTricity ожидается к концу 2010 года.

    Вообще же специалисты предсказывают появление на рынке настоящих бестселлеров — новых продуктов со встроенным приёмником WiTricity. Причём никто ещё не может уверенно сказать — что это будут за вещи.

    Компания Haier является одним из крупнейших в мире производителей бытовой электроники. Неудивительно, что её инженеры заинтересовались возможностью соединить новейшие технологии беспроводной передачи HDTV-сигнала и беспроводного электропитания и даже ухитрились первыми показать такой прибор в действии (фотографии engadget.com, gizmodo.com).

    Любопытно, что история WiTricity началась несколько лет назад с ряда досадных пробуждений Марина. Несколько раз в течение месяца его будил сигнал разряженного телефона, просящего «поесть». Забывавший вовремя подключить мобильник к розетке учёный удивлялся: разве не смешно, что телефон находится в нескольких метрах от электрической сети, но не в состоянии получить эту энергию. После очередного пробуждения в три часа ночи Солячич подумал: было бы здорово, если б телефон смог позаботиться о своей зарядке сам.

    Заметим, речь сразу пошла не о новом варианте "ковриков" для зарядки карманных приборов. Такие системы работают, только если устройство положить непосредственно на «коврик», а это ведь для забывчивых людей ничуть не лучше, чем необходимость просто втыкать проводок в розетку. Нет, телефон должен был получать электроэнергию в любом месте комнаты, а то и квартиры, и не важно, бросили ли вы его на столе, диване или подоконнике.

    Тут обычная электромагнитная индукция, направленные микроволновые лучи и "осторожные" инфракрасные лазеры — не годились. Марин взялся за поиск других вариантов. Едва ли он тогда мог подумать, что через некоторое время пищащий и «голодный» телефон приведёт его к созданию собственной компании и появлению технологии, способной «делать заголовки» и, что куда важнее, заинтересовать промышленных партнёров.

    Добавим, что о принципах, истории и будущем WiTricity некогда довольно подробно рассказал исполнительный директор корпорации Эрик Гилер (Eric Giler).

    Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

    Шаг 1: Нам понадобится

    NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
    обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
    резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
    светодиод – сгодится любой, главное следовать схеме.
    батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
    ножницы или нож.
    паяльник (опционально).
    зажигалка(опционально) для удаления изоляции с проводов.

    Шаг 2: Смотрим видео процесса

    Шаг 3: Резюмируя видео

    Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

    Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

    Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

    Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

    Шаг 4: Принципиальная схема

    Шаг 5: Наглядный рисунок

    Шаг 6: Тестирование


    Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

    Шаг 7: Пояснение

    Немного поясню, как все это функционирует.

    Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

    «Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

    Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

    В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

    Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

    Шаг 9: Устранение неисправностей

    При создании этой самоделки возможны следующие проблемы:
    Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
    Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

    Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

    Беспроводная передача электричества

    Беспроводна́я переда́ча электри́чества - способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи . К году имели место успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 % - в 1975 в Goldstone, Калифорния и в 1997 в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до микроволн).

    История беспроводной передачи энергии

    • 1820 : Андре Мари Ампер открыл закон (после названный в честь открывателя, законом Ампера), показывающий, что электрический ток производит магнитное поле.
    • 1831 : Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
    • 1862 : Карло Маттеучи впервые провел опыты по передаче и приёму электрической индукции с помощью плоско спиральных катушек .
    • 1864 : Джеймс Максвелл систематизировал все предыдущие наблюдения, эксперименты и уравнения по электричеству, магнетизму и оптике в последовательную теорию и строгое математическое описание поведения электромагнитного поля .
    • 1888 : Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца был СВЧ или УВЧ искровой передатчик «радиоволн».
    • 1891 : Никола Тесла улучшил передатчик волн Герца радиочастотного энергоснабжения в своём патенте No. 454,622, «Система электрического освещения».
    • 1893 : Тесла демонстрирует беспроводное освещение люминесцентными лампами в проекте для Колумбовской всемирной выставки в Чикаго .
    • 1894 : Тесла зажигает без проводов лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хьюстон стрит в Нью-Йорке, с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
    • 1894 : Джагдиш Чандра Боше дистанционно воспламеняет порох и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов.
    • 1895 : А. С. Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) года
    • 1895 : Боше передаёт сигнал на расстояние около одной мили.
    • 1896 : Гульельмо Маркони подает заявку на изобретение радио 2 июня 1896 года .
    • 1896 : Тесла передаёт сигнал на расстояние около 48 километров.
    • 1897 : Гульельмо Маркони передает текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
    • 1897 : Тесла регистрирует первый из своих патентов по применению беспроводной передачи.
    • 1899 : В Колорадо Спрингс Тесла пишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха ».
    • 1900 : Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
    • 1901 : Маркони передаёт сигнал через Атлантический океан, используя аппарат Тесла.
    • 1902 : Тесла против Реджинальда Фессендена: конфликт американского патента No. 21,701 «Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом».
    • 1904 : На Всемирной выставке в Сент-Луисе предлагается премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м).
    • 1917 : Разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
    • 1926 : Шинтаро Уда и Хидецугу Яги публикуют первую статью «о регулируемом направленном канале связи с высоким усилением », хорошо известном как «антенна Яги-Уда» или антенна «волновой канал».
    • 1961 : Уильям Браун публикует статью по исследованию возможности передачи энергии посредством микроволн.
    • 1964 : Уильям Браун и Уолтер Кроникт демонстрируют на канале CBS News модель вертолета, получающего всю необходимую ему энергию от микроволнового луча.
    • 1968 : Питер Глейзер предлагает беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч». Это считается первым описанием орбитальной энергетической системы .
    • 1973 : Первая в мире пассивная система RFID продемонстрирована в Лос-Аламосской Национальной лаборатории.
    • 1975 : Комплекс дальней космической связи Голдстоун проводит эксперименты по передаче мощности в десятки киловатт.
    • 2007 : Исследовательская группа под руководством профессора Марина Солячича из Массачусетского технологического института передала беспроводным способом на расстояние 2 м мощность, достаточную для свечения лампочки 60 вт, с к.п.д. 40 %, с помощью двух катушек диаметром 60 см.
    • 2008 : Фирма Bombardier предлагает новый продукт для беспроводной передачи PRIMOVE, мощная система для применения в трамваях и двигателях малотоннажной железной дороги.
    • 2008 : Корпорация Intel воспроизводит опыты Никола Тесла 1894 года и группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с к.п.д. 75 %.
    • 2009 : Консорциум заинтересованных компаний, названный Wireless Power Consortium, объявил о скором завершении разработки нового промышленного стандарта для маломощных индукционных зарядных устройств.
    • 2009 : Представлен промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом. Это изделие было разработано норвежской компанией Wireless Power & Communication .
    • 2009 : Haier Group представила первый в мире полностью беспроводной LCD телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

    Технология (ультразвуковой метод)

    Изобретение студентов университета Пенсильвании. Впервые широкой публике установка была представлена на выставке The All Things Digital (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, используется приёмник и передатчик. Передатчик излучает ультразвук, приёмник, в свою очередь, преобразует слышимое в электричество. На момент презентации расстояние передачи достигает 7-10 метров, необходима прямая видимость приёмника и передатчика. Из известных характеристик - передаваемое напряжение достигает 8 вольт, однако не сообщается получаемая сила тока. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии на животных.

    Метод электромагнитной индукции

    Техника беспроводной передачи методом электромагнитной индукции использует ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери все-же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создает переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, все большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

    Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция. Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щеток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приемник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

    Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приемник настроены на одну частоту. Производительность может быть улучшена еще больше путем изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приемная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

    Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приемника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi.

    Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющимся беспроводным передатчиком электрической энергии.

    Электростатическая индукция

    Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст. Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях над уровнем моря и благодаря потоку ионов, то есть, электрической проводимости через ионизированную область, расположенную на высоте выше 5 км. Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через нее и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря емкостному плазменному разряду в ионизированной атмосфере.

    Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывался как коммерческий проект по трансатлантической беспроводной телефонии и стал реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования.

    Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4.5 миль (7.2 км).

    Глобальная система передачи электроэнергии без проводов, так называемая "Всемирная беспроводная система", основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате "короткого замыкания" между заряженной атмосферой и землей.

    Всемирная беспроводная система

    Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

    В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успех можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приемниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения ее полной эксклюзивности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учетом физических свойств нашей планеты».

    Одним из условий создания всемирной беспроводной системы является строительство резонансных приемников. Заземленный винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приемной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732, Аппарат для передачи электрической энергии, 18 января 1902 г.). Тесла предложил установить более тридцати приемо-передающих станций по всему миру. В этой системе приемная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приемной.

    Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействие объединению электрических генерирующих в глобальном масштабе.

    См. также

    • Энергетический луч

    Примечания

    1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
    2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
    3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
    4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
    5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
    6. Jagadish Chandra Bose (англ.)
    7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
    8. June 5, 1899, Nikola Tesla Colorado Spring Notes 1899-1900, Nolit, 1978 (англ.)
    9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
    10. The Electrician (London), 1904 (англ.)
    11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
    12. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
    13. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
    14. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
    15. Solar Power Satellite patent (англ.)
    16. History of RFID (англ.)
    17. Space Solar Energy Initiative (англ.)
    18. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
    19. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
    20. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Архивировано ,
      Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Архивировано из первоисточника 29 февраля 2012. Проверено 6 сентября 2010.
    21. Bombardier PRIMOVE Technology
    22. Intel imagines wireless power for your laptop (англ.)
    23. wireless electricity specification nearing completion
    24. TX40 and CX40, Ex approved Torch and Charger (англ.)
    25. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
      Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Архивировано из первоисточника 26 февраля 2012. Проверено 6 сентября 2010.
    26. Eric Giler demos wireless electricity | Video on TED.com
    27. "Nikola Tesla and the Diameter of the Earth: A Discussion of One of the Many Modes of Operation of the Wardenclyffe Tower," K. L. Corum and J. F. Corum, Ph.D. 1996
    28. William Beaty, Yahoo Wireless Energy Transmission Tech Group Message #787 , reprinted in WIRELESS TRANSMISSION THEORY .
    29. Wait, James R., The Ancient and Modern History of EM Ground-Wave Propagation," IEEE Antennas and Propagation Magazine , Vol. 40, No. 5, October 1998.
    30. SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY , Sept. 2, 1897, U.S. Patent No. 645,576, Mar. 20, 1900.
    31. I have to say here that when I filed the applications of September 2, 1897, for the transmission of energy in which this method was disclosed, it was already clear to me that I did not need to have terminals at such high elevation, but I never have, above my signature, announced anything that I did not prove first. That is the reason why no statement of mine was ever contradicted, and I do not think it will be, because whenever I publish something I go through it first by experiment, then from experiment I calculate, and when I have the theory and practice meet I announce the results.
      At that time I was absolutely sure that I could put up a commercial plant, if I could do nothing else but what I had done in my laboratory on Houston Street; but I had already calculated and found that I did not need great heights to apply this method. My patent says that I break down the atmosphere "at or near" the terminal. If my conducting atmosphere is 2 or 3 miles above the plant, I consider this very near the terminal as compared to the distance of my receiving terminal, which may be across the Pacific. That is simply an expression. . . .
    32. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power