Солнечное зарядное устройство для телефона самодельное. Самодельная солнечная батарея для телефона. Инструменты и материалы

Сегодня в тренде технологии, которые позволяют экономить электроэнергию и являются экологически чистыми. Очень многие люди предпочитают использовать солнечные батареи для самых разнообразных целей. Такому устройству всегда найдется применение в домашнем обиходе. Например, для той же зарядки мобильного телефона.

Такое зарядное устройство на солнечных батареях своими руками может сделать каждый человек, и наша статья поможет вам в этом.

Применение

Каждый год наступает лето. А это пора, когда все ездят отдыхать на моря или природу. И здесь совсем нелишним будет озаботиться, чтобы все нужное было на своих местах и работало как следует. А самой востребованной вещью является мобильный телефон. Его, как известно, нужно заряжать, а в лесу или на природе это не всегда удобно. Отличным решением будет использовать зарядку на солнечной батарее, которую легко можно сделать своими руками.
Такое устройство позволит вам:

  • не переживать по поводу зарядки смартфона где-нибудь вдали от розетки;
  • не тратить лишние деньги на приобретение подобных зарядок. Покупные модели таких приборов стоят довольно дорого;
  • не быть зависимым от электроэнергии;
  • постоянно находиться на связи и использовать все функции телефона в любом месте вашего отдыха;
  • и еще один плюс — компактные размеры такого зарядного устройства;

Обратите внимание! Можно сделать как мини зарядку так и устройство несколько больших размеров.

  • не таскать за собой много лишнего, чтобы подзаряжать электроприборы.

Такая мини солнечная батарея своими руками обладает массой преимуществ, которые будут неоценимы во время любого отдыха.

Внешний вид

Дизайн, который может иметь мини солнечная батарея своими руками, бывает различным и, в принципе, зависит от вас. Единственное, о чем нужно не забывать, так это про особенности использования и функциональность.

Дизайн зарядки

Предполагается что такое устройство, предназначенное для зарядки сотового телефона, должно отличаться портативностью, чтобы свободно умещаться в сумке или даже кармане. Поэтому зачастую зарядник такого плана делают складным. Также корпус самодельного изделия должен выдерживать незначительные механические воздействия. В противном случае он может просто развалиться в кармане при движении.
Вместе с тем, бывают ситуации, когда зарядное устройство для смартфона на солнечных батарейках предполагает использоваться в домашних условиях (офис, дом и т.д.) без транспортировки на значительные расстояния. Тогда о прочности корпуса можно не так сильно беспокоиться.

Обратите внимание! Чтобы придать красоты вашему самодельному заряднику, можно использовать различные декоративные украшения. Однако они в любом случае не должны влиять на комфортность использования самодельного устройства.

Чтобы устройство могло выполнять возложенную на него функцию, нужна правильная схема сборки. В зависимости от того, какой вид будет иметь зарядка, схема может несколько отличаться.

Что собираем

Рассмотрим, каким образом собирается мини солнечная батарея своими руками на примере складного зарядника для сотового телефона. Это устройство будет обладать следующими характеристиками:

Примерный вид

  • мощность — 20 ватт;
  • конструкция состоит из 2-х панелей (12в – 10 ватт). Размер панелей составляет 30х35 см, а в разложенном состоянии самодельная солнечная панель будет 35х60 см;
  • стабилизированное напряжения для выхода — 14в- 20 ватт;
  • в конструкции имеется встроенный аккумулятор на 14,8в – 4,3 ампер-часа. Такой аккумулятор обычно используется для питания планшета или ноутбука;
  • два USB выхода, каждый по 5в – 4,3 ампер-часа. В итоге в сумме получается примерно 5в – 8,6 ампер-час.

Как видим по фото, конструкция имеет вид дипломата. В закрытом виде она полностью предотвращает любого рода повреждения солнечной панели.
По сути такое зарядное устройство для сотового телефона представляет собой два зарядника со встроенными в них аккумуляторами 7,4в — 4,3 ампер-часа.
Чтобы собрать такой прибор, вам понадобятся:

  • две солнечных панели (в примере используются панели на 12в-10 ватт). Можно применять разнообразные модели с алюминиевыми рамками. Все зависит от ваших финансовых возможностей;

Обратите внимание! Можно использовать солнечные панели китайского производства. Они обойдутся гораздо дешевле.

  • петли. С их помощью будут соединяться между собой две панели нашего «дипломата». Их можно снять со старого шкафчика. Обычно нужна одна или две петли;
  • аккумуляторы;
  • USB гнезда. Их берем из старого системного блока. Также их можно отрезать от USB удлинителя;
  • два сверхярких светодиода. Они понадобятся для того чтобы создать индикацию зарядки, а также для подсветки окружающего пространства (если есть такая необходимость);
  • выключатели и прочие небольшие детали.

Некоторые детали для сборки

Так как нельзя допускать полной разрядки аккумулятора, в нашем самодельном устройстве необходимо применять блок контроля за разрядкой АКБ. Он состоит из встроенной батареи. Эта батарея отключается в ситуации
снижения напряжения на имеющихся литиевых аккумуляторах (до 6,1в).
Обратите внимание! Данная батарея легко перестраивается на необходимое вам напряжение.
Батарея может отключаться и при наличии на выходе кроткого замыкания.

Описание сборки

Сборка зарядного устройства для любого типа смартфона строго по схеме. В нашем случае будет использоваться следующая схема.

Схема сборки

Здесь представлена полная схема сборки для одного блока будущей зарядки. В данной ситуации допускается запараллеливания панелей для использования их в качестве одного блока.
Обратите внимание! На схеме имеются пунктирные линии, по которым следует делать подключение второй панели к единому блоку стабилизации.
Схема собирается на корпусе, которым могут выступать деревянные доски, сколоченные по типу шахматной доски или другие конструкции аналогичного строения.

Расшифровка обозначений

Как видим, на схеме нанесены специальные пометки, которые являются условными обозначениями деталей. Поэтому чтобы правильно подсоединить между собой составные компоненты, нужно знать расшифровку этих символов:

  • SZ1 – солнечная панель;
  • VD1 и VD2 — диоды. Эти элементы будут предохранять панель от переполюсовки, которая формируется на входе при заряде от сетевого адаптера;
  • DD1,DD2 — стабилизаторы. Они позволяют добиться стабильного напряжения при зарядке;
  • R1,R2 — резисторы. С их помощью устанавливается нужное напряжение для подзарядки аккумуляторов;
  • R4 — резистор, необходимый для ограничения тока при наличии разряженного аккумулятора;
  • R5 — резистор. Он устанавливает ток, идущий через светодиод подсветки и индикации;
  • R6-R9 — резисторы, на которых собраны делители, создающие для USB необходимые уровни;
  • SA1 — клавишный переключатель. С его помощью можно делать выбор режима использования. Если стоит режим 14В, можно производить зарядку аккумуляторов (внешний свинцовый и т.д.), а в режиме 8,4В — подключать в схему встроенный аккумулятор. На встроенный аккумулятор от солнечной панели будет подаваться напряжение.

Зная эту расшифровку, вы без проблем соберете портативный зарядник на солнечных батареях.

Как работать с устройством

Теперь, когда мы знаем, как собирается схема, необходимо разобраться, как она будет работать. При полностью разряженном аккумуляторе включение устройства возможно только в режиме SA1 8,4В. Здесь контактная группа SA1/2 разблокирует аккумулятор, а его подключение на зарядку произойдет автоматически.

Готовая зарядка

При заряженном аккумуляторе включение прибора произойдет в режиме SA1 8,4В в случае быстрого нажатия на кнопку КН1. Когда зарядка мобильного телефона будет завершена, переводим SA1 в положение 14В. Таким образом отключится встроенный аккумулятор, о чем просигнализирует выключившийся светодиод.

Заключение

При точном следовании схемы и правильном подключении всех ее компонентов, вы получите компактное портативное устройство для зарядки мобильного устройства от солнечных панелей. Такой самодельный зарядный прибор позволит вам комфортно отдыхать на природе и всегда оставаться на связи с цивилизацией.


Подробно о выключателе с датчиком движения
Выбираем уличный датчик движения для включения света

Сделать самодельное зарядное устройство не слишком сложно - необходимые компоненты не очень дорогие и их легко достать. Солнечные зарядные USB устройства идеально подходят для зарядки небольших устройств, например, телефона.

Слабым местом всех самодельных солнечных зарядок являются аккумуляторы. Большинство зарядных устройств на солнечных батареях собираются на базе стандартных никель-металл-гидридных аккумуляторов - дешёвых, доступных и безопасных в эксплуатации. Но к сожалению у NiMH аккумуляторов слишком низкие напряжение и ёмкость, чтобы их можно было серьёзно рассматривать в качестве зарядных устройств для современных гаджетов, энергопотребление которых с каждым годом только растёт.

Например, аккумулятор iPhone 4 на 2000 мА*ч ещё можно полностью перезарядить от самодельной солнечной зарядки с двумя или четырьмя аккумуляторами АА, но вот iPad 2 оснащён аккумулятором на 6000 мА*ч, который уже не так просто перезарядить с помощью подобного зарядного устройства.

Решением данной проблемы является замена никель-металл-гидридных аккумуляторов на литиевые.

Из этой инструкции вы узнаете, как своими руками сделать солнечную USB зарядку с литиевым аккумулятором. Во-первых, по сравнению с коммерческими зарядными устройствами это самодельное зарядное устройство обойдётся вам очень дёшево. Во-вторых, собрать его очень просто. И самое главное - эта литиевая USB зарядка безопасна при эксплуатации.

Шаг 1: Необходимые компоненты для сборки солнечной USB зарядки.

Электронные компоненты:

  • Солнечная батарея на 5 В или выше
  • Литий-ионный аккумулятор на 3,7 В
  • Контроллер зарядки литий-ионного аккумулятора
  • Повышающая USB схема постоянного тока
  • Разъём 2,5 мм с креплением на панель
  • Разъём 2,5 мм с проводом
  • Диод 1N4001
  • Провод

Конструкционные материалы:

  • Изолента
  • Термоусадочные трубки
  • Двухсторонняя лента из пеноматериала
  • Припой
  • Жестяная коробка (или другой корпус)

Инструменты:

  • Паяльник
  • Пистолет для склеивания горячим клеем
  • Дрель
  • Дремель (не обязателен, но желателен)
  • Кусачки
  • Инструмент для зачистки проводов
  • Помощь друга
  • Защитные очки

В этом руководстве рассказывается как сделать зарядное устройство для телефона на солнечной энергии. Вы можете отказаться от использования солнечных батарей и ограничиться только изготовлением обычной USB зарядки на литий-ионных аккумуляторах.

Большинство компонентов для этого проекта можно купить в интернет магазинах электроники, но повышающую USB схему постоянного тока и контроллер заряда литий-ионного аккумулятора найти будет не так просто. Далее в этом руководстве я расскажу, где можно достать большинство необходимых компонентов и для чего каждый из них нужен. Исходя из этого вы сами решите какой вариант вам лучше всего подходит.

Шаг 2: Преимущества зарядных устройств с литиевыми аккумуляторами.

Может быть вы не догадываетесь, но скорей всего литий-ионный аккумулятор прямо сейчас лежит у вас в кармане или на столе, а может и в вашем кошельке или рюкзаке. В большинстве современных электронных устройств используются литий-ионные аккумуляторы, характеризующиеся большой ёмкостью и напряжением. Их можно перезаряжать множество раз. Большинство аккумуляторов формата АА по химическому составу являются никель-металл-гидридными и не могут похвастаться высокими техническими характеристиками.

С химической точки зрения разница между стандартным никель-металл-гидридным аккумулятором АА и литий-ионным аккумулятором заключается в химических элементах, содержащихся внутри элемента питания. Если вы посмотрите на периодическую таблицу элементов Менделеева, то увидите, что литий находится в левом углу рядом с самыми химически активными элементами. А вот никель расположен в середине таблицы рядом с химически неактивными элементами. Литий обладает такой высокой химической активностью из-за того, что у него только один валентный электрон.

И как раз именно по этой причине на литий много нареканий - иногда он может выходить из-под контроля из-за своей высокой химической активности. Несколько лет назад компания Sony, лидер в производстве аккумуляторов для ноутбуков, изготовила партию некачественных аккумуляторов для ноутбуков, некоторые из которых самопроизвольно возгорались.

Именно поэтому при работе с литий-ионными аккумуляторами мы должны придерживаться определенных мер предосторожности - очень точно поддерживать напряжение во время зарядки. В этой инструкции используются аккумуляторы на 3,7 В, которые требуют заряжающего напряжения 4,2 В. При превышении или уменьшении этого напряжения химическая реакция может выйти из-под контроля со всеми вытекающими последствиями.

Вот почему при работе с литиевыми батареями необходимо проявлять предельную осторожность. Если обращаться с ними осторожно, то они достаточно безопасны. Но если вы будете делать с ними недопустимые вещи, то это может привести к большим неприятностям. Поэтому их следует эксплуатировать только строго по инструкции.

Шаг 3: Выбор контроллера заряда литий-ионного аккумулятора.

Из-за высокой химической реактивности литиевых аккумуляторов вы должны быть на сто процентов уверены, что схема контроля напряжения заряда вас не подведёт.

Хотя можно изготовить собственную схему контроля напряжения, но лучше просто купить уже готовую схему, в работоспособности которой вы будете уверены. На выбор доступны несколько схем контроля заряда.

На данный момент Adafruit выпускает уже второе поколение контроллеров заряда для литиевых аккумуляторов с несколькими доступными значениями входящего напряжения. Это весьма неплохие контроллеры, но у них слишком большой размер. Вряд ли на их базе получится собрать компактное зарядное устройство.

В интернете можно купить небольшие модули контроллеров зарядки литиевых аккумуляторов, которые и используются в данном руководстве. На базе этих контроллеров я также собрал множество других самоделок. Они мне нравятся за компактность, простоту и наличие светодиодной индикации заряда аккумулятора. Как и в случае с Adafruit, при отсутствии солнца литиевый аккумулятор можно зарядить через USB порт контроллера. Возможность зарядки через USB порт является крайне полезной опцией для любого зарядного устройства на солнечных батареях.

Независимо от того, какой контроллер вы выбрали, вы должны знать как он работает и как его правильно эксплуатировать.

Шаг 4: USB порт.

Через USB порт можно заряжать большинство современных устройств. Это стандарт во всём мире. Почему бы просто не подключить USB порт напрямую к аккумулятору? Зачем нужна специальная схема для зарядки через USB?

Проблема заключается в том, что по стандарту USB напряжение составляет 5 В, а литий-ионные аккумуляторы, которые мы будем использовать в данном проекте, имеют напряжение всего 3,7 В. Поэтому нам придётся воспользоваться повышающей USB схемой постоянного тока, которая увеличивает напряжение до достаточного для зарядки различных устройств. В большинстве коммерческих и самодельных USB зарядок, наоборот, используются понижающие схемы, так как они собираются на базе аккумуляторов на 6 и 9 В. Схемы с понижением напряжения более сложные, поэтому в солнечных зарядных устройствах их лучше не применять.

Схема, которая применяется в данной инструкции, была выбрана в результате длительного тестирования различных вариантов. Она практически идентична схеме Minityboost Adafruit, но стоит дешевле.

Конечно вы можете купить онлайн недорогое зарядное USB устройство и разобрать его, но нам нужна схема, преобразующая 3 В (напряжение двух батареек АА) в 5 В (напряжение на USB). Разборка обычной или автомобильной USB зарядки ничего не даст, так как их схемы работают на понижение напряжения, а нам наоборот нужно повышать напряжение.

Кроме того следует учесть, что схема Mintyboost и используемая в проекте схема способны работать с гаджетами Apple, в отличии от большинства других зарядных USB устройств. Устройства от Apple проверяют информационные пины на USB, чтобы знать куда они подключены. Если гаджет Apple определит, что информационные пины не работают, то он откажется заряжаться. У большинства других гаджетов такая проверка отсутствует. Поверьте мне - я перепробовал множество дешёвых схем зарядки с интернет-аукциона eBay - ни от одной из них мне не удалось зарядить свой айфон. Вы же не хотите, чтобы от вашей самодельной USB зарядки нельзя было заряжать гаджеты Apple.

Шаг 5: Выбор аккумулятора.

Если вы немного погуглите, то обнаружите огромный выбор аккумуляторов разных размеров, ёмкостей, напряжений и стоимости. Поначалу во всём этом многообразии будет несложно запутаться.

Для нашего зарядного устройства мы будет использовать литий-полимерный (Li-Po) аккумулятор на 3,7 В, который очень напоминает аккумулятор для айпода или мобильного телефона. Действительно, нам нужен аккумулятор исключительно на 3,7 В, так как схема зарядки рассчитана именно на это напряжение.

То, что аккумулятор должен быть оснащён встроенной защитой от перезаряда и переразряда, даже не обсуждается. Обычно эта защита называется «PCB protection» («схема защиты»). Поищите по этим ключевым словам на интернет-аукционе eBay. Из себя она представляет всего лишь небольшую печатную плату с чипом, которая защищает аккумулятор от чрезмерного заряда и разряда.

При выборе литий-ионного аккумулятора смотрите не только на его ёмкость, но и на его физический размер, который преимущественно зависит от выбранного вами корпуса. В качестве корпуса у меня выступила жестяная коробка Altoids, так что я был ограничен в выборе аккумулятора. Я сначала думал купить аккумулятор на 4400 мА*ч, но из-за его больших размеров мне пришлось ограничиться аккумулятором на 2000 мА*ч.

Шаг 6: Подсоединение солнечной батареи.

Если вы не собираетесь делать зарядное устройство с возможностью подзарядки от солнца, то можете пропустить этот этап.

В этом руководстве используется солнечная батарея в жестком пластиковом корпусе на 5,5 В и 320 мА. Вам подойдет любая большая солнечная батарея. Для зарядного устройства лучше всего выбирать батарею, рассчитанную на напряжение 5 — 6 В.

Возьмите провод за кончик, разделите его на две части и немного зачистите концы. Провод с белой полоской отрицательный, а полностью чёрный провод - положительный.

Припаяйте провода к соответствующим контактам с обратной стороны солнечной батареи.

Закройте места пайки с помощью изоленты или горячего клея. Это защитит их и поможет снизить нагрузку на провода.

Шаг 7: Сверлим жестяную коробку или корпус.

Так как в качестве корпуса я использовал жестяную коробку Altoids, то мне пришлось немного поработать дрелью. Кроме дрели нам понадобится ещё и такой инструмент, как дремель.

Перед тем, как начать работу с жестяной коробкой, сложите в неё все компоненты, чтобы убедиться на практике, что она вам подходит. Продумайте, как лучше всего в ней разместить компоненты, и только потом сверлите. Места расположения компонентов можете обозначить маркером.

После обозначение мест можете приниматься за работу.

Вывести USB порт можно несколькими способами: сделать небольшой надрез прямо вверху на коробке или же сбоку на коробке просверлить отверстие соответствующего размера. Я решил сделать отверстие сбоку.

Сначала приложите USB порт к коробке и обозначьте его место. Внутри обозначенной области просверлите дрелью два или больше отверстий.

Зашлифуйте отверстие дремелем. Обязательно соблюдайте технику безопасности, чтобы не травмировать пальцы. Ни в коем случае не держите коробку в руках - зажмите её в тиски.

Просверлите отверстие диаметром 2,5 мм для USB порта. При необходимости расширьте его с помощью дремеля. Если вы не планируете устанавливать солнечную батарею, то в отверстии 2,5 мм нет необходимости!

Шаг 8: Подключение контроллера зарядки.

Одна из причин, по которой я выбрал этот компактный контроллер зарядки, это его высокая надёжность. У него четыре контактные площадки: две впереди рядом с портом mini-USB, куда подаётся постоянное напряжение (в нашем случае от солнечных батарей), и две сзади для аккумулятора.

Чтобы подключить разъём 2,5 мм к контроллеру зарядки, необходимо подпаять два проводка и диод от разъёма к контроллеру. Кроме того желательно воспользоваться термоусадочными трубками.

Зафиксируйте диод 1N4001, контроллер зарядки и разъём 2,5 мм. Расположите разъём перед собой. Если смотреть на него слева направо, то левый контакт будет отрицательным, средний - положительным, а правый вообще не используется.

Один конец проводка припаяйте к отрицательной ножке разъёма, а другой к отрицательному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Ещё один проводок припаяйте к ножке диода, рядом с которой нанесена метка. Припаивайте его как можно ближе к основанию диода, чтобы сэкономить побольше свободного места. Припаяйте другую сторону диода (без метки) к средней ножке разъёма. Опять же, постарайтесь припаять максимально близко к основанию диода. И в завершение подпаяйте проводок к положительному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Шаг 9: Подключение аккумулятора и USB схемы.

На данном этапе потребуется всего лишь подпаять четыре дополнительных контакта.

Нужно подсоединить аккумулятор и USB схему к плате контроллера зарядки.

Сначала отрежьте несколько проводков. Подпаяйте их к положительным и отрицательным контактам на USB схеме, которые расположены на нижней стороне платы.

После этого соедините вместе эти проводки с проводками, идущими от литий-ионного аккумулятора. Убедитесь, что вы соединили вместе отрицательные проводки и соединили вместе положительные проводки. Напоминаю, что красные провода у нас положительные, а чёрные - отрицательные.

После того, как вы скрутили проводки вместе, приварите их к контактам на аккумуляторе, которые находятся на обратной стороне платы контроллера зарядки. Перед пайкой проводки желательно продеть в отверстия.

Теперь можно поздравить вас - вы на 100% справились с электрической частью этого проекта и можете немного расслабиться.

На этом этапе неплохой идеей будет проверить работоспособность схемы. Так как все электрические компоненты подсоединены, то всё должно работать. Попробуйте зарядить айпод или любой другой гаджет, оснащённый USB портом. Устройство не будет заряжаться, если аккумулятор разряжен или неисправен. Кроме того поместите зарядное устройство на солнце и посмотрите будет ли заряжаться аккумулятор от солнечной батареи - при этом должен загореться маленький красный светодиод на плате контроллера зарядки. Также вы можете зарядить аккумулятор через mini-USB кабель.

Шаг 10: Электрическая изоляция всех компонентов.

Перед тем, как разместить все электронные компоненты в жестяной коробкой, мы должны быть уверены, что она не сможет стать причиной короткого замыкания. Если у вас пластиковый или деревянный корпус, то пропустите этот этап.

На дне и по бокам жестяной коробки наклейте несколько полос изоленты. Именно в этих местах будет находиться USB схема и контроллер зарядки. На фотографиях видно, что контроллер зарядки у меня остался незакреплённым.

Постарайтесь тщательно всё заизолировать, чтобы не произошло короткого замыкания. Перед тем, как наносить горячий клей или наматывать изоленту, убедитесь в прочности пайки.

Шаг 11: Размещение электронных компонентов в корпусе.

Так как 2,5 миллиметровый разъём необходимо закрепить с помощью болтов, то разместите его в первую очередь.

На моей USB схеме сбоку имелся переключатель. Если у вас такая же схема, то сначала проверьте работает ли переключатель, который нужен для включения и отключения «режима зарядки».

И наконец нужно закрепить аккумулятор. С этой целью лучше использовать не горячий клей, а несколько кусочков двустороннего скотча или изоленты.

Шаг 12: Эксплуатация самодельного зарядного устройства на солнечных батареях.

В завершение поговорим о правильной эксплуатации самодельной USB зарядки.

Заряжать аккумулятор можно через mini-USB порт или от солнца. Красный светодиод на плате контроллера зарядки указывает на процесс зарядки, а синий на полностью заряженный аккумулятор.

Во время своего последнего похода мне удалось в самолёте зарядить свой iPhone 4 почти на 80%, учитывая, что при этом я слушал музыку. Ёмкость аккумулятора составляла 2000 мА*ч. Чтобы зарядить аккумуляторы на 4400 или 6600 мА*ч, потребуется намного больше времени. Особенно это относится к айподам и другим планшетам.

Хотя это и достаточно сложная инструкция, я надеюсь, что вам удалось собрать своими руками USB зарядку с литий-ионным аккумулятором. Учитывая, что цены на литиевые аккумуляторы и контроллеры к ним падают, то нет никакого смысла делать самодельную зарядку на аккумуляторах других типов. Литий-ионные аккумуляторы особенно хорошо подходят для проектов, в которых крайне важны габариты устройства. Сейчас можно купить литий-ионные аккумуляторы даже самых безумно маленьких размеров. Это самый лучший источник энергии для автономных походов.

Производители телефонов почему-то не хотят выпускать нормальные самозаряжающиеся гаджеты. На картинке выше телефон Samsung E1107 . По заявлению производителя, в идеальных условиях он может полностью зарядится от солнца за 55 часов. Но в Москве нет таких идеальных условий.

Есть более эффективные солнечные батареи и телефоны с более низким потреблением. К примеру, с черно-белым маленьким экраном Alcatel ot-117 . Созрело у меня желание самому попробовать сделать солнечную панель для телефона и разместить на задней стороне, на крышке от аккумулятора.

У меня есть старый добрый друг Alcatel ot-117 :

Найти солнечную панель по разумной цене с нормальным КПД оказалось в Москве нереально. Купил китайскую зарядку.

Данную зарядку купил исходя из характеристик. Производитель обещал полную зарядку за 14-16 часов под солнцем встроенного аккумулятора на 500 mAh, т.е. как в моем телефоне. Меня это вполне устраивало, так как телефон разряжается за 4 дня и мощности солнечной панели, даже с учетом не идеальных условий, должно хватить, чтобы телефон не нужно было заряжать от стандартной зарядки вообще . А все это чудо на алиэкспрессе стоит 150р. Дешевле, чем покупать солнечную панель отдельно в наших магазинах. И более того, данная солнечная панель достаточно эффективна.

И так эксперимент

Пришлось разрезать microusb кабель NOKIA:

Получили microusb с одной стороны, а 4 провода с другой:

Солнечную батарею нужно соединять красным проводом с красным (плюс с плюсом), а второй провод солнечной батареи (у меня синий) со знаком (-) с черным проводом. Также чтобы пошла зарядка нужно замкнуть белый и зеленый провод. Схема проводов:

Получили данный образец для экспериментов:

Оказалось, что телефон заряжается от нее, лежа на моем офисном столе в солнечную погоду за 2 рабочих дня, а в облачную - за 3 рабочих дня. Работаю я с 8 утра до 5 вечера. Окна офиса выходят на восток. Эксперимент считаю удачным. Остается только все спаять под корпусом напрямую к microusb разъему и разместить в крышке от аккумуляторного отсека. Каких-то дополнений в виде диодов и других радиодеталей не требуется, так как саморазряда при подключении к microusb разъему телефона нет, а телефон заряжается естественным путем. Процесс зарядки отображается на экране телефона. Удивительно, как все легко получается.

В помощь выкладываю рисунок распиновки microusb:


Вот как выглядит сборка:



Солнечная панель будет крепиться на двусторонний мягкий скотч:

Я заказал на ебее более мощную солнечную панель. Также планирую подключить ее через диод SS14 (стоит 5 рублей) напрямую к контактам батареи без пайки, просто зажав контакты. Позже выложу схему подключения. Панель ждать придется 3 недели. Она в 2 раза эффективней этой и стоит всего 100р. Решил так сделать из-за постоянного появления раздражающего сообщения о подключении и отключении зарядки.


Features:
Max. power: 0.5W.
Max. current: 100mA.
Max. voltage: 5V.
Size: 8.6cm x 3.8cm x 0.2cm.

Несложное зарядное устройство на солнечных батареях своими руками.

Н аступает летний сезон, пора отпусков и выезда для отдыха на природу. Вот и я, после нескольких поездок на природу и мучений с бензиновым генератором, который имеет большой вес, прилично рокочет и воняет, решил обзавестись солнечным зарядным устройством. Мне необходимо заряжать портативную радиостанцию, электронную книгу, ноутбук, фонарик на светодиодах, фотоаппарат и мобильные телефоны, использовать светодиодную лампу, а также возможно подзарядить 12 вольтовый свинцовый аккумулятор. В интернете зарядные устройства для заряда перечисленной аппаратуры существуют, но при этом стоят очень дорого, да имеют слабую солнечную панель. Как всегда нас пенсионеров давит «жаба» и мы не ищем легких путей.

П редлагаю вашему вниманию свою конструкцию, собранную на основе публикаций из интернета и своих доработок. Мое зарядное устройство имеет мощность 20 ватт и состоит из двух панелей 12в – 10 ватт 30х35 см, в разложенном положении солнечная панель получается 35х60 см. И обеспечивает на выходе стабилизированные напряжения 14в- 20 ват, напрямую от панелей и от встроенного аккумулятора 14,8в – 4,3 ампер-часа для питания ноутбука или планшета, а также два USB выхода 5в – 4,3 ампер-часа каждый, в сумме 5в – 8,6 ампер-час.

П анель собрана в виде «дипломата», что в закрытом состоянии полностью предотвращает повреждение самой панели. По сути, здесь сделаны два самостоятельных зарядных устройства со встроенными аккумуляторами 7,4в 4,3 ампер-часа. При последовательном включении мы получим на выходе 14,8 вольт. 4,3 ампер-часа, для наших нужд в ночное время, или два блока аккумуляторов 7,4в в сумме 8,6 ампер-часа. Также есть выходы для зарядки свинцовых аккумуляторов. Я использовал литиевые аккумуляторы от вышедших батарей ноутбука. Как правило, в батарее выходит из строя одна секция и батарея не держит заряд. Отобрал только рабочие банки. Вы можете использовать любые аккумуляторы, схема позволяет настроить стабилизированное напряжение на выходе устройства. В моем случае для зарядки литиевых аккумуляторов 8,4в, свинцовых 14в и USB устройств и мобильных телефонов 5в. Имея эти напряжения и используя токоограничивающий резистор можно заряжать все виды устройств от 1,2в до 12-14в. Вы можете использовать одну панель 12в-10 ват, тогда дипломат будет вполовину тоньше и дольше заряжать батарею.

Конструкция и схема

Ч то нам понадобится – это две солнечных панели 12в-10 ватт, в моем случае это панели китайского производства стоимостью 18 долларов одна штука, итого 18х2=36 долларов (мне обошлись 435 грн на момент покупки вместе с пересылкой из Киева). Можно использовать и другие модели в алюминиевых рамках.

Т акже необходима петля для соединения панелей в «дипломат» можно использовать и две подходящих петли от шкафчиков.


USB гнезда в моем случае это дополнительные гнезда для задней панели системного блока, можно использовать USB гнезда отрезанные от USB удлинителя,только крепить в панели их придется вклейкой или хомутиками.

А ккумуляторы, два сверхярких светодиода (можно от фонарика) – используются для индикации заряда и ночью для подсветки в палатке, если не используется мощная светодиодная лампа. Выключатели и прочая мелочевка, все видно на приложенных фотографиях.

П оскольку не допустим полный разряд аккумуляторов в конструкции используется блок контроля разряда АКБ который отключает встроенную батарею при снижении напряжения на литиевых аккумуляторах до 6,1в (вы можете легко перестроить на любое напряжение для своих аккумуляторов), также батарея отключается и при коротком замыкании на выходе.

Н а рисунке приведена полная схема одного блока зарядного устройства. У меня для каждой панели свой блок и свои аккумуляторы, можно просто запараллелить панели и использовать один блок, на схеме пунктиром указано как правильно подключить вторую солнечную панель к одному блоку стабилизации.

Описание схемы

SZ1 – солнечная панель, диоды VD1 и VD2 защищают солнечную панель при заряде от сетевого адаптера и от переполюсовки на входе. VD2 – защищает регулируемый стабилизатор DD1 от выхода из строя при отсутствии напряжения на входе стабилизатора. Стабилизаторы DD1,DD2 позволяют получить стабильные напряжения для заряда. Резисторами R1,R2 устанавливаем необходимые напряжения для заряда аккумуляторов. Резистор R4 служит для ограничения тока при разряженном аккумуляторе, у меня при его номинале 1 Ом порядка 1-1,25 А. Резистором R5 устанавливаем ток через светодиод индикации и подсветки VD4 . Светодиод служит для индикации подключения встроенного аккумулятора и индикации наличия напряжения заряда. На резисторах R6-R9 собраны делители, задающие необходимые уровни для USB. Клавишный переключатель SA1 позволяет выбрать режим использования, в положении 14В мы можем заряжать внешний свинцовый или другой аккумулятор при этом контакты SA1/2 отключают встроенный в панель аккумулятор. В положении 8,4В подключается встроенный аккумулятор, на него подается напряжение от солнечной панели для заряда, а также им можно пользоваться в ночное время для зарядки любых устройств и питания светодиодной лампы (у меня светодиодная USB лампа для компьютера). В режиме экономии для подсветки ночью в палатке достаточно свечения сверхярких светодиодов индикации при этом суммарный ток потребления от встроенного аккумулятора составит 10мА (5мА светодиод и 5мА стабилизатор КРЕН5В) Гнездо ГН1 служит для подключения сетевого адаптера и подзарядки встроенной батареи от сети адаптер должен обеспечивать на выходе постоянное напряжение 20-16в при токе нагрузки 1,5-2А.

Работа с солнечным устройством

Включение устройства при полностью разряженном встроенном аккумуляторе (блок защиты АКБ отключил аккумулятор) произойдет только в режиме SA1 8,4В при этом контактная группа SA1/2 разблокирует работу аккумулятора, подключение же его на зарядку произойдет автоматически при подаче напряжения заряда от сетевого адаптера или раскрытой солнечной панели при солнечном освещении, засветившийся светодиод укажет на наличие напряжения заряда.

Включение работы при заряженной аккумуляторной батарее , при отсутствии достаточного освещения производится в режиме SA1 8,4В кратковременным нажатием кнопки КН1 при этом засветившийся светодиод укажет на подключение АКБ. По окончании заряда телефонов и др. устройств, переводом SA1 в положение 14В мы отключаем встроенный аккумулятор, светодиод погаснет.

В положении SA1-14В и освещении солнечной панели солнечным светом или подключении сетевого адаптера на выходном разъеме для внешнего аккумулятора будет стабилизированное напряжение 14 вольт, которое можно также использовать для заряда портативной радиостанции. При этом на USB разъеме будет напряжение 5 вольт для заряда USB устройств независимо от встроенного аккумулятора.

В положении SA1-8,4В и освещении солнечной панели солнечным светом или подключении сетевого адаптера на выходном разъеме будет напряжение аккумулятора и в процессе заряда встроенного аккумулятора поднимется до 8,4 вольта. При этом на USB разъеме будет напряжение 5 вольт. Для освещения палатки я использую пятивольтовые светодиодные лампы рассчитанные на подключение к USB, подключаю их к USB выходу поскольку напряжение 5 вольт стабилизировано то и лампа светит стабильно до полного разряда встроенной аккумуляторной батареи.

Защищает встроенный дорогостоящий аккумулятор от выхода из строя при коротком замыкании и от полного разряда, а также позволяет отключать полностью заряженный аккумулятор от схемы в режиме дежурного хранения. Заменой стабилитрона VD1 и подбором резистора R3 его можно настроить на любое напряжение отключения, например для 12 вольтового свинцового аккумулятора минимальное напряжение не должно быть ниже 9-10 вольт. Кратковременное нажатие кнопки КН1 позволяет в режиме 8,4В подключать встроенный аккумулятор, также в режиме 8,4В аккумулятор автоматически подключается при подаче напряжения на гнездо ГН1 или раскрытии солнечной панели на солнце.

Порядок настройки

Блок стабилизаторов
Для настройки блока стабилизаторов на всякий случай отключаем солнечную панель, на гнездо ГН1 подаем напряжение от источника питания. Переключаем переключатель SA1 в положение 14В и резистором R2 устанавливаем напряжение на 1 контакте разъема для внешнего аккумулятора 14 вольт затем при отключенном встроенном аккумуляторе SA1 переключаем в положение 8,4В резистором R1 устанавливаем напряжение 8,4 вольта на 1 контакте разъема для внешнего аккумулятора (если используем другой встроенный аккумулятор то устанавливаем другое напряжение). Обязательно настройку начать с режима 14В! Затем подключаем разряженный встроенный аккумулятор и подбором резистора R4 (изготовлен из куска нихромовой спирали от электроплитки) устанавливаем максимальный ток заряда у меня 1-1,25А. Необходимо учитывать что на выходе для зарядки ток заряда от одной солнечной панели не будет превышать 500мА при работе в параллель двух панелей 1А, при заряде от сетевого адаптера будет достигать 1-1,25А.


На вход блока вместо аккумулятора подключаем регулируемый блок питания, устанавливаем напряжение 12-14в, на выход подключаем через резистор 1ком светодиод. Кратковременно нажимаем на кнопку КН1 светодиод должен засветится, затем плавно уменьшаем напряжение с блока питания до того момента пока не погаснет светодиод и замеряем напряжение на входе блока контроля АКБ это напряжение будет соответствовать напряжению отключения батареи. Подбором резистора R3 блока АКБ устанавливаем напряжение срабатывания защиты у меня 6,1в. Поочередно увеличивая напряжение блока питания и нажимая кнопку КН1 запускаем АКБ и уменьшая напряжение делаем замеры несколько раз убеждаясь в правильности настройки защиты. Также замыкание точек А и В между собой должно приводить к немедленному отключению АКБ независимо от напряжения на входе АКБ. Заменой стабилитрона на большее или меньшее напряжение и подбором резистора R3 можно перестроить защиту на любое напряжение.

Монтаж
Монтаж блоков выполняется на двух отдельных стеклотекстолитовых платах, детали располагаются со стороны печатного монтажа. Монтажные дорожки выполнены путем прорезания резаком из ножовочного полотна под металлическую линейку. Размеры плат позволяют использовать любые детали. Чертеж платы блока контроля АКБ приведен на рисунках №1 и №2, чертеж платы стабилизаторов на рисунках №4 и №5

Рисунок 1-3:

Рисунок 4-5:

Микросхемы стабилизаторов укреплены непосредственно на алюминиевой рамке солнечной панели через изолирующие прокладки, взятые с вышедшего из строя компьютерного блока питания. Платы и аккумуляторы приклеены на двусторонний скотч и дополнительно по контуру проклеены силиконовым термоклеем. Светодиод индикации также приклеен силиконовым термоклеем. Полевой транзистор блока АКБ припаян непосредственно к фольге платы 60 ватным паяльником.

Детали

Стабилизатор DD1 можно заменить любым регулируемым стабилизатором на 3-5А напряжение до 35 вольт например LM 317, LM117,
Стабилизатор USB 5в DD2 заменяется любым пятивольтовым на ток 2-3А например КР142ЕН5А или LM 7805,



Диоды FR156 заменимы любыми кремнеевыми диодами расчитаными на ток не менее 1,5А например FR302, FR207, CT2A05 и др.
Транзистор КТ361Е блока АКБ можно зменить на анологичный с любой буквой или на КТ3107.
блока АКБ можно зменить на любой выпаяный из старой материнской платы полевой с каналом N типа(N-Channel Enhancement Mode MOSFET), как правило мощность и ток транзисторов в материнской плате в таких корпусах не ниже 10А


Конструкция защелки «дипломата» выполнена из куска листовой пружины от ножовочного полотна по дереву или любой другой. Отверстия пробиваются пробойчиком, поскольку просверлить ее не отпуская метал не просто.


Разъемы для подключения сетевого адаптера и внешнего аккумулятора могут быть любыми но желательно с изолированными от корпуса контактами, поскольку у меня два отдельных зарядных и можно при помощи перемычек через эти разъемы соединить панели последовательно, и получить общее напряжение 28 вольт для заряда 24 вольтовых устройств. Если общий провод и один из контактов будет соединен с корпусом панели то подключить две панели последовательно будет невозможно. Для изоляции общего провода от корпуса панели микросхема DD2 изолирована через прокладку, если вы не планируете последовательного подключения встроенных аккумуляторов или используете один блок стабилизаторов для двух солнечных панелей то микросхему DD2 можно не изолировать.

Обратная сторона панелей закрыта крышками из фанеры можно использовать и пластик, от качества крышек во многом будет зависеть внешний вид «дипломата». Крышки прикручены винтами М3 с потайной головкой утопленой в фанеру, чтобы головка винта не царапала стол. В корпусах панелей для крепления крышек нарезана резьба М3

Для переноски используется плечевой капроновый ремень с карабинчиками от ученической сумки, а на корпусе зарядного укреплены петли для карабинчиков.

Вот пожалуй и все. Я думаю информации достаточно для повторения или творческой переработки для своих условий.

73! С уважением ко всем UR3ID [email protected]
Милюшин Сергей Анатольевич

Зарядить сотовый телефон можно многими способами. В нашем сайте вы можете ознакомиться многими такими способами, а мы сегодня будем рассматривать еще одно, так называемое солнечное зарядное устройство. Заряжать мы сегодня наш телефон будем солнечными элементами. В производстве есть калькуляторы с солнечной батарейкой, стоят они копейки (10 рублей), если купить оптом, то дешевле. Нам нужно 9 калькуляторов, почему именно девять - узнаете чуть позже.

Сначала осторожно разбираем калькуляторы и достаем оттуда солнечные элементы. Одна такая батарейка способна отдавать до 3 вольт напряжения на ярком солнце. Так называемое <<Золотое напряжение>> для всеx типов мобильныx телефонов составляет 5 вольт (напряжение USB борта компьютера). Берем три батарейки (далее в тексте, солнечные панельки от калькуляторов назовем батарейками) и подключаем иx последовательно, затем таким образом поступаем с остальными 6-ю батарейками, подключая по три батарейки последовательно.

Таким образом мы получили три блока, в каждом блоке по три батарейки. Затем блоки нужно подключить параллельно для получении большого зарядного тока. И зарядный ток может достигать 80-100 миллиампер. Но телефон мы будем заряжать не от солнечныx батареек. Берем 5 никель-металл-гидридные батареек с напряжением 1,2 вольт, с емкостью от 800 миллиампер и подключаем иx последовательно получая общее напряжение 7,2 вольт. Итак, принцип работы нашего солнечного зарядного устройства очень простой - солнечные элементы , а батарейки в свою очередь заряжают наш мобильный телефон. Ниже приведена сxема зарядного устройства.


Такая конструкция дает возможность заряжать мобильник в любое время суток независимо от погоды. Теперь нужно поискать удобный корпус для такого девайса. Его также можно сделать своими руками из пластмассовыx лист. Для клейки пластмассы удобно использовать силикон. Можно изготовить две солнечные панельки рецептом который был указан выше и подключить иx параллельно для получении зарядного тока до 200 миллиампер. Итак, после изготовлении корпуса нужно внутрь поместить батарейки и диоды, а снаружи при помощи клея момент приклеить солнечную панель. Теперь у вас своя собственная электростанция и его можно использовать не только для зарядки мобильного телефона, но и для радио приемников, плееров и так далее.

Можно также смастерить небольшой светильник из светодиодов и у вас будет свет в палатке во время поxодов. Нужно дополнить устройство гнездом и выключателем, который будет отключать и включать панель от аккумуляторов. Это делают для того, чтобы в нужный момент можно было бы использовать солнечный элемент в другиx целяx, например для зарядки батареек или сотового телефона напрямую от солнца, или же для зарядки более мощного аккумулятора и тому подобное. Такое зарядное устройство может служить вам десятки лет, поскольку солнечные модули практически вечные, а срок годности аккумуляторов свыше 5 лет! На этом всё, удачи - АКА.