Системы спутниковой навигации. Спутниковые навигационные системы

НАВИГАЦИОННЫЕ РАДИОСИГНАЛЫ

Принцип работы системы
навигации

НАВИГАЦИОННОЕ СООБЩЕНИЕ

CИСТЕМЫ КООРДИНАТ

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СНИЖЕНИЕ ТОЧНОСТИ

СИСТЕМЫ ВРЕМЕНИ

ПОВЫШЕНИЕ ТОЧНОСТИ НАВИГАЦИИ

Основные элементы спутниковой системы навигации

Космический сегмент

Космический сегмент, состоящий из навигационных спутников, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника - формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника.

Наземный сегмент

В состав наземного сегмента входят космодром, командно-измерительный комплекс и центр управления. Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск.

Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами.

Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы.

Пользовательский сегмент

В пользовательский сегмент входит аппаратура потребителей. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.

Принцип работы системы навигации

Современная спутниковая навигация основывается на использовании принципа беззапросных дальномерных измерений между навигационными спутниками и потребителем. Это означает, что потребителю передается в составе навигационного сигнала информация о координатах спутников. Одновременно (синхронно) производятся измерения дальностей до навигационных спутников. Способ измерений дальностей основывается на вычислении временных задержек принимаемого сигнала от спутника по сравнению с сигналом, генерируемым аппаратурой потребителя.

На рисунке приведена схема определений местоположения потребителя с координатами x, y, z на основе измерений дальности до четырех навигационных спутников. Цветными яркими линиями показаны окружности, в центре которых расположены спутники. Радиусы окружностей соответствуют истинным дальностям, т.е. истинным расстояниям между спутниками и потребителем. Цветные неяркие линии - это окружности с радиусами, соответствующими измеренным дальностям, которые отличаются от истинных и поэтому называются псевдодальностями. Истинная дальность отличается от псевдодальности на величину, равную произведению скорости света на уход часов b, т.е. величину смещения часов потребителя по отношению к системному времени. На рисунке показан случай, когда уход часов потребителя больше нуля – то есть часы потребителя опережают системное время, поэтому измеренные псевдодальности меньше истинных дальностей.

В идеальном варианте, когда измерения производятся точно и показания часов спутников и потребителя совпадают для определения положения потребителя в пространстве достаточно произвести измерения до трех навигационных спутников.

В действительности показания часов, которые входят в состав навигационной аппаратуры потребителя, отличаются от показаний часов на борту навигационных спутников. Тогда для решения навигационной задачи к неизвестным ранее параметрам (три координаты потребителя) следует добавить еще один - смещение между часами потребителя и системным временем. Отсюда следует, что в общем случае для решения навигационной задачи потребитель должен «видеть», как минимум, четыре навигационных спутника.

Системы координат

Для функционирования навигационных спутниковых систем необходимы данные о параметрах вращения Земли, фундаментальные эфемериды Луны и планет, данные о гравитационном поле Земли, о моделях атмосферы, а также высокоточные данные об используемых системах координат и времени.

Геоцентрические системы координат - системы координат, начало которых совпадает с центром масс Земли. Их также называют общеземными или глобальными.

Для построения и поддержания общеземных систем координат используются четыре основных метода космической геодезии:

  • радиоинтерферометрия со сверхдлинной базой (РСДБ),
  • лазерная локация космических аппаратов (SLR),
  • доплеровские измерительные системы (DORIS),
  • навигационные измерения космических аппаратов ГЛОНАСС и других ГНСС.

Международная земная система координат ITRF является эталоном земной системы координат.

В современных навигационных спутниковых системах используются различные, как правило национальные, системы координат.

Системы времени

В соответствии с решаемыми задачами применяются два типа систем времени: астрономические и атомные.

Системы астрономического времени основаны на суточном вращении Земли. Эталоном для построения шкал астрономического времени служат солнечные или звездные сутки, в зависимости от точки небесной сферы, по которой производится измерение времени.

Всемирное время UT (Universal Time) – это среднее солнечное время на гринвическом меридиане.

Всемирное координированное время UTC синхронизировано с атомным временем и является международным стандартом, на котором базируется гражданское время.

Атомное время (TAI) - время, в основу измерения которого положены электромагнитные колебания, излучаемые атомами или молекулами при переходе из одного энергетического состояния в другое. В 1967 году на Генеральной конференции мер и весов атомная секунда представляет собой переход между сверхтонкими уровнями F=4, M=0 и F=3, M=0 основного состояния 2S1/2 атома цезия-133, не возмущённого внешними полями, и что частоте этого перехода приписывается значение 9 192 631 770 Герц.

Спутниковая радионавигационная система является пространственно-временной системой с зоной действия, охватывающей всё околоземное пространство, и функционирует в собственном системном времени. Важное место в ГНСС отводится проблеме временной синхронизации подсистем. Временная синхронизация важна и для обеспечения заданной последовательности излучения сигналов всех навигационных спутников. Она обусловливает возможность применения пассивных дальномерных (псевдодальномерных) методов измерений. Наземный командно-измерительный комплекс обеспечивает синхронизацию шкал времени всех навигационных КА путем их сверки и коррекции (непосредственной и алгоритмической).


Навигационные радиосигналы

Навигационных радиосигналы

При выборе типов и параметров сигналов, используемых в спутниковых радионавигационных системах, учитывается целый комплекс требований и условий. Сигналы должны обеспечивать высокую точность измерения времени прихода (задержки) сигнала и его доплеровской частоты и высокую вероятность правильного декодирования навигационного сообщения. Также сигналы должны иметь низкий уровень взаимной корреляции для того, чтобы сигналы разных навигационных космических аппаратов надежно различались навигационной аппаратурой потребителей. Кроме того, сигналы ГНСС должны максимально эффективно использовать отведенную полосу частот при малом уровне внеполосного излучения, обладать высокой помехоустойчивостью.

Почти все существующие навигационные спутниковые системы, за исключением индийской системы NAVIC, используют для передачи сигналов диапазон L. Система NAVIC будет излучать сигналы дополнительно и в S диапазоне.

Диапазоны, занимаемые различными навигационными спутниковыми системами

Виды модуляции

По мере развития спутниковых навигационных систем изменялись используемые виды модуляции радиосигналов.
В большинстве навигационных систем изначально использовались исключительно сигналы с бинарной (двухпозиционной) фазовой модуляцией – ФМ-2 (BPSK). В настоящее время в спутниковой навигации начался переход к новому классу модулирующих функций, получивших название BOC (Binary Offset Carrier)-сигналов.

Принципиальное отличие BOC-сигналов от сигналов с ФМ-2 состоит в том, что символ модулирующей ПСП BOC-сигнала представляет собой не прямоугольный видеоимпульс, а отрезок меандрового колебания, включающий в себя некоторое постоянное число периодов k. Поэтому сигналы с BOC-модуляцией часто называют меандровыми шумоподобными сигналами.

Использование сигналов с BOC-модуляцией повышает потенциальную точность измерения и разрешающую способность по задержке. Одновременно с этим, уменьшается уровень взаимных помех при совместном функционировании навигационных систем, использующих традиционные и новые сигналы.

Навигационное сообщение

Каждый спутник принимает с наземных станций управления навигационную информацию, которая передается обратно пользователям в составе навигационного сообщения. Навигационное сообщение содержит разные типы информации, необходимые для того, чтобы определить местоположение пользователя и синхронизовать его шкалу времени с национальным эталоном.

Типы информации навигационного сообщения
  • Эфемеридная информация, необходимая для вычисления координат спутника с достаточной точностью
  • Погрешность расхождения бортовой шкалы времени относительно системной шкалы времени для учета смещения времени космического аппарата при навигационных измерениях
  • Расхождение между шкалой времени навигационной системы и национальной шкалой времени, для решения задачи синхронизации потребителей
  • Признаки пригодности с информацией о состоянии спутника для оперативного исключения спутников с выявленными отказами из навигационного решения
  • Альманах с информацией об орбитах и состоянии всех аппаратов в группировке для долгосрочного грубого прогноза движения спутников и планирования измерений
  • Параметры модели ионосферы, необходимые одночастотным приемникам для компенсации погрешностей навигационных измерений, связанных с задержкой распространения сигналов в ионосфере
  • Параметры вращения Земли для точного пересчета координат потребителя в разных системах координат

Признаки пригодности обновляются в течение нескольких секунд при обнаружении отказа. Параметры эфемерид и времени, как правило, обновляются не чаще, чем раз в полчаса. При этом период обновления для разных систем сильно отличается и может достигать четырех часов, в то время как альманах обновляется не чаще, чем раз в день.

По своему содержанию навигационное сообщение подразделяется на оперативную и неоперативную информацию и передается в виде потока цифровой информации (ЦИ). Изначально во всех навигационных спутниковых системах использовалась структура вида «суперкадр/кадр/строка/слово». При этой структуре поток ЦИ формируется в виде непрерывно повторяющихся суперкадров, суперкадр состоит из нескольких кадров, кадр состоит из нескольких строк.
В соответствии со структурой «суперкадр/кадр/строка/слово» формировались сигналы системы БЕЙДОУ, ГАЛИЛЕО (кроме E6), GPS (LNAV данные, L1), сигналы ГЛОНАСС с частотным разделением. В зависимости от системы, размеры суперкадров, кадров и строк могут отличаться, но принцип формирования остается похожим.

Сейчас в большинстве сигналов используется гибкая строковая структура. В этой структуре навигационное сообщение формируется в виде переменного потока строк различных типов. Каждый тип строки имеет свою уникальную структуру и содержит определённый тип информации (указаны выше). НАП выделяет из потока очередную строку, определяет её тип и в соответствии с типом выделяет информацию, содержащуюся в этой строке.

Гибкая строковая структура навигационного сообщения позволяет значительно более эффективно использовать пропускную способность канала передачи данных. Но главным достоинством навигационного сообщения с гибкой строковой структурой является возможность её эволюционной модернизации при соблюдении принципа обратной совместимости. Для этого в ИКД для разработчиков НАП специально указывается, что если НАП в навигационном сообщении встречает строки неизвестных ей типов, то она должна их игнорировать. Это позволяет добавлять в процессе модернизации ГНСС к ранее существовавшим типам строк строки с новыми типами. НАП, выпущенная ранее, игнорирует строки с новыми типами и, следовательно, не использует те новации, которые вводятся в процессе модернизации ГНСС, но при этом её работоспособность не нарушается.
Сообщения сигналов ГЛОНАСС с кодовым разделением имеют строковую структуру.

Факторы, влияющие на снижение точности

На точность определения потребителем своих координат, скорости движения и времени влияет множество факторов, которые можно разделить на категории:

  1. Системные погрешности, вносимые аппаратурой космического комплекса

    Погрешности, связанные с функционированием бортовой аппаратуры спутника и наземного комплекса управления ГНСС обусловлены в основном несовершенством частотно-временного и эфемеридного обеспечения.

  2. Погрешности, возникающие на трассе распространения сигнала от космического аппарата до потребителя

    Погрешности обусловлены отличием скорости распространения радиосигналов в атмосфере Земли от скорости их распространения в вакууме, а также зависимостью скорости от физических свойств различных слоёв атмосферы.

  3. Погрешности, возникающие в аппаратуре потребителя

    Аппаратурные погрешности подразделяются на систематическую погрешность аппаратурной задержки радиосигнала в АП и флуктуационные погрешности, обусловленные шумами и динамикой потребителя.

Кроме того, на точность навигационно-временного определения существенно влияет взаимное расположение навигационных спутников и потребителя.
Количественной характеристикой погрешности определения местоположения и поправки показаний часов, связанной с особенностями пространственного положения спутника и потребителя, служит так называемый геометрический фактор Γ Σ или коэффициент геометрии. В англоязычной литературе используется обозначение GDOP - Geometrical delusion of precision.
Геометрический фактор Γ Σ показывает, во сколько раз происходит уменьшение точности измерений и зависит от следующих параметров:

  • Г п - геометрический фактор точности определения местоположения потребителя ГНСС в пространстве.
    Соответствует PDOP - Position delusion of precision.
  • Г г - геометрический фактор точности определения местоположения потребителя ГНСС по горизонтали.
    Соответствует HDOP - Horizontal delusion of precision.
  • Г в - геометрический фактор точности определения местоположения потребителя ГНСС по вертикали.
    Соответствует VDOP - Vertical delusion of precision.
  • Г т - геометрический фактор точности определения поправки показаний часов потребителя ГНСС.
    Соответствует TDOP - Time delusion of precision.

Повышение точности навигации

Существующие в настоящее время глобальные навигационные спутниковые системы (ГНСС) GPS и ГЛОНАСС позволяют удовлетворить потребности в навигационном обслуживании обширный круг потребителей. Но существует ряд задач, которые требуют высоких точностей навигации. К этим задачам относятся: взлет, заход на посадку и посадка самолетов, судовождение в прибрежных водах, навигация вертолетов и автомобилей и другие.

Классическим методом повышения точности навигационных определений является использование дифференциального (относительного) режима определений.

Дифференциальный режим предполагает использование одного или более базовых приёмников, размещённых в точках с известными координатами, которые одновременно с приёмником потребителя (подвижным, или мобильным) осуществляют приём сигналов одних и тех же спутников.

Повышение точности навигационных определений достигается за счёт того, что ошибки измерения навигационных параметров потребительского и базовых приёмников являются коррелированными. При формировании разностей измеряемых параметров большая часть таких погрешностей компенсируется.

В основе дифференциального метода лежит знание координат опорной точки – контрольно-корректирующей станции (ККС) или системы опорных станций, относительно которых могут быть вычислены поправки к определению псевдодальностей до навигационных спутников. Если эти поправки учесть в аппаратуре потребителя, то точность расчета, в частности, координат может быть повышена в десятки раз.

Для обеспечения дифференциального режима для большого региона – например, для России, стран Европы, США - передача корректирующих дифференциальных поправок осуществляется при помощи геостационарных спутников. Системы, реализующие такой подход, получили название широкозонные дифференциальные системы.

Определение своего местоположения, как на суше, так и на море, в лесу или в городе - вопрос такой же актуальный на сегодняшний день, как и на протяжении прошлых веков. Эпоха открытия радиоволн существенно упростило задачу навигации и открыло новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле. Для определения координат используется спутниковой системы навигации, который получает необходимую информацию от спутников, расположенных на орбите.

Сейчас в мире существуют две глобальных системы определения координат – российская ГЛОНАСС и американская NavStar, более известная как GPS (аббревиатура названия Global Position System – глобальная система позиционирования).

Cистема спутниковой навигации ГЛОНАСС была изобретена в Советском союзе еще в начале 80х годов прошлого века и первые испытания прошли в 1982 г. Она разрабатывалась по заказу Министерства Обороны и была специализирована для оперативной глобальной навигации наземных передвигающихся объектов.

Американская система навигации GPS по своей структуре, назначению и функциональности аналогична ГЛОНАСС и также разработана по заказу Министерства Обороны Соединенных Штатов. Она имеет возможность с высокой точностью определять как координаты наземного объекта, так и осуществлять временную и скоростную привязку. NavStar имеет на орбите 24 навигационных спутника, обеспечивающих непрерывное навигационное поле на всей поверхности Земли.

Приемоиндикатор системы спутниковой навигации (GPS-навигатор или ) принимает сигналы от спутников, измеряет расстояния до них, и по измеренным дальностям решает задачу определения своих координат – широты, долготы и, при приеме сигналов от 4-х и более спутников – высоты над уровнем моря, скорость, направление (курс), пройденный путь. В состав навигатора входят приемник с для приема сигналов, компьютер для их обработки и навигационных вычислений, дисплей для отображения навигационной и служебной информации и клавиатура для управления работой прибора.

Такие приемники предназначены для постоянной установки в рулевых рубках и на приборных панелях. Их основными особенностями являются: наличие выносной антенны и питание от внешнего источника постоянного тока. Они имеют, как правило, крупные жидкокристаллические монохромные экраны с алфавитно-цифровым и графическим отображением информации.

:

Компактный водонепроницаемый GPS/DGPS/WAAS приемник с высокими характеристиками, спроектированный для малых судов. Этот GPS приемник от компании способен принимать и обрабатывать дополнительные сигналы дифференциальных поправок DGPS/WAAS. Эта возможность обеспечивает, принимая поправки от радиомаяка или геостационарных спутников WAAS, использовать точность выше 5 метров.

Новый (D)GPS навигатор встроенным приемником дифференциальных поправок. Технология прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

С технологией прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

Стационарные приемники имеют широкие функциональные возможности, особенно профессиональные приборы для использования на море. Они обладают большим объемом памяти, возможностью решения различных навигационных задач, а их интерфейс предоставляет возможность включения в навигационную систему судна.

:

Это современный приемоиндикатор навигационных спутниковых систем ГЛОНАСС/GPS разработанный для судов всех типов.

Разработан специалистами компании «Радио Комплекс» с использованием новейших достижений в области морской навигации. РК-2006 имеет возможность принимать сигналы уже развернутых спутниковых группировок, таких как ГЛОНАСС и GPS, но так же и перспективных европейских и азиатских систем позиционирования, это позволяет с повышенной помехоустойчивостью, и защищенностью от вывода из строя какой-либо системы, определять координаты судна и его курс и скорость.

Приёмник глобальных навигационных спутниковых систем GPS и ГЛОНАСС, от южнокорейского производителя морского радионавигационного оборудования Samyung ENC Co., Ltd - SGN-500.

При использовании ГЛОНАСС и GPS в комбинированных приёмниках (практически все ГЛОНАСС-приёмники являются комбинированными) точность определения координат практически всегда «отличная» вследствие большого количества видимых КА и их хорошего взаимного расположения.

Отображение навигационной информации

В приемниках ГЛОНАСС/ GPS используются два способа отображения информации: алфавитно-цифровой и графический (иногда используется термин «псевдографический»).

Алфавитно-цифровой способ для отображения получаемой информации использует:

  • цифры (координаты, скорость, пройденный путь и т. п.)
  • буквенные сочетания, поясняющие цифровые данные – обычно аббревиатуры фраз (например, МОВ – «Man Over Board» или, по-русски – «Человек за бортом!»
  • сокращения слов (например,SPD – speed – скорость, TRK – Track – трасса), имена путевых точек. Алфавитно-цифровое отображение информации в чистом виде использовалось на начальном этапе развития техники GPS.

Графический способ отображения осуществляется с помощью образуемых на экране рисунков, представляющих характер движения носителя (судна, автомобиля, человека). Графика в аппаратах различных фирм практически одинакова и различается, как правило, в деталях. Наиболее распространенными рисунками являются:

  • электронный компас (не путать с магнитным!)
  • графический указатель движения
  • трасса движения, маршруты
  • символы для путевых точек
  • координаты судна
  • направление на путевую точку
  • скорость

Характеристики:

Точность определения координат места

Точность определения координат места является фундаментальным показателем любой навигационной системы, от значения которого будет зависеть, насколько правильно судно будет следовать по проложенному маршруту и не попадет ли оно на находящиеся поблизости мели или камни.

Точность приборов обычно оценивают по величине среднеквадратической погрешности (СКО) – интервалу, в который попадает 72 % измерений, или по максимальной ошибке, соответствующей 95 %. Большинство фирм-производителей оценивают СКО своих приемников GPS в 25 метров, что соответствует максимальной ошибке 50 метров.

Навигационные характеристики

Навигационные возможности приемников ГЛОНАСС/GPS характеризуют количеством запоминаемых прибором путевых точек, маршрутов и содержащихся в них маршрутных точек. Под путевыми понимаются используемые для навигации характерные точки на поверхности Современные могут создавать и хранить, в зависимости от модели, от 500 до 5000 путевых точек и 20–50 маршрутов с 20–30 точками в каждом.

Помимо путевых точек в любом приемнике есть запас точек для записи и сохранения пройденной трассы. Это количество может достигать от 1000 до нескольких десятков тысяч точек в профессиональных навигаторах. Записанная трасса может быть использована для возврата по ней назад.

Количество одновременно отслеживаемых спутников

Этот показатель характеризует устойчивость работы навигатора и его возможность обеспечения наивысшей точности. Учитывая тот факт, что для определения двух координат позиции – долготы и широты – нужно одновременно отслеживать 3 спутника, а для определения высоты – четырех. Современные ГЛОНАСС/ GPS навигаторы, даже носимые, имеют 8 или 12-канальные приемники, способные одновременно принимать и отслеживать сигналы соответственно до 8 или 12 спутников.

  • 47.) Действия по оказанию помощи терпящему бедствие судну и спасение людей после его гибели.
  • 48. Фазовые рнс. Точные навигационные системы удс. Оценка точности.
  • 49. Определение места по звездам и планетам. Оценка точности.
  • 50. Управление буксирными составами и их формирование.
  • 51. Характеристики персональных компьютеров. Задачи, решаемые с их помощью на судне.
  • 52. Определение поправки компаса.
  • 53. Тропические циклоны и расхождение с ними.
  • 54. Составление грузового плана
  • 55. Выверка секстана
  • 1. Проверка параллельности оптической оси зрительной трубы плоскости азимутального лимба
  • 2. Проверка перпендикулярности большого зеркала плоскости азимутального лимба
  • 3. Проверка перпендикулярности малого зеркала плоскости азимутального лимба
  • 56. Плавание при помощи рлс
  • 1. Способ веера пеленгов и расстояний.
  • 2. Способ траверзных расстояний (рис. 21.2).
  • 21.3.2. Определение места судна по расстояниям до нескольких ориентиров
  • 1. Расстояния измеряются до точечных ориентиров (рис. 21.3).
  • 2. Расстояния измеряются до участка береговой черты с плавными очертаниями и «точечного» ориентира (рис. 21.4).
  • 3. Расстояния измеряются до участков береговой черты с плавными очертаниями (рис. 21.5).
  • 21.3.3. Определение места судна по радиолокационному пеленгу и расстоянию до одного ориентира (рис. 21.6)
  • 57. Международные документы по безопасной перевозке грузов
  • 58.Судовой Хронометр. Измерение времени на судне. Гринвичское, международное, стандартное корректируемое, поясное, местное и судовое время.
  • 59.Сигналы судовых тревог. Обязанности членов экипажа по тревогам. Аварийные партии, состав и снабжение. Тренировки членов аварийных партий и групп.
  • 60. Контроль технического состояния судна. Классификационные общества технического надзора
  • 61. Чтение украинских, английских и российских навигационных карт. Условные обозначения на картах.
  • 62. Якорное устройство
  • 63. Перевозка опасных грузов. Кодекс по перевозке опасных грузов (imdg-Code)
  • Часть I - Информация и инструкции для всех опасных грузов, включая Алфавитный иОон числовые списки
  • Часть II - Классы 1, 2 и 3:
  • Часть III - Классы 4.1, 4.2, 4.3, 5.1 и 5.2:
  • Часть IV - Классы 6.1, 6.2, 7, 8 и 9:
  • 64. Подборка английских или российских карт и пособий на переход. Навигационная проработка и подготовка к переходу.
  • 65. Грузовое устройство. Люковые закрытия. Оценка прочности. Правила технической эксплуатации.
  • 66.Перевозка сыпучих грузов
  • 67.Организация вахтенной службы при плавании в особых обстоятельствах
  • 69.Особенности перевозки грузов на танкерах
  • 70. Пособие «Океанские пути мира». Рекомендованные пути. Системы разделения движения. Принципы выбора пути перехода.
  • 71. Характеристика волнения и элементов волны. Штормование судов. Диаграммы Ремеза и Богданова
  • 72. Международня конвенция о грузовой марке 1966г. Виды судовых грузовых марок. Запас плавучести
  • 72. Международная Конвенция о грузовой марке 1966г.Виды грузовых марок.Запас плавучести.
  • 73. Английсикие и российские лоции.
  • 74. Ковенция солас-74
  • 75. Удифферентовка и устрвнение крена с использованием суд.Документации и приборов
  • 76. Предвычисление высоты уровней приливов и приливных течений по таблицам и картам
  • 77. Международная конвенция по подготовке,дипломированию моряков и несению вахты(пднв 78/95)
  • 78. Контроль общей и местной прочности с использованием судовой документации и приборов.
  • 79. Условные обозначения на факсимильных картах погоды и волнения.
  • 80. Международная конвенция по защите морской среды от загрязнения(марпол73/78) и недопущения разлива нефтепродуктов(ойлпол)
  • 81. Основные течения в Мировом океане.
  • 82.Основные характеристики барических образований:циклонов,антициклонов,фронтов
  • 83. Основыне судовые документы и документация судового мостика
  • 84.Обеспечение непотопляемости аварийного судна.Операивная информация о непотопляемости
  • 85. Система ограждения навигационных опасностей мамс
  • 86. Плавание судов в особых случаях
  • 87. Международный кодекс по упарвлению безопасностью судов и защите среды(мкуб)
  • 88. Питание рек.Особенности весеннего,летнего и зимнего режима.Течения в речнос потоке
  • 89. Информация капитану об остойчивости и прочности судна,ее использование при составлении грузового плана судна.
  • 90. Кодекс Торгового Мореплавания Украины
  • 39. Снс gps «Navstar» и «Глонасс».

    Снс NAVSTAR (GPS).

    Состоит из 24 навигационных ИСЗ наземного командно-измерительного комплекса аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трёхмерном околоземном пространстве. Спутникм GPS расположены на 6 средневысоких орбитах (высота 20183) и имеют период обращения 12 часов. Плоскости орбит расположены через 60о и наклонены к экватору под углом 55 о. На каждой орбите располагается 4 спутника, три основных и один запасной. 18 спутников – это минимальное количество для обеспечения видимости в каждой точке Земли не менее 4-х спутников. Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью. Она имеет 2 режима определения места судна: 2D (определение навигационных параметров на поверхности Земли) и трёхмерный 3D (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения положения объекта в трёхмерном режиме требуется измерить навигационные параметры не менее 4-х ИСЗ, а при двухмерной навигации – не менее 3-х. В системе используется псевдодальномерный метод определения положения и псевдорадиально-скоростной метод нахождения скорости объекта. Излучение навигационных сигналов спутниками GPS производится на 2- частотах: F1=1575,42 и F2=1227,60 МГц. Режим излучения – непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой защищённый Р-код (precision code), излучаемый на частотах F1, F2 и общедоступный С/А-код (coarse and acquisition code), излучаемый только на частоте F1. В GPS для каждого спутника определён свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. GPS предоставляет два уровня обслуживания потребителей: точные определения (PPS – precise positioning service) и стандартный определения (SPS – Standart positioning service), PPS основывается на точном Р-коде, а SPS – на общедоступном С/А-коде. Уровень обслуживания PPS предоставляется военным и федеральным службам США, а SPS – массовому гражданскому потребителю. Кроме кодов Р и С/А спутник регулярно передаёт сообщение, которое содержит информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности. Основными источниками погрешностей, влияющих на точность бортовой аппаратуры для массового потребителя являются:

    ионосферные погрешности, обусловленные задержками в распространении радиоволн в верхних слоях атмосферы, которые приводят к ошибкам определения положения порядка 20-30 м днём и 3-6 м ночью;

    тропосферные погрешности, причиной которых являются искажения в прохождении радиоволн через нижние слои атмосферы. Они не превышают 30 м;

    эфемеридная погрешность, обусловленная разностью между расчётным и действительным положениями спутника, которая составляет не более 3 м;

    погрешность определения расстояния до спутника, обычно не превышает 10 м.

    Средняя квадратическая величина погрешности режима селективного доступа (ошибки искусственного происхождения, вносимой до 2000 г. с целью загрубления навигационных измерений) составляла примерно 30 м. Следует также обратить внимание и на периодические возникновения в системе зон PDOP (Position dilution of precision), в которых не обеспечивается объявленная точность навигации. Эти зоны возникают в течении 5-15 минут в диапазоне 30-50о градусов северной широты. Основным способом повышения точности местоопределений GPS в режиме SPS является применение принципа дифференциальных навигационных измерений. Дифференциальный способ (DGPS) реализуется с помощью опорной станции с известными координатами, устанавливаемой в районе определений места. На станции располагается контрольный GPS-приёмник. Сравнивая свои известные координаты с измеренными, контрольный GPS-приёмник вырабатывает поправки, которые передаются потребителям по радиоканалу. Аппаратура потребителя в этом случае должна быть дополнена радиоприёмником для получения дифференциальных поправок. Поправки, принятые от опорной станции, автоматически вводятся в результаты измерений. Это позволяет установить в районе опорной станции координаты объекта с точностью 1-5 м. Точность DGPS-определений зависит от характеристик опорной станции и от расстояния от объекта до опорной станции. По этой причине опорноую станцию рекомендуется располагать не далее 500 км от объекта. Существенной проблемой, снижающей эффективность системы GPS, является неточность геодезической съёмки ряда районов Земли. GPS представляет координаты определяющихся объектов во всемирной географической системе WGS-84. Существуют поравки для перехода от этой системы к ряду других геодезических систем, одако не ко всем. В рюде районов Земли (например, о-ва Юго-Восточной Азии), съёмка которых производилась в далёком прошлом, из-за больших погрешностей опорных точек геодезической сети отличие координатной системы карт от WGS-84 может быть значительным. Из-за отсутствия поправок место судна в системе WGS-84, перенесённое на такую карту, может оказаться на берегу.

    Советская глобальная спутниковая навигационная система ГЛОНАСС состоит из 24 ИСЗ, неземного командно-измерительного комплекса и является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трёхмерном околоземном пространстве. В полном объёме функционирование ГЛОНАСС началось с января 1996 г. Спутники ГЛОНАСС расположены на трёх средневысоких орбитах (высота 29100) и имеют период обращения 11 часов 15 минут. Плоскости орбит расположены через 120о и наклонены к экватору под углом 64,8о. На каждой орбите располагается 8 спутников. Каждый спутник излучает информацию о своей точной позиции и информацию о позициюх других спутников. Излучение навигационных сигналов спутниками ГЛОНАСС производится на двух несущих частотах: F1 и F2. Значения частот F1 всех спутников ГЛОНАСС лежат в диапазоне 1602,6-1615,5 МГц и отличаются для разных спутников на величину кратную 0,5625 МГц. Соответственно значения частот F2 находятся в диапазоне 1246,4-1256,5 МГц и отличаются для разных спутников на величину, кратную 0,4375 МГц. Навигационные сигналы представляют собой Р-код, излучаемый на частотах F1 и F2, и С/А-код, излучаемый только на частоте F1. В отличие от GPS, где коды Р и С/А для разных спутников разные, в ГЛОНАСС они одинаковы для всех спутников. Таким образом в отличие от применяемого в GPS кодового метода в ГЛОНАСС реализован частотный метод различения навигационных сигналов спутников. ГЛОНАСС даёт место в геодезической системе П390. Разница между положением объкта в П390 и WGS-84 не превышает 15 м, в среднем случае она составляет 5 м. Система ГЛОНАСС может использоваться совместно с GPS (GPS and GLONASS global navigation satellite system – GNSS). Это позволяет по сравнения с GPS повысить точночть числа наблюдаемых спутников, улучшения геометрии их расположения в высоких широтах, использования обоих кодов ГЛОНАСС в аппаратуре для массового потребителя, что даёт возможность более точно учесть в GPS ионосферную погрешность.

    Спутниковые навигационные системы GPS и ГЛОНАСС создавались исходя из определенных требований, соответствующих их прямому назначению. Подразумевалась их глобальность; независимость от метеорологических условий, рельефа местности, степени подвижности объекта; непрерывность работы и круглосуточная доступность; помехозащищенность; компактность аппаратуры потребителя и др.

    Гражданские применения СНС, развившиеся уже после разработки концепции систем ГЛОНАСС и GPS, особенно такие, как управление гражданским воздушным движением, навигацией судов, спасательные работы, предъявляют к СНС повышенные требования в плане доступности, целостности и непрерывности обслуживания. Дадим определения этим важным терминам:

    Доступность (готовность) - степень вероятности работоспособности СНС перед ее применением и в процессе применения.

    Целостность - степень вероятности выявления отказа системы в течение заданного времени или быстрее.

    Непрерывность обслуживания - степень вероятности сохранения непрерывной работоспособности системы на заданном промежутке времени.

    Под заданным промежутком времени, как правило, подразумевается отрезок времени, наиболее важный с практической точки зрения, например, время захода авиалайнера на посадку. В настоящее время среди гражданских применений наиболее критичным к работоспособности СНС является управление воздушным движением, включая навигационное обеспечение воздушных судов. Требования к доступности зависят от этапов полета и интенсивности воздушного движения. Доступность при маршрутном полете должна быть не хуже 0,999…0,99999; при полете в зо-не аэродрома и некатегорированном заходе на посадку не хуже 0,99999. Требования к целостности достигают, согласно требованиям ИКАО, значения 0,999999995 при допустимом времени предупреждения не более 1 с. Приведенные данные показывают, насколько велики требования, предъявляемые к надежности СНС потребителями.

    В СНС ГЛОНАСС и GPS высокие эксплуатационные характеристики на структурном уровне достигаются путем совместного функционирования трех основных сегментов:

    Космического сегмента;

    Сегмента управления;

    Сегмента потребителей.

    Кроме основных сегментов существует такое функциональное дополнение, как дифференциальная подсистема (DGPS) и ряд вспомогательных элементов: специальные каналы наземной и космической связи, средства вывода спутников на орбиту и т.п.

    Основу концепции СНС ГЛОНАСС и GPS составили независимость и беззапросность навигационных определений. Независимость подразумевает определение искомых навигационных данмирудование, но при современном уровне развития электроники подобное усложнение уже не имеет значения. Беззапросность системы означает, что все вычисления в аппаратуре потребителя вычисляются только на основе пассивно принятых сигналов от НКА с заранее точно известными орбитальными координатами. В свою очередь, отсутствие необходимости передавать запрос от потребителя к НКА позволяет сделать оборудование потребителя весьма компактным и экономичным.

    Космический сегмент.

    Точность местоопределения и стабильность функционирования СНС в большой степени зависит от взаимного орбитального расположения спутников и параметров их сигналов. Как правило, требуется, чтобы в зоне видимости потребителя находились не менее 3 - 5 НКА. На практике орбитальная структура строится таким образом, что для большинства потребителей постоянно видны более 6 НКА и потребитель имеет возможность выбирать оптимальное созвездие по определенному алгоритму, заложенному в вычислитель приемника. Кроме действующих НКА, завершенная СНС имеет в своем составе несколько резервных спутников, которые могут быть оперативно введены для замены вышедших из строя либо для увеличения степени покрытия определенного региона. Действующие НКА могут быть перегруппированы (в ограниченных пределах) по команде с наземной станции управления. Действующие в настоящее время средневысотные орбиты с высотой около 20 000 км позволяют принимать сигналы каждого НКА почти на половине поверхности Земли, что обеспечивает непрерывность радионавигационного поля и достаточную избыточность при выборе оптимального созвездия НКА. Системы GPS и ГЛОНАСС часто называют сетевыми СНС, поскольку принципиальное значение для их функционирования имеет взаимная синхронизация НКА по орбитальным координатам и параметрам излучаемых сигналов, т.е. объединение группы НКА в сеть.

    Основное значение НКА - формирование и излучение сигналов, необходимых для решения потребителем задачи позиционирования и контроля исправности самого НКА. В состав стандартного НКА входят: радиопередающее оборудование для передачи навигационного сигнала и телеметрической информации; радиоприемное оборудование для приема команд наземного комплекса управления; антенны; бортовая ЭМВ; бортовой эталон времени и частоты; солнечные батареи; аккумуляторные батареи; системы ориентации на орбите и т.д. Современные НКА могут нести сопутствующее оборудование, такое как детекторы для обнаружения наземных ядерных взрывов и элементы систем боевого управления.

    Излучаемые НКА сигналы содержат дальномерную и служебную составляющие. Дальномерная составляющая используется потребителями непосредственно для определения навигационых параметров - дальности до НКА, вектора скорости потребителя, его пространственной ориентации и т.п. Служебная составляющая содержит информацию о координатах спутников, шкале времени, векторах скоростей НКА, исправности и т.д. В основном служебная информация готовится командно-измерительным комплексом и закладывается в бортовую память НКА во время сеанса связи. И лишь незначительная ее часть формируется бортовой аппаратурой. Процедура переноса служебной информации из командного комплекса в память бортовой ЭВМ часто называется загрузкой данных.

    Дальномерная составляющая содержит компоненты стандартной и высокой точности. Стандартная точность измерений доступна всем потребителям, а высокая - только авторизованным, т.е. имеющим разрешение военных контролирующих органов. Разграничение доступа достигается путем кодирования сигналов высокой точности.

    В условиях военных действий возможны попытки как постановки преднамеренных помех с целью подавления сигнала СНС (джаминг), так и попытки навязывания (спуфинг), т.е. подмены сигнала и ввода в приемную аппаратуру противника заведомо ложной информации при помощи сторонних передатчиков. Поскольку в литературе весьма редко встречается четкое толкование термина «антиспуфинг» применительно к СНС, следует особо подчеркнуть, что речь идет именно о защите от навязывания.

    Сегмент управления.

    Сегмент управления состоит из главной станции, совмещенной с вычислительным центром; группы контрольно-измерительных станций (КИС), связанных с главной станцией и между собой каналами связи; наземного эталона времени и частоты. Контрольно-измерительные станции ста-раются размещать как можно равномернее по поверхности Земли, сообразуясь с геополитически-ми факторами и экономической целесообразностью. Координаты КИС (фазового центра антенны) определены в трех измерениях с максимально доступной точностью. При пролете НКА в зоне видимости КИС, она осуществляет наблюдение за спутником, принимает навигационные сигналы, осуществляет первичную обработку информации и производит обмен данными с главной стан-цией. На главной станции происходит сбор информации от всех КИС, ее математическая обработка и вычисление различных координатных и корректирующих данных, подлежащих загрузке в бортовую ЭВМ НКА.

    Данные, подлежащие загрузке, подразделяются на оперативные, обновляемые при каждом сеансе связи, и долговременные. В случае возникновения нештатной ситуации возможно проведение внеплановых сеансов связи и загрузки данных при условии нахождения НКА в зоне видимости одной из КИС.

    Наземный эталон времени и частоты имеет более высокую точность, чем бортовые эталоны и предназначен для синхронизации всех процессов, происходящих в СНС и коррекции бортовых эталонов.

    Сочетание независимости и беззапросности придает СНС неограниченную пропускную способность - произвольное число потребителей может использовать сигналы СНС в любой момент времени.

    Сегмент потребителей.

    Сегмент потребителей можно условно разбить на три части: военные организации; гражданские организации; частные лица. Независимо от назначения потребительского оборудования, в нем присутствуют радиочастотный тракт, в котором происходит прием радиосигналов НКА и их первичная обработка, и вычислитель, предназначенный для вторичной обработки сигнала, выделения навигационной информации, реализации алгоритма вычисления оптимального созвездия и вычисления пространственных координат и вектора скорости потребителя. Обычно сначала определяются текущие координаты НКА и дальности до них, затем вычисляются географические координаты потребителя. Вектор скорости потребителя вычисляется путем измерения доплеровских сдвигов частоты НКА при известных векторах скорости спутников. Для некритичных транспортных применений вектор скорости может рассчитываться по разности координат в два фиксированных момента времени. Далее, в зависимости от назначения приемника, информация может поступать на устройство отображения, в канал передачи, либо на блок управления внешними исполнительными механизмами.

    Определение текущих координат НКА.

    Несмотря на некоторое сходство с радиомаячными навигационными системами (беззапросность, дальномерный метод), СНС имеют также и существенные отличия. Координаты радиомаяков неизменны и заранее известны, тогда как координаты НКА необходимо постоянно находить. Определение текущих координат НКА, движущихся с большими непостоянными относительно потребителя скоростями представляет собой сложную техническую и вычислительную задачу.

    При существующем подходе к построению СНС максимально возможный объем вычислений стараются перенести на наземный комплекс управления. Контрольно-измерительные станции расположены на ограниченных территориях и не обеспечивают непрерывное наблюдение за НКА. По результатам доступных наблюдений в вычислительном центре главной командной станции вычисляются параметры орбит НКА. Они подвергаются математической обработке по алгоритмам устранения погрешностей. Затем на основании обработанных данных составляется прогноз параметров орбиты в фиксированные (опросные) моменты времени вплоть до выработки следующего прогноза.

    Спрогнозированные параметры орбиты и их производные называются эфемеридами. Во время сеанса связи эфемериды передаются на НКА, а затем в виде навигационного сообщения, содержащего эфемериды и соответствующие метки времени - потребителям. Зная предполагаемые параметры орбиты и точные координаты НКА в опорные моменты времени, потребитель может вычислить координаты НКА в произвольный момент времени. Кроме эфемерид в навигационное сообщение закладывается альманах - набор сведений о текущем состоянии СНС в целом, включая загрубленные эфемериды, применяемые для поиска видимых НКА и выбора оптимального созвездия.

    Общепринятые единицы мер времени.

    Рассмотрение принципов построения и функционирования спутниковых навигационных систем невозможно без предварительного ознакомления с основными понятиями, относящимися к единицам мер времени. Эти единицы применяются для определения пространственного положения НКА, привязки сигналов НКА к единой шкале времени и т.д.

    Принято различать две группы единиц отсчета времени:

    Астрономические;

    Неастрономические.

    Основной астрономической единицей отсчета являются сутки, разбитые на 86400сек и равные интервалу времени, за который Земля делает один полный оборот вокруг своей оси относительно некой фиксированной точки отсчета на небесной сфере, для неподвижного наблюдателя, находящегося на поверхности Земли. Характерной особенностью астрономических суток является то, что в зависимости от выбранной точки отсчета (центр видимого диска Солнца, точка весеннего равноденствия и т.д.), сутки имеют разную длительность и различаются по названию.

    Звездные сутки. Интервал времени, отмеренный между двумя последовательными верхними кульминациями точки весеннего равноденствия, называется звездными сутками, или, иначе, звездным периодом обращения Земли. Время, измеренное на определенном меридиане, называется местным временем данного меридиана. Поэтому, в случае со звездными сутками, говорят о местном звездном времени меридиана.

    Местное звездное время измеряется часовым углом положения точки весеннего равноденствия относительно небесного меридиана. Под небесным меридианом понимают проекцию земного меридиана на условную поверхность небесной сферы, поэтому часовой угол аналогичен географической долготе, отсчитывается от часового меридиана наблюдателя по часовой стрелке и измеряется в часах, минутах, секундах.

    Известно, что ось вращения Земли совершает медленные периодические движения, состоящие из движений по конусу - прецессий, и небольших колебаний - нутаций. Прецессия и нутации вносят погрешность в определение звездного времени, поскольку из-за них перемещается точка весеннего равноденствия. Если при расчетах учитывают только прецессию, то получают среднее звездное время. Когда совместно с прецессией учтена и нутация, то получается истинное звездное время. Звездное время, измеренное на Гринвичском меридиане, называется гринвичским звездным временем.

    "ВМ"-02-04

    Использование спутниковой навигационной системы

    для координатно-временного обеспечения ВС РФ

    Генерал-майор В.М. БУРЕНОК, доктор технических наук

    Капитан 1 ранга Е.Л. КОРЕПАНОВ

    СПУТНИКОВЫЕ навигационные системы (СНС) в настоящее время являются важнейшим средством координатно-временного обеспечения (КВО) видов Вооруженных Сил Российской Федерации и других силовых ведомств. Под КВО целесообразно понимать относительно самостоятельную часть навигационного обеспечения операций (боевых действий), предназначенную для снабжения потребителей информацией об их местоположении, времени и параметрах движения в интересах собственно навигации и других видов обеспечения: разведывательного, топогеодезического, картографического, поисково-спасательного и др.

    Исходя из специфики потребителей координатно-временной информации, можно выделить следующие виды КВО, связанные с областями применения: КВО в интересах неподвижных потребителей для получения точных текущих географических координат точки земной поверхности или объекта с целью топопривязки, геодезической съемки местности, картографирования и др.; КВО в интересах подвижных потребителей с целью решения задач навигации морских и речных судов, аэронавигации летательных аппаратов, навигации наземных мобильных средств, а также наведения высокоточных средств поражения воздушного, морского и наземного базирования, выброски воздушных десантов и грузов; КВО в интересах высокодинамичных потребителей с целью решения задач баллистического и эфемеридно-временного обеспечения применения ракет-носителей, разгонных блоков, космических аппаратов, баллистических ракет;

    КВО потребителей с целью временной привязки и частотной синхронизации их действий.

    В России применение навигационной аппаратуры потребителей (НАП) спутниковой навигационной системы ГЛОНАСС предусмотрено во всех видах Вооруженных Сил и родах войск, а также практически на всех перспективных образцах вооружения, которые составят основу ударной мощи видов ВС РФ в XXI веке. Можно отметить следующие достоинства использования СНС для обеспечения высокоточного поражения целей и управления войсками: обеспечение высокой точности попадания средств поражения при действиях по стационарным целям с известными координатами независимо от характера местности и времени года, освещенности (времени суток), облачности и видимости (условий погоды), конфигурации цели и ее радиолокационной, тепловой, визуальной и другой контрастности; сокращение продолжительности подготовки удара высокоточным оружием; увеличение дальности стрельбы высокоточными крылатыми ракетами (поскольку отпадает необходимость отклонения от оптимального маршрута для пролета над районами коррекции); возможность согласования с высокой точностью действий космических, воздушных, морских и наземных средств вооруженной борьбы в единой глобальной системе координат и времени и др.

    Важным направлением использования НАП СНС ГЛОНАСС является обеспечение траекторных измерений при проведении пусков баллистических ракет, ракет-носителей и разгонных блоков. Использование системы траекторных измерений на базе НАП СНС ГЛОНАСС после подтверждения ее характеристик позволит практически отказаться от наземного комплекса траекторных измерений. При экономии как финансовых затрат, так и кадровых ресурсов это обеспечит глобальность проведения измерений, что немаловажно при осуществлении пусков с морских стартовых позиций и в диапазонах азимутов пусков, не обеспечиваемых измерениями существующими средствами.

    Анализ существующей номенклатуры отечественной НАП СНС, используемой для навигационного обеспечения военных потребителей, свидетельствует о наличии ряда проблем в их создании и применении.

    Первая - низкие объемы поставок НАЛ СНС, в результате чего реальная оснащенность военных потребителей навигационной аппаратурой составляет единицы процентов, а выпускаемая промышленностью НАП СНС не обеспечивает решение большей части стоящих задач. Особенно острый недостаток в комплектах НАП СНС различной модификации испытывают Сухопутные войска.

    Вторая проблема- неудовлетворительные массогабаритные и точностные характеристики НАП СНС. В частности, НАП «Период», применяемая в настоящее время в Сухопутных войсках, имеет массу 16,5 кг, а принятая в 2003 году на вооружение НАП СНС «Грот» (2,1 кг) еще не получила широкого распространения. Применяемая для навигационного обеспечения операций и боевых действий ВВС НАП СНС имеет аналогичные недостатки (пример - одноканальная аппаратура А-724М). Низкоорбитные СНС, используемые в ВМФ, не удовлетворяют требованиям морских потребителей по точности, доступности, целостности и непрерывности навигационного обеспечения. НАП СНС ГЛОНАСС, применяемая в Ракетных войсках стратегического назначения для заблаговременной геодезической подготовки позиционных районов и при испытаниях новых образцов ракетного вооружения, а также в Космических войсках для навигационно-баллистического обеспечения управления космическими аппаратами, имеет недостатки, суть которых состоит в несоответствии требуемых и реально достигнутых характеристик точности и надежности, отсутствии методик использования корректирующей информации для штатного состава аппаратуры и др.

    Третья проблема - необходимость ограничения в мирное время доступа к корректирующей информации потребителей, не имеющих на это права, а в ходе операций и боевых действий - для недопущения или снижения эффективности применения средств дифференциальной навигации вероятным противником.

    Приемники СНС могут быть использованы для определения координат географических объектов, что в соответствии с Законом РФ «О государственной тайне» относится к секретным сведениям. Формально эксплуатация этой аппаратуры должна быть запрещена для всех физических лиц и разрешена только юридическим лицам, имеющим соответствующую лицензию. Однако указанное ограничение является негативным сдерживающим фактором в использовании СНС гражданскими потребителями. Причем экономические потери России отданного запрета, на наш взгляд, существенно выше возможного ущерба, который может быть нанесен в результате несанкционированного определения координат объектов приемниками СНС физических лиц. Правительство РФ своим постановлением от 29 марта 1999 года поручило федеральным органам исполнительной власти пересмотреть вышеуказанные ограничения, а также выработать меры, предотвращающие возможный ущерб национальной безопасности при использовании физическими лицами на территории страны высокоточных навигационных средств.

    Четвертая проблема (пожалуй, наиболее сложная) - технологическое отставание российской промышленности от зарубежной. По ряду архитектурных, программно-математических и схемотехнических решений отечественные разработки превосходят разработки передовых зарубежных стран. Однако технологии микроэлектронного производства отечественной элементной базы с требуемыми топологическими нормами, необходимыми для производства современной и перспективной навигационной аппаратуры ГЛОНАСС/GPS, в настоящее время отсутствуют.

    Разработка сложной в техническом отношении аппаратуры, которой является НАП СНС и аппаратура средств функциональных дополнений, невозможна без использования современных электронных средств и технологий. Применяемые электронные компоненты полностью определяют такие основные характеристики аппаратуры, как габариты, масса, потребляемая мощность.

    Главными тенденциями развития навигационной аппаратуры потребителей спутниковых навигационных систем являются микроминиатюризация, снижение энергопотребления и уменьшение стоимости . Основной путь достижения этих целей - использование специализированной элементной базы, в первую очередь специализированных больших интегральных схем (СБИС). Отсутствие необходимой для производства отечественной НАП элементной базы вынуждает производителей закупать ее за рубежом. Применение электрорадиоизделий иностранного производства в отечественных образцах вооружения и военной -техники является вынужденной мерой, обусловленной кризисным состоянием электронной промышленности и ее крупнейшей подотрасли - микроэлектроники. Для упорядочения этого процесса министром обороны в 2001 году была утверждена Инструкция о порядке применения электронных модулей, комплектующих изделий и конструкционных материалов иностранного производства в системах, комплексах, образцах вооружения и военной техники и их составных частях.

    Применение электрорадиоизделий иностранного производства в образцах отечественного вооружения и военной техники обусловливает необходимость решения дополнительно трех задач: обеспечения технологической независимости; оценки соответствия требованиям, установленным в комплексе государственных военных стандартов «Климат-7»; обеспечения информационной безопасности.

    Наиболее результативные технические решения в области СНС-технологий достигнуты в настоящее время только для системы GPS. Перспективные приемники этой системы построены на базе двух-трех сверхбольших интегральных схем, что позволяет достичь высоких эксплуатационных характеристик и низкой стоимости, а в сочетании с успешным функционированием GPS - и большого рыночного спроса. Существующие приемники сигналов СНС ГЛОНАСС из-за отсутствия соответствующей специализированной элементной базы уступают по энергопотреблению, массогабаритным характеристикам и стоимости приемникам GPS в 3-10 раз.

    Решение задачи создания современной отечественной элементной базы основано на внедрении перспективных микроэлектронных технологий с использованием лучших мировых достижений автоматизированного проектирования и серийного изготовления электронных компонентов и создании на их основе базовых навигационных модулей. Федеральной целевой программой «Глобальная навигационная система» на ОАО «Российский институт радионавигации и времени» возложена задача разработки и освоения производства СБИС, радиоэлектронных компонентов и базовых модулей для НАП и функциональных дополнений СНС ГЛОНАСС/GPS. К решению указанной задачи в качестве соисполнителей привлекаются отечественные предприятия, имеющие наибольший научно-технический и технологический потенциал. Ключевыми целями разработки являются: обеспечение энергосберегающих режимов функционирования; минимизация времени первого определения; обеспечение работоспособности аппаратуры при малых уровнях сигналов СНС, воздействиях помех; обеспечение высокой точности и стабильности измерений первичных радионавигационных параметров.

    Еще одна проблема в области развития СНС - значительная номенклатура и различное конструктивное исполнение навигационной аппаратуры потребителей . В условиях ограниченности финансовых ресурсов это сдерживает оснащение войск и сил флота указанной аппаратурой и требует проведения мероприятий по ее унификации. Основными целями при этом должны быть: сокращение затрат на их создание, закупку, эксплуатацию и техническое сопровождение; сокращение сроков их создания; обеспечение системной совместимости и взаимозаменяемости средств и их составных частей; снижение затрат и уменьшение сложности подготовки личного состава для работы с навигационной аппаратурой.

    Образцы НАП СНС первого поколения разрабатывались с учетом требований по унификации, однако в них была реализована только внутризаводская унификация. В настоящее время они выработали свой ресурс, морально устарели и проводить работы по их унификации, на наш взгляд, бессмысленно. Целесообразной представляется разработка унифицированных рядов НАП, создаваемых на основе базовых моделей. Базовые модели НАП - образцы, имеющие необходимый минимум конструктивно и программно реализованных технических решений, определяющих особую область применения. Они позволяют создавать модификации НАП, учитывающие специфические дополнительные требования. Каждый унифицированный ряд представляет собой развитие базовой модели в том или ином направлении. В настоящее время уже существует несколько унифицированных рядов НАП СНС.

    Первый . Семейство образцов разработки КБ «НАВИС», предназначенных для решения относительно неоперативных задач дальней навигации, присущих в основном ВМФ. Создается двухчастотная модификация, удовлетворяющая требованиям высокоточных целеуказаний, а также прибрежной и ближней навигации. Также создается двухчастотная модификация для решения задач топогеодезического обеспечения ВС РФ. Кроме того, существует малогабаритный носимый вариант НАП СНС этого типа.

    Второй . Семейство образцов разработки НИИ КП, предназначенных для решения задач с повышенной точностью и оперативностью, таких, как топогеодезическое обеспечение ударов ракетных войск и артиллерии, местоопределение подвижных мотострелковых и танковых подразделений, навигационное обеспечение действий десантных подразделений и особенно подразделений сил специального назначения.

    Третий . Семейство образцов НАП разработки МКБ «Компас», предназначенных для решения задач ВВС.

    Помимо указанных имеется унифицированный ряд НАП СНС разработки ОАО РИРВ для гражданских потребителей, возможность принятия которой на вооружение ВС РФ в настоящее время рассматривается.

    Основным видом унификации НАЛ СНС второго поколения является межпроектная унификация НАЛ и средств функциональных дополнений в рамках одного предприятия-производителя . Унификация между предприятиями практически не применяется. Связано это в первую очередь с особенностями современного проектирования и производства НАП фирмами-производителями на базе использования укрупненных модулей и элементов собственной разработки. Кроме того, имеются сложности в передаче предприятием-разработчиком другим фирмам оригинальных технологий производства комплектующих. Ликвидация этого существенного недостатка требует решения в рамках реформы, проводимой в оборонно-промышленном комплексе.

    Основными перспективными направлениями унификации образцов НАЛ военного назначения могут быть: унификация функциональных модулей, габаритных, присоединительных и установочных размеров;

    унификация протоколов внешнего и внутреннего информационного обмена, интерфейса пользователя; унификация перечня и содержания типовых процессов и операций подготовки, контроля, испытаний и выполнения основных целевых задач навигационных средств; унификация программного обеспечения.

    Широкое использование всех форм унификации позволит существенно повысить эффективность создания и применения навигационных средств военными потребителями.

    Подводя итог, можно отметить, что в целях повышения уровня координатно-временного обеспечения, а также для наиболее полной реализации потенциальных возможностей системы ГЛОНАСС необходимо проведение единой государственной и в первую очередь военно-технической политики в области применения спутниковой навигационной системы. Целесообразно активизировать работы по формированию единых требований к военной НАП СНС на основе системных межвидовых исследований, внедрения стандартов, определяющих все основные аспекты процесса разработки и применения военной НАП СНС.

    Для комментирования необходимо зарегистрироваться на сайте