Схема генератора высокой частоты на транзисторах. Генератор сигналов: функциональный генератор своими руками

Недавно мне принесли в ремонт генератор ГУК-1 . Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.


ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
1 поддиапазон 150 - 340 кГц
II 340 - 800 кГц
III 800 - 1800 кГц
IV 4,0 - 10,2 мГц
V 10,2 - 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.
8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора - 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

ГЕНЕРАТОР НИЗКОЙ ЧАСТОТЫ


Генератор НЧ собран на транзисторах VT1 и VT3. Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12.). Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1. На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

ГЕНЕРАТОР ВЫСОКОЙ ЧАСТОТЫ

ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала. Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа. Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета и . Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.

Доработка генератора ГУК-1

FM модуляция в генераторе ГУК-1.

Еще одна идея модернизации генератора ГУК-1 , я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона. И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным. Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.


Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются .

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Главные составляющие элементы прибора: выпрямитель, емкость, транзистор. Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на . Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый генератор ВЧ

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

На лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. Цепь накала с питанием низкого напряжения.
  2. Цепь возбуждения и питания сетки управления.
  3. Цепь питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 5,859 hits)

(130.7 KiB, 3,396 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором.

Обычно при ремонте и налаживании КВ-аппаратуры необходимо "уложить" КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с "чистой синусоидой", значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10...150 пФ) и катушками индуктивности L2...L5 перекрывается участок КВ-диапазона 1,7...30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50x80 мм (рис.2). Дорожки и монтажные "пятачки" вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо "земли". На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430...510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу.

В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется "с запасом". При налаживании ("укладке" диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру.

Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

Диапазон, МГц

Количество витков

Провод (диаметер, мм)

Каркас, сердечник

Выходной уровень, В

Бескаркасная диаметром 6 мм. L=12 мм

Керамический диаметром 6 мм, L=12 мм

Унифицированный
3-секционный

Унифицированный
4-секционный

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные.

Конденсатор связи С5 ёмкостью 4,7...6,8 пФ - типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80...150 пФ, но они легко ломаются и имеют заметный "гистерезис" при вращении вперёд и назад.

Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10...15 минут можно добиться "ухода" частоты не более 500 Гц в час на частотах 20...30 МГц (при стабильной температуре в помещении).

Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А.

На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР - Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.

Простой гетеродинный индикатор резонанса.

С замкнутой накоротко катушкой L2 ГИР позволяет определять резонансную частоту от 6 МГц

до 30 МГц. С подключенной катушкой L2 диапазон измерения частоты - от 2,5 МГц до 10 МГц.

Резонансную частоту определяют, вращая ротор С1 и, наблюдая на экране осциллографа

изменение сигнала.

Генератор сигналов высокой частоты.

Генератор сигналов высокой частоты предназначен для проверки и налаживания различных высокочастотныхустройств. Диапазон генерируемых частот 2 ..80 МГц разбит на пять поддиапазонов:

I - 2-5 МГц

II - 5-15 МГц

III - 15 - 30 МГц

IV - 30 - 45 МГц

V - 45 - 80 МГц

Максимальная амплитуда выходного сигнала на агрузке 100 Ом составляет около 0,6 В. В генераторе предусмотрена плавная регулировка амплитуды выходного сигнала, а также возможность

амплитудной и частотной модуляции выходного сигнала от внешнего источника. Питание генератора осуществляется от внешнего источника постоянного напряжения 9... 10 В.

Принципиальная схема генератора приведена на рисунке. Он состоит из задающего генератора ВЧ, выполненного на транзисторе V3, и выходного усилителя на транзисторе V4. Генератор выполнен по схеме индуктивной трехточки. Нужный поддиапазон выбирают переключателем S1, а перестраивают генератор конденсатором переменной емкости С7. Со стока транзистора V3 напряжение ВЧ поступает на первый затвор

полевого транзистора V4. В режиме ЧМ низкочастотное напряжение поступает на второй затвор этого транзистора.

Частотная модуляция осуществляется с помощью варикапа VI, на который подается напряжение НЧ в режиме FM. На выходе генератора напряжение ВЧ регулируется плавно резистором R7.

Генератор собран в корпусе, изготовленном из одностороннего фольгироваиного стеклотекстолита толщиной 1,5 мм., размерами 130X90X48 мм. На передней панели генератора установлены

переключатели S1 и S2 типа П2К, резистор R7 типа ПТПЗ-12, конденсатор переменной емкости С7 типа КПЕ-2В от радиоприемника «Альпинист-405», в котором используются обе секции.

Катушка L1 намотана на ферритовом магнитопроводе М1000НМ (К10Х6Х Х4,б) и содержит (7+20) витков провода ПЭЛШО 0,35. Катушки L2 и L3 намотаны на каркасах диаметром 8 и длиной 25 мм с карбонильными подстроенными сердечниками диаметром 6 и длиной 10 мм. Катушка L2 состоит из 5+15 витков провода ПЭЛШО 0,35, L3 - из 3 + 8 витков. Катушки L4 и L5 бескаркасные

диаметром 9 мм намотаны проводом ПЭВ-2, 1,0. Катушка L4 содержит 2+4 витка, a L5- 1 + 3 витка.

Налаживание генератора начинают с проверки монтажа Затем подают напряжение питания и с помощью ВЧ вольтметра проверяют наличие генерации на всех поддиапазонах. Границы

диапазонов уточняют с помощью частотомера, и при необходимости подбирают конденсаторы С1-С4(С6), подстраивают сердечниками катушек L2, L3 и изменяют расстояние между витками катушек L4 и L5.

Мультиметр-ВЧ милливольтметр.

Сейчас самым доступным и самым распространенным прибором радиолюбителя стал цифровой мультиметр серии М83х.

Прибор предназначен для общих измерений и потому у него нет специализированных функций. Между тем, если вы занимаетесь радиоприемной или передающей техникой вам нужно измерять

небольшие ВЧ напряжения (гетеродин, выход каскада УПЧ, и т. д.), настраивать контура. Для этого мультиметр нужно дополнить несложной выносной измерительной головкой, содержащей

высокочастотный детектор на германиевых диодах. Входная емкость ВЧ-головки менее 3 пФ., что позволяет её подключать прямо к контуру гетеродина или каскада. Можно использовать диоды Д9, ГД507 или Д18, диоды Д18 дали наибольшую чувствительность (12 мВ). ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения щупа или проводников к измеряемой схеме. Связь с мультиметром при помощи экранированного телевизионного кабеля РК-75.

Измерение малых емкостей мультиметром

Многие радиолюбители используют в своих лабораториях мультиметры, некоторые из них позволяют измерять и емкости конденсаторов. Но как показывает практика, этими приборами нельзя замерить емкость до 50 пф, а до 100 пф – большая погрешность. Для того, чтобы можно было измерять небольшие емкости, предназначена эта приставка. Подключив приставку к мультиметру, нужно выставить на индикаторе значение 100пф, подстраивая С2. Теперь при подключении конденсатора 5 пф прибор покажет 105. Остается только вычесть цифру 100

Искатель скрытой проводки

Определить место прохождения скрытой электрической проводки в стенах помещения поможет сравнительно простой искатель, выполненный на трех транзисторах (рис. 1). На двух биполярных транзисторах (VT1, VT3) собран мультивибратор, а на полевом (VT2) - электронный ключ.

Принцип действия искателя основан на том, что вокруг электрического провода образуется электрическое поле его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в зоне антенного щупа WA1 нет либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не работает, светодиод HL1 погашен. Достаточно приблизить антенный щуп, соединенный с цепью затвора полевого

транзистора, к проводнику с током либо просто к сетевому роводу, транзистор VT2 закроется, шунтирование базовой цепи транзистора VT3 прекратится и мультивибратор вступит в действие. Начнет вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Прибор позволяет отыскать и место обрыва фазного провода. Для этого нужно включить в розетку нагрузку, например настольную лампу, и перемещать антенный щуп прибора вдоль проводки. В месте, где светодиод перестает мигать, нужно искать неисправность.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные - любые из серии КТ312, КТ315. Все

резисторы - МЛТ-0,125, оксидные конденсаторы - К50-16 или другие малогабаритные, светодиод - любой из серии АЛ307, источник питания батарея «Крона» либо аккумуляторная батарея напряжением 6...9 В, кнопочный выключатель SB1 - КМ-1 либо аналогичный. Часть деталей прибора смонтирована на плате (рис. 2) из одностороннего фольгированного стеклотекстолита. Корпусом искателя может стать пластмассовый пенал (рис. 3)

для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в нижнем располагают батарею. К боковой стенке верхнего отсека прикрепляют выключатель и светодиод, а к верхней стенке - антенный щуп. Он представляет собой кониче-

ский пластмассовый колпачок, внутри которого находится металлический стержень с резьбой. Стержень крепят к корпусу гайками, изнутри корпуса надевают на стержень металлический лепесток, который соединяют гибким монтажным проводником с резистором R1 на плате. Антенный щуп может быть иной конструкции, например, в виде петли из отрезка толстого (5 мм) высоковольтного провода, используемого в телевизоре. Длина

отрезка 80...100 мм, его концы пропускают через отверстия в верхнем отсеке корпуса и припаивают к соответствующей точке платы. Желаемую частоту колебаний мультивибратора, а значит, частоту вспышек светодиода можно установить подбором резисторов RЗ, R5 либо конденсаторов С1, С2. Для этого нужно временно отключить от резисторов RЗ и R4 вывод истока по-

левого транзистора и замкнуть контакты выключателя. Если при поиске места обрыва фазного провода чувствительность прибора окажется чрезмерной, ее нетрудно снизить уменьшением длины антенного щупа или отключением проводника, соединяющего щуп с печатной платой. Искатель может быть собран и по несколько иной схеме (рис. 4) с использованием биполярных транзисторов разной структуры - на них выполнен генератор. Полевой же транзистор (VT2) по-прежнему управляет работой генератора при попадании антенного щупа WA1 в электрическое поле сетевого провода.

Транзистор VT1 может быть серии

КТ209 (с индексами А-Е) или КТ361,

VT2 - любой из серии КП103, VT3 - любой из серий КТ315, КТ503, КТ3102. Резистор R1 может быть сопротивлением 150...560 Ом, R2 - 50 кОм...1,2 МОм, R3 и R4 с отклонением от указанных на схеме номиналов на ±15%, конденсатор С1 - емкостью 5...20 мкФ. Печатная плата для этого варианта искателя меньше по габаритам (рис. 5), но конструктивное оформление практически такое же, что и предыдущего варианта.

Любой из описанных искателей можно применять для контроля работы системы зажигания автомобилей. Поднося антенный щуп искателя к высоковольтным проводам, по миганию светодиода определяют цепи, на которые не поступает высокое напряжение, или отыскивают неисправную свечу зажигания.

Журнал«Радио»,1991,№8,с.76

Не совсем обычная схема ГИРа изображена на рисунке. Отличие-в выносном витке связи. Петля L1 выполнена из медного провода диаметром 1,8 мм, диаметр петли около 18 мм, длина ее выводов 50 мм. Петля вставляется в гнезда, расположеные на торце корпуса. L2 намотана на стандартном ребристом корпусе и содержит 37 витков провода диаметром 0,6 мм с отводами от 15, 23, 29 и 32-го витка Диапазон- от 5,5 до 60 мгц

Простой измеритель емкости

Измеритель емкости позволяет измерять емкость конденсаторов от 0,5 до 10000пФ.

На логических элементах ТТЛ D1.1 D1.2 собран мультивибратор, частота которого зависит от сопротивления резистора включенного между входом D1.1 и выходом D1.2. Для каждого предела измерения устанавливается определенная частота при помощи S1, одна секция которого переключает резисторы R1-R4 , а другая конденсаторы С1-С4.

Импульсы с выхода мультивибратора поступают на усилитель мощности D1.3 D1.4 и далее через реактивное сопротивление измеряемого конденсатора Сх на простой вольтметр переменного тока на микроамперметре Р1.

Показания прибора зависят от соотношения активного сопротивления рамки прибора и R6, и реактивного сопротивления Сх. При этом Сх зависит от емкости (чем больше, тем меньше сопротивление).

Калибровку прибора производят на каждом пределе при помощи подстроечных резисторов R1-R4 измеряя конденсаторы с известными емкостями. Чувствительность индикатора прибора можно установить подбором сопротивления резистора R6.

Литература РК2000-05

Простой функциональный генератор

В радиолюбительской лаборатории обязательным атрибутом должен быть функциональный генератор. Предлагаем вашему вниманию функциональный генератор, способный вырабатывать синусоидальный, прямоугольный, треугольный сигналы при высокой стабильности и точности. При желании, выходной сигнал может быть модулированным.

Диапазон частот разделен на четыре поддиапазона:

1. 1 Гц-100 Гц,

2. 100Гц-20кГц,

3. 20 кГц-1 МГц,

4. 150KHz-2 МГц.

Точно частоту можно выставить, используя потенциометры P2 (грубо) и P3(точно)

регуляторы и переключатели функционального генератора:

P2 - грубая настройка частоты

P3 - точная настройка частоты

P1 - Амплитуда сигнала (0 - 3В при питании 9В)

SW1 - переключатель диапазонов

SW2 - Синусоидальный/треугольный сигнал

SW3 - Синусоидальный(треугольный)/меандр

Для контроля частоты генератора сигнал можно снять непосредственно с вывода 11.

Параметры:

Синусоидальный сигнал:

Искажения: менее 1% (1 кГц)

Неравномерность: +0,05 дБ 1 Гц - 100 кГц

Прямоугольный сигнал:

Амплитуда: 8В (без нагрузки) при питании 9В

Время нарастания: менее 50 нс (при 1 кГц)

Время спада: менее 30ns (на 1 кГц)

Рассимметрия: менее 5%(1 кГц)

Треугольный сигнал:

Амплитуда: 0 - 3В при питании 9В

Нелинейность: менее 1% (до 100 кГц)

Защита сети от перенапряжения

Отношение емкостей C1 и составной С2 и С3 влияет на выходное напряжение. Мощности выпрямителя хватает для паралельного включения 2-3х реле типа РП21 (24в)

Генератор на 174ха11

На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, а при емкости С1 4700пФ от 200Гц до 60кГц.

Выходной сигнал снимается с вывода 3 микросхемы с выходным напряжением 12В, автор рекомендует сигнал с выхода микросхемы подавать через токоограничивающий резистор с сопротивлением 300 Ом.

Измеритель индуктивности

Предлагаемый прибор позволяет измерять индуктивности катушек на трех пределах измерения - 30, 300 и 3000 мкГн с точностью не хуже 2% от значения шкалы. На показания не влияют собственная ёмкость катушки и ее омическое сопротивление.

На элементах 2И-НЕ микросхемы DDI собран генератор прямоугольных импульсов, частота повторений которых определяется ёмкостью конденсатора C1, С2 или СЗ в зависимости от включенного предела измерений переключателем SA1. Эти импульсы через один из конденсаторов С4, С5 или С6 и диод VD2 поступают на измеряемую катушку Lx, которая подключена к клеммам XS1 и XS2.

После прекращения очередного импульса во время паузы за счет накопленной энергии магнитного поля ток через катушку продолжает протекать в том же направлении через диод VD3, его измерение осуществляется отдельным усилителем тока собранного на транзисторах Т1, Т2 и стрелочным прибором РА1. Конденсатор С7 сглаживает пульсации тока. Диод VD1 служит для привязки уровня импульсов, поступающих на катушку.

При налаживании прибора необходимо использовать три эталонные катушки с индуктивностями 30, 300 и 3000 мкГн, которые поочередно подключаются вместо L1, и соответствующим переменным резистором R1, R2 или R3 стрелка прибора устанавливается на максимальное деление шкалы. Во время эксплуатации измерителя достаточно выполнять калибровку переменным резистором R4 на пределе измерения 300 мкГн, используя катушку L1 и включив выключатель SB1. Питание микросхемы производится от любого источника напряжением 4,5 - 5 В.

Расход тока каждого элемента питания составляет по 6 мА. Усилитель тока для миллиамперметра можно не собирать, а параллельно конденсатору С7 подключить микроамперметр со шкалой 50мкА и внутренним сопротивлением 2000 Ом. Индуктивность L1 может быть составной, но тогда следует расположить отдельные катушки взаимно перпендикулярно или как можно дальше друг от друга. Для удобства монтажа все соединительные провода оснащены штекерами, а на платах установлены соответствующие им гнёзда.



Простой индикатор радиоактивности

Гетеродинный индикатор резонанса

  Г.Гвоздицкий

Принципиальная схема предлагаемого ГИРа приведена на рис.1. Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Резистор R5 ограничевает ток стока полевого транзистора. Дроссель L2 - элемент развязки гетеродина от источника питания по высокой частоте.

Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина

Через конденсатор С5 напряжение радиочастоты поступает на вход высоко¬частотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, что повышает чувствительность детектора и стабильность работы усилителя постоянного токи на транзисторе VT2 с микроамперметром РА1 в коллекторной цели. Диод VD3 стабилизирует образцовое напряжение на диодах VD2,VD4. Переменным резистором R3 объединенным с выключателем питания SА1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую отметку шкалы

Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной емкости.

Вариант катушек, выполненных на каркасах из лабораторных пробирок для забора крови, показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон



Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле

LC=25330/f²

где С- в пикофарадах, L - в микрогенри, f - в мегагерцах.

Определяя резонансную частоту иследуемого контура, к нему возможно ближе подносят катушку ГИРа и медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, отмечают соответствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается максимальный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура

В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним рекомендовано пользоваться источником с одним и тем же значением напряжения постоянного тока - оптимально сетевым блоком питания со стабилизированным выходным напряжением.

Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки применяемых контуров затруднит пользование прибором.

Катушки L1 пропитаны эпоксидным клеем или НН88. На ВЧ диапазоны их желательно намотать медным посеребренным проводом диаметром 1,0 мм.

Конструктивно каждая контурная катушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.

Упрощенный вариант ГИРа

От ГИРа Г.Гвоздицкого отличается тем, о чем уже писалось в статье - наличие среднего вывода сменной катушки L1, применен переменный конденсатор фирмы «Тесла» с твердым диэлектриком, нет диода, формирующего форму синусоидальную сигнала. Отсутствует выпрямитель-удвоитель напряжения ВЧ и УПТ, что снижает чувствительность прибора.

Из положительных сторон следует отметить наличие «растягивающих» отключаемых конденсаторов С1, С2 и простейший верньер, совмещенный с двумя переключающимися шкалами, которые можно градуировать карандашом, питание включается кнопкой только в момент проведения измерений, что экономит батарею.


Для питания счетчика Гейгера В1 требуется напряжение 400В, это напряжение вырабатывает источник на блокинг-генераторе на транзисторе VT1. Импульсы с повышающей обмотки Т1 выпрямляются выпрямителем на VD3C2. Напряжение на С2 поступает на В1, нагрузкой которого является резистор R3. При прохождении через В1 ионизирующей частицы в нем возникает короткий импульс тока. Этот импульс усиливается усилителем-формирователем импульсов на VT2VT3. В результате через F1-VD1 протекает более длительный и более сильный импульс тока - светодиод вспыхивает, а в капсюле F1 раздается щелчок.

Счетчик Гейгера можно заменить любым аналогичным, F1 любой электромагнитный или динамический сопротивлением 50 Ом.

Т1 наматывается на ферритовом кольце с внешним диаметром 20 мм, первичная обмотка содержит 6+6 витков провода ПЭВ 0,2, вторичная 2500 витков провода ПЭВ 0,06. Между обмотками нужно проложить изоляционный материал из лакоткани. Первой наматывают вторичную обмотку, на нее поверхность, равномерно, вторичную.

Прибор для измерения емкости

Прибор имеет шесть поддиапазонов,верхние пределы для которых равны соответственно 10пф, 100пф, 1000пф, 0,01мкф, 0,1мкф и 1мкф. Отсчёт ёмкости производится по линейной шкале микроамперметра.

Принцип действия прибора основан на измерении переменного тока, протекающего через исследуемый конденсатор. На операционном усилителе DA1 собран генератор прямоугольных импульсов. Частота повторения этих импульсов зависит от ёмкости одного из конденсаторов С1-С6 и положения движка подстроечного резистора R5. В зависимости от поддиапазона, она меняется от 100Гц до 200кГц. Подстроечным резистором R1 устанавливаем симметричную форму колебаний (меандр) на выходе генератора.

Диоды D3-D6, подстроечные резисторы R7-R11 и микроамперметр PA1 образуют измеритель переменного тока. Для того,чтобы погрешность измерений не превышала 10% на первом поддиапазоне (ёмкость до10пФ),внутреннее сопротивление микроамперметра должно быть не более 3кОм.На остальных поддиапазонах паралельно PA1 подключают подстроечные резисторы R7-R11.

Требуемый поддиапазон измерений устанавливают переключателем SA1. Одной группой контактов он переключает частотозадающие конденсаторы С1-С6 в генераторе,другой - подстроечные резисторы в индикаторе. Для питания прибора необходим стабилизированный двуполярный источник на напряжение от 8 до 15В. Номиналы частотозадающих конденсаторов С1-С6 могут отличаться на 20%, но сами конденсаторы должны иметь достаточно высокую температурную и временную стабильность.

Налаживание прибора производят в следующей последовательности. Сначала на первом поддиапазоне добиваются симметричных колебаний резистором R1. Движок резистора R5 при этом должен быть в среднем положении. Затем, подключив к клеммам "Сх" эталонный конденсатор 10пф, подстроечным резистором R5 устанавливают стрелку микроамперметра на деление соответствующее ёмкости эталонного конденсатора (при использовании прибора на 100мка, на конечное деление шкалы).

Схема приставки


Приставка к частотомеру для определения частоты настройки контура и его предварительной настройки. Приставка работоспособна в диапазоне 400 кгц-30 мгц. Т1 и Т2 могут быть КП307, BF 245

LY2BOK