Различия соединения звезды и треугольника. Чем отличается соединение звездой и треугольником. Что собой представляет трёхфазная система электроснабжения

Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки. Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

Что собой представляют схемы

Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».

Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.

Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.

Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь. Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей. Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.

Поэтому его надо просто снизить. Есть несколько для этого способов:

  • установить в систему подключения электрического двигателя один из перечисленных приборов: трансформатор, дроссель, реостат;
  • изменяется схема подключения обмоток ротора.

Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.

Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания. Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз. Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.

Преимущества двух схем

У схемы звезда достаточно серьезные достоинства:

  • плавный запуск электрического двигателя;
  • номинальная его мощность будет соответствовать паспортным данным;
  • двигатель будет работать нормально и при кратковременных высоких нагрузках, и при долгосрочных небольших перегрузов;
  • в процессе работы корпус мотора не будет перегреваться.

Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности. Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора. Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.

Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза. По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой. Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.

Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.

Делаем выводы

Почему соединения треугольником и звездой сегодня присутствуют во всех современных мощных электродвигателях? Из всего вышесказанного становится понятным, что основное требование ситуации – это снизить токовую нагрузку, которая возникает в процессе пуска самого агрегата.

Если расписать формулы такого подключения, то они будут выглядеть вот так:

Uф=Uл/1,73=380/1,73=220, где Uф – напряжение на фазах, Uл – на питающей линии. Это соединение звездой.

После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Отсюда фазное напряжение станет равным линейному.

Асинхронные двигатели обладают многими преимуществами в работе. Это надёжность, большая мощность, хорошая производительность. Подключение электродвигателя звездой и треугольником обеспечивают его стабильную эксплуатацию.

В основе электромотора выделяют две основные части: крутящийся ротор и статичный статор. Оба имеют в структуре набор токопроводящих обмоток. Электрообмотки неподвижного элемента, расположены в пазах магнитного провода на расстоянии 120 градусов. Все окончания обмоток выводятся в электрораспределительный блок, там фиксируются. Контакты пронумерованы.

Подключения двигателей могут быть звездой, треугольником, а также всевозможные их переключения. Каждое соединение обладает своими преимуществами и недостатками. Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.

  • Объединение в одной общей точке: подключение звезда
  • Смешанный способ
  • Принцип работы

Объединение в одной общей точке: подключение звезда

Концы обмоток статора соединены вместе в одном пункте. Трехфазное напряжение поступает на начало обмоток. Значение пусковых токов при соединении треугольник более мощное. Соединение звезда означает сводку концов обмотки статора. Напряжение поступает на начала каждой обмотки.

Обмотки соединяются последовательно замкнутой ячейкой, образуют треугольное соединение. Ряды контактов с клеммами расположены параллельно по отношению друг к другу. Например, начало вывода 1 находится напротив конца 1. Питание сети подаётся на статорные обмотки, создавая вращения магнитного поля, приводящее к движению ротора. Крутящийся момент, возникающий после подключения трехфазного электродвигателя, является недостаточным для пуска. Увеличение вращающего элемента достигается при помощи использования дополнительного элемента. Например, трехфазного частотника, подключенного к асинхронному двигателю на рисунке ниже.

Чертеж подсоединения классического частотного преобразователя звездой

По данной схеме подсоединяются отечественные моторы 380 вольт.

Смешанный способ

Комбинированный тип подключения применим для электромоторов мощностью от 5 кВт. Схема звезда - треугольник используется при необходимости снизить пусковые токи агрегата. Принцип действия начинается со звезды, а после набора двигателем нужных оборотов, происходит автоматическое переключение на треугольник.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Данная схема не подходит устройствам с перегрузками, так как возникает слабый крутящийся момент, что может привести к поломке.

Принцип работы

Пуск питания происходит с помощью второго и релейного контакта. Затем на статоре срабатывает третий пускатель, тем самым размыкая цепь, образованную катушкой третьего элемента, в нем происходит замыкание. Далее первая обмотка статора начинает работать. Затем происходит замыкание в , срабатывает временное термореле, которое в третьей точке замыкает. Далее наблюдается замыкание контакта временного термореле в электроцепи второй обмотки статора. После отсоединения обмоток третьего элемента, происходит замыкание контактов в цепочке третьего элемента.

К началу обмоток проходит ток на три фазы. Он поступает через силовые контакты магнита первого элемента. Контакты третьего пускателя включают его, замыкают концы обмоток, которые соединяются звездой.

Затем включается реле времени первого пускателя, третий выключается, а второй включается. Контакты К2 замыкают, напряжение поступает на концы обмоток. Это и есть включение треугольником.

Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. Они отличаются внешне, по названию, но выполняют одинаковую функцию.

Обычно подключение к сети 220 происходит фазосдвигающим конденсатором. Питание поступает от любой электросети, вращает ротор с одинаковой частотой. Конечно, мощность от трёхфазной сети будет больше, чем от однофазной. Если трёхфазный двигатель работает от однофазной сети, теряется мощность.

Некоторые виды моторов не предназначены для работы от бытовой сети. Поэтому выбирая прибор для дома, предпочтение следует отдать двигателям с короткозамкнутыми роторами.

По номинальному питанию отечественные электродвигатели делятся на два типа: мощностью 220 - 127 вольт и 380 - 220 вольт. Первый тип электромоторов небольшой мощности применяется нечасто. Вторые устройства имеют широкое распространение.

При монтаже электродвигателя любой мощности действует определенный принцип: устройства с низкой мощностью подключается по схеме треугольник, а с высокой соединяются звездой. Электропитание 220 поступает на сводку треугольником, напряжение 380 идёт на соединение звездой. Это обеспечит долгую и качественную работу механизма.

Рекомендованная схема для подключения двигателя значится в техническом документе. Значок △ означает соединение в этой же форме. Буква Y указывает на рекомендуемую схему подключения звездой. Характеристики многочисленных элементов обозначены цветами, в связи с их маленькими габаритами. По цвету читается, например, номинал, сопротивление. Если стоят оба знака, то соединение возможно переключением △ и Y. Когда стоит одна определенная маркировка, например, Y, то доступное подключение будет только по схеме звезда.

Схема △ даёт мощность на выходе до 70 процентов, значение пусковых токов доходит до максимальной величины. А это может испортить двигатель. Данная схема является единственным вариантом для работы от российских электросетей зарубежных асинхронных двигателей с мощностью 400 - 690 вольт.

Поэтому выбирать правильное соединение или переключение, необходимо учитывая особенности электрической сети, силовой мощности электродвигателя. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме "звезда" (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или "треугольник" (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты - напротив С1 не С4, а С6, напротив С2 - С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой - подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно - если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети - 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В - для "звезды", 220 - для "треугольника). Большее напряжение для "звезды", меньшее - для "треугольника". В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как "треугольником" (на 220В), так и "звездой" (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему "треугольник", поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении "звездой".

Табличка Б информирует, что обмотки двигателя подсоединены по схеме "звезда", и в распределительной коробке не предусмотрена возможность переключить их на "треугольник" (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме "звезда", или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме "треугольник".

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме "звезда". При подключении 220В по схеме "треугольник", двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме "треугольник". В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены "звездой", и имеется возможность изменить ее на "треугольник", то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на "треугольник", использовав для этого перемычки.

Определение начал и концов обмоток . Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается "прозваниванием" всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) - стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В . Таким же образом проверяется и обмотка А - с батарейкой, подсоединенной к обмотке C или B .

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого - как концы (А2, В2, С2) и соединить их по необходимой схеме - "треугольник" или "звезда" (если напряжение двигателя 220/127В).

Извлечение недостающих концов . Пожалуй, самый сложный случай - когда двигатель имеет соединение обмоток по схеме "звезда", и нет возможности переключить ее на "треугольник" (в распределительную коробку выведено всего лишь три провода - начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме "треугольник" необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме "треугольник", подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме "звезда", смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме "треугольник" . В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме "треугольник". При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий - через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

Обеспечение пуска . Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.


Подключение трехфазного электродвигателя в однофазную сеть по схеме "треугольник" с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными - пока не будет нажата кнопка "стоп".

Реверс . Направление вращения двигателя зависит от того, к какому контакту ("фазе") подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме "звезда" . Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения "звездой" емкость рассчитывается по формуле:

Для соединения "треугольником":

Где Ср - емкость рабочего конденсатора в мкФ, I - ток в А, U - напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р - мощность электродвигателя кВт; n - КПД двигателя; cosф - коэффициент мощности, 1.73 - коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении "треугольником" можно посчитать по упрощенной формуле C = 70 Pн, где Pн - номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: C общ = C 1 + C 1 + ... + С n .

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

В промышленности и быту широко распространены асинхронные двигатели, которые питаются напрямую от с переменным напряжением. В статоре подобного мотора расположены три обмотки, смещенные друг относительно друга на 120 градусов – это сделано для того, чтобы создавать одинаковое в любой точке окружности вокруг статора. Для подключения таких электродвигателей применяется две основные схемы: подключение звездой и треугольником. Давайте подробнее рассмотрим каждый из этих видов подключения. Для наглядности, обозначим начало каждой из трех обмоток U1 , V1 , W1, а их концы – U2 , V2 , W2 соответственно.

Чтобы реализовать подключение мотора по схеме «звезда», необходимо соединить все концы обмоток U2 , V2 , W2 в одной точке, а на входы каждой из обмоток подавать по одной фазе из трехфазной сети.

Для того чтобы подключить двигатель по схеме «треугольник», необходимо к началу первой обмотки U1 присоединить конец второй V2, к началу второй обмотки V1 – конец третьей обмотки W2, а начало третьей обмотки W1 к концу первой U2. К местам, где соединяются обмотки, подключаются фазы питающей сети.


Посмотрите видео о способах подключения электродвигателей:

Важно правильно выбрать схему подключения для конкретного двигателя, иначе можно не получить от него необходимой мощности, а в отдельных случаях — даже вывести мотор из строя.

Каждая из этих схем подключения к сети имеет как свои плюсы, так и недостатки. К примеру, мотор, подключенный звездой, запускается очень плавно, и может работать с небольшой перегрузкой без вреда для самого двигателя.

Однако максимальная паспортная мощность электропривода в таком случае недостижима – двигатель будет выдавать до 70% от своей номинальной мощности.

Подключение треугольником позволяет достигать паспортной мощности, однако при такой схеме подключения пусковые токи достигают значительных величин. К тому же замечено, что при подключении треугольником электродвигатель греется при работе, что уменьшает срок его службы.

Чтобы минимизировать минусы и полностью реализовать плюсы каждой из схем, была придумана система автоматической смены схемы подключения. То есть, асинхронный электродвигатель запускается по схеме «звезда», а при выходе на свою номинальную частоту вращения, переключается на схему «треугольник», и выходит на свою паспортную мощность. Реализуется такая смена схем подключения при помощи или пусковых реле времени. Также это можно сделать при помощи пакетного переключателя, но в этом случае нужно внимательно следить за работой мотора, чтобы переключить его в нужный момент.

Ещё одно интересное видео, о способе подключения электродвигателя:

Асинхронные трехфазные двигатели более эффективны по сравнению с однофазными и получили намного большее распространение. Электрические устройства, работающие на двигательной тяге, чаще всего оснащаются именно трехфазными электромоторами.

Электродвигатель состоит из двух частей: вращающегося ротора и неподвижного статора. Ротор располагается внутри статора. Оба элемента имеют токопроводящие обмотки. Статорная обмотка уложена в пазы магнитопровода с соблюдением расстояния в 120 электрических градусов. Начала и концы обмоток выведены в и зафиксированы в два ряда. Контакты промаркированы литерой С, каждому присвоено цифровое обозначение от 1 до 6.

Фазы статорных обмоток при подключении к питающей сети соединяют по одной из схем:

  • «треугольник» (Δ);
  • «звезда» (Y);
  • комбинированная схема «звезда-треугольник» (Δ/Y).

Подключение по комбинированной схеме применяется для двигателей мощностью свыше 5 кВт.

«Звездой » называют соединение всех концов статорных обмоток в одной точке. Питающее подается на начала каждой из них. При последовательном соединении обмоток в замкнутую ячейку образуется «треугольник ». Контакты с клеммами располагают таким образом, чтобы ряды были смещены относительно друг друга, напротив вывода С6 располагался С1 и т.д.

Подача питающего напряжения от трехфазной сети на статорные обмотки создает вращающее магнитное поле, которое приводит ротор в движение. Вращательного момента, возникающего после того, как , для запуска недостаточно. Чтобы увеличить вращающий момент, в сеть включают дополнительные элементы.

Самый простой и распространенный способ подключения к бытовым сетям – подключение с использованием фазосдвигающего конденсатора.

При подаче питающего напряжения от обоих типов электросетей частота вращения ротора асинхронного двигателя будет почти одинаковой. В то же время мощность в трехфазных сетях выше, чем в аналогичных однофазных. Соответственно, подключение трехфазного электродвигателя в однофазную сеть неизбежно сопровождается заметной потерей мощности.

Существуют электромоторы, которые изначально не рассчитаны на возможность подключения в бытовую сеть. Приобретая электромотор для использования в бытовых условиях, лучше сразу искать модели с короткозамкнутым ротором.

Подключение двигателя «звездой» и «треугольником» в сетях с разным номинальным напряжением

В соответствии с номинальным питающим напряжением асинхронные трехфазные двигатели отечественного производства подразделены на две категории: для работы от сетей 220/127 В и 380/220 В. Двигатели, рассчитанные на работу от сети 220/127 В имеют небольшую мощность — на сегодняшний день их применение сильно ограничено.

Электромоторы, рассчитанные на номинальное напряжение 380/220 В распространены повсеместно.

Независимо от номинального напряжения при установке мотора используется правило: более низкие значения напряжения используются при подключении в «треугольник», высокие – исключительно в соединениях статорных обмоток по схеме «звезда».

То есть, напряжение в 220 В подается на «треугольник », 380 В – на «звезду », в противном случае мотор быстро перегорит.

Основные технические характеристики агрегата, включая рекомендованную схему подключения и возможность ее изменения отображаются на бирке мотора и его техническом паспорте. Наличие метки вида Δ/Y указывает на возможность соединения обмоток и «звездой», и «треугольником». Чтобы минимизировать потери мощности, неизбежные при работе от однофазных бытовых сетей, мотор такого типа лучше подключать «треугольником».

Знаком Y обозначают двигатели, где возможность подключения в «треугольник» не предусмотрена. В распределительной коробке таких моделей вместо 6 контактов находятся только три, соединение трех других выполнено под корпусом.

Подключение трехфазных с номинальным питающим напряжением 220/127 В к стандартным однофазным сетям выполняют только по типу «звезды». Подключение агрегата, рассчитанного на низкое питающее напряжение в «треугольник» быстро приведет его в негодность.

Особенности работы электромотора при подключении разными способами

Подключение электродвигателя «треугольником» и «звездой» характеризуется определенным набором своих преимуществ и недостатков.

Соединение обмоток двигателя в «звезду» обеспечивает более мягкий запуск. При этом происходит значительная потеря мощности агрегата. По этой схеме также производится подключение всех электромоторов отечественного происхождения на 380В.

Подключение «треугольник» обеспечивает выходную мощность до 70% от номинальной, но пусковые токи при этом достигают значительных величин и двигатель может выйти из строя. Эта схема – единственно правильный вариант для подключения к российским электросетям импортных электромоторов европейского производства, рассчитанных на номинальное напряжение 400/690.

Функцию пуска для схем переключения «звезда»-«треугольник» используют только для двигателей с пометкой Δ/Y, в которых реализована возможность обоих вариантов соединения. Запуск двигателя производят при подключении «звездой», чтобы уменьшить пусковой ток.

Когда двигатель разгонится, производится переключение в «треугольник», чтобы получить максимально возможную выходную мощность.

Применение комбинированного способа неизбежно связано со скачками токов. В момент переключение между схемами подача тока прекращается, скорость вращения ротора снижается, в некоторых случаях происходит ее резкое снижение. Через некоторое время скорость вращения восстанавливается.

Примеры подключения звездой и треугольником на видео