Напряжение на концах катушки. Катушка индуктивности в цепи переменного тока – принцип действия и значение

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания , который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра :


132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!


Как вы помните из , конденсатор у нас не пропускал постоянный электрический ток:


Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится , генератор частоты , собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:


Получилось как то так:


Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.


Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф


Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F =1 Килогерц, а Ма =1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц


Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц


Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется . Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Увеличиваем частоту до 200 Килогерц


На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.


Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц


Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц


Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца


Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:


Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.


Итак, прогоняем все по тем же значениям частоты


При частоте в 1 Килогерц у нас значение почти не изменилось.

10 Килогерц


Здесь тоже ничего не изменилось.

100 Килогерц


Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц


Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц


Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц


Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц


Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 Мегагерца, предел моего генератор частоты


Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

где

Х L — катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

В данном опыте мы с вами получили (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:

Ток, напряжение и э. д. с. самоиндукции . При включении в цепь пременного тока индуктивности (катушки индуктивности, потерями в которой можно пренебречь) (рис. 178, а) изменяющийся ток непрерывно индуцирует в ней э. д. с. самоиндукции

e L = -L ?i / ?t (68)

где?i/?t- скорость изменения тока.

Рассматривая график изменения силы тока i (рис. 178,б), можно установить, что скорость его изменения?i/?t будет наибольшей в моменты времени, когда угол? равен 0; 180 и 360°. Следовательно, в эти минуты времени э. д. с. имеет наибольшее значение. В моменты времени, когда угол?t равен 90° и 270°, скорость изменения тока?i/?t = 0 и поэтому э. д. с. e L = 0.

Э. д. с. самоиндукции е согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. Поэтому в первую четверть периода, когда ток i увеличивается, э. д. с. e L имеет отрицательное значение (направлена против тока); во вторую четверть периода, когда ток i уменьшается, э. д. с. e L имеет положительное значение (совпадает по направлению с током). В третью четверть периода ток i изменяет свое направление и увеличивается, поэтому э. д. с. самоиндукции e L направлена против тока и имеет положительное значение. В четвертую четверть периода ток i уменьшается и э. д. с. самоиндукции e L стремится поддержать прежнее направление тока, т. е. имеет отрицательное значение. Таким образом, э. д. с. самоиндукции e L отстает по фазе от тока i на угол 90°.

Так как в цепи, куда включена индуктивность L, отсутствует активное сопротивление (рассматривается идеальная катушка индуктивности), то по второму закону Кирхгофа u+e L =0, т. е. u = -e L Следовательно, напряжение источника всегда равно по величине и противоположно по направлению э. д. с. самоиндукции.

Из рассмотрения кривых (см. рис. 178,б) видно, что кривая напряжения и сдвинута относительно кривой силы тока i на четверть периода, т. е. на угол 90°. При этом напряжение достигает наибольших и нулевых значений раньше, чем ток. Следовательно,

Рис. 178. Схема включения в цепь переменного тока индуктивности (а), кривые тока I, напряжения и, э.д.с. e L (б) и векторная диаграмма (в)

при включении в цепь переменного тока индуктивности ток i отстает по фазе от напряжения и на угол 90° или, что то же самое, напряжение и опережает ток по фазе на угол 90° (рис. 178, в).

Индуктивное сопротивление. Сопротивление катушки или проводника переменному току, вызванное действием э. д. с. самоиндукции, называется индуктивным сопротивлением. Оно обозначается X L и измеряется в омах. Физическая природа индуктивного сопротивления совершенно другая, чем активного. Э. д. с. самоиндукции e L направлена против приложенного напряжения u, которое заставляет изменяться ток; согласно закону Ленца она препятствует изменению тока i, т. е. оказывает прохождению переменного тока определенное сопротивление.

Чем большая э. д. с. самоиндукции e L индуцируется в проводнике (катушке), тем большее они имеют индуктивное сопротивление X L . Э. д. с. самоиндукции согласно формуле (68) прямо пропорциональна индуктивности L и скорости изменения тока?i/?t, т. е. частоте его изменения f (значению?). Поэтому индуктивное сопротивление

X L = ?L

Следовательно, индуктивное сопротивление не зависит от материала, из которого изготовлен проводник (катушка), и от площади поперечного сечения проводника.

Закон Ома для цепи с индуктивностью

I = U / x L = U / (?L)

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с индуктивностью. Мгновенное значение мощности р, равное произведению мгновенных значений силы тока i и напряжения и, можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах?t. Кривая мгновенной мощности р (рис. 179, а) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения и.

При рассмотрении этой кривой видно, что мощность р может иметь положительные и отрицательные значения. В течение первой четверти периода ток и напряжение положительны и мощность p = ui также положительна. Во второй четверти периода ток положителен, а напряжение отрицательно; следовательно, мощность р будет отрицательна. В течение третьей четверти периода мощность снова становится положительной, а в течение четвертой четверти - отрицательной.

Понятие положительной и отрицательной электрической мощности физически определяет направление потока энергии. Положительный знак мощности означает, что электрическая энергия W передается от источника к приемнику; отрицательный знак мощности означает, что электрическая энергия W переходит от приемника к источнику. Следовательно, при включении в цепь переменного тока индуктивности возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью, при котором не создается никакой работы. В первую и третью четверти периода мощность положительна, т. е. индуктивность получает энергию W от источника (см. стрелки W) и накапливает ее в своем магнитном поле. Во вторую и четвертую четверти периода индуктивность отдает накопленную энергию W источнику. При этом протекание по цепи тока поддерживается благодаря действию э.д. с. самоиндукции e L .

Таким образом, в целом за период в индуктивное сопротивление не поступает электрическая энергия (на это указывает то, что среднее значение мощности за период равно нулю). Для того чтобы подчеркнуть указанную особенность индуктивного сопротивления, его относят к группе реактивных сопротивлений, т. е. сопротивлений, которые в цепи переменного тока в целом за период не потребляют электрической энергии. Следует отметить, что в реальные катушки индуктивности поступает некоторая энергия от источника переменного тока из-за наличия активного сопротивления проводов, из которых выполнены эти катушки. Эта энергия превращается в тепло.

Так как среднее значение мощности в цепи с индуктивностью равно нулю, для характеристики процесса обмена энергией между источником и индуктивностью введено понятие реактивной мощности индуктивности :

Q L = U L I

где U L - напряжение, приложенное к индуктивности L (действующее значение).

Реактивная мощность измеряется в варах (вар) и киловарах (квар). Наименование единицы происходит от первых букв слов вольт-амперреактивный. Реактивную мощность можно выразить также в виде

Q L = U 2 L/X L или Q L = I 2 X L

Способы соединения катушек индуктивности. В цепях переменного тока приходится соединять катушки индуктивности последовательно и параллельно.
При последовательном соединении катушек индуктивности эквивалентная индуктивность L эк равна сумме индуктивностей; например, при трех катушках с индуктивностями L 1 , L 2 и L 3 (рис. 180, а)

L эк = L 1 + L 2 + L 3

В этом случае эквивалентное индуктивное сопротивление

X Lэк = X L1 + X L2 + X L3

При параллельном соединении катушек индуктивности (рис. 180,б) для эквивалентной индуктивности имеем:

1 /L эк = 1 /L 1 + 1 /L 2 + 1 /L 3

для эквивалентного индуктивного сопротивления

1 /X Lэк = 1 /X L1 + 1 /X L2 + 1 /X L3

Катушка индуктивности в цепи переменного тока

Катушка индуктивности в цепи переменного тока ведет себя не так, как резистор. Если резисторы просто противостоят потоку электронов (напряжение на них прямопропорционально току), то катушки индуктивности противостоят изменению проходящего через них тока (напряжение на них прямопропоционально скорости изменения тока). Согласно Закону Ленца, индуцированное напряжение всегда имеет такую полярность, которая пытается сохранить текущее значение силы тока. То есть, если величина тока возрастает, то индуцированное напряжение будет "тормозить" поток электронов; если величина тока уменьшается, то полярность напряжения развернется и будет "помогать" электронному потоку оставаться на прежнем уровне. Такое противостояние изменению величины тока называется реактивным сопротивлением.

Математическая взаимосвязь между напряжением на катушке индуктивности и скоростью изменения тока через нее выглядит следующим образом:

Отношение di/dt представляет собой скорость изменения мгновенного тока (i) с течением времени, и измеряется в амперах в секунду. Индуктивность (L) измеряется в Генри, а мгновенное напряжение (u) - в вольтах. Чтобы показать, что происходит с переменным током, давайте проанализируем простую индуктивную схему:

Простая индуктивная цепь: ток катушки отстает от напряжения на 90 o .

Если мы построим график тока и напряжения для этой простой цепи , то он будет выглядеть примерно так:


Как вы помните, изменение напряжения на катушке индуктивности является реакцией на изменение тока, проходящего через нее. Отсюда можно сделать вывод, что мгновенное напряжение равно нулю всякий раз, когда мгновенное значение тока находится в пике (нулевое изменение, или нулевой наклон синусоидальной волны тока), и мгновенное напряжение равно своему пиковому значению всякий раз, когда мгновенный ток находится в точках максимального изменения (точки самого крутого наклона волны тока, в которых она пересекает нулевую линию). Все это приводит к тому, что волна напряжения на 90 o не совпадает по фазе с волной тока. На графике видно, как волна напряжения дает "фору" волне тока: напряжение "ведет" ток, а ток "запаздывает" за напряжением.


Ели мы на этот график нанесем значения мощности нашей схемы, то все станет еще более интересным:


Поскольку мгновенная мощность представляет собой произведение мгновенного напряжения и мгновенного тока (p = iu), она будет равна нулю, если мгновенное напряжение или ток будут равны нулю. Всякий раз, когда мгновенные значения тока и напряжения имеют положительные значения (выше нулевой линии), мощность так же будет положительна. Аналогично примеру с резистивной цепью, мощность примет положительное значение и в том случае, если мгновенный ток и напряжение будут иметь отрицательные значения (ниже нулевой линии). Однако, вследствие того, что волны напряжения и тока не совпадают по фазе на 90 o , бывают случаи, когда ток положителен, а напряжение отрицательно (или наоборот), в результате чего появляются отрицательные значения мгновенной мощности.

Но, что такое отрицательная мощность? Отрицательная мощность означает, что катушка индуктивности отдает энергию обратно в цепь. Положительная же мощность означает, что катушка индуктивности поглощает энергию из цепи. Так как положительные и отрицательные циклы питания равны по величине и продолжительности, в течение полного цикла катушка индуктивности отдает обратно в схему столько же энергии, сколько она потребляет из нее. В практическом смысле это означает, что реактивное сопротивление катушки не рассеивает никакой энергии, чем оно и отличается от сопротивления резистора, рассеивающего энергию в виде тепла. Однако, все вышесказанное справедливо только для идеальных катушек индуктивности, провода которых не имеют никакого сопротивления.

Сопротивление катушки индуктивности, изменяющее силу тока, интерпретируется как сопротивление переменному току в целом, у которого по определению постоянно меняется мгновенная величина и направление. Это сопротивление переменному току похоже на обычное сопротивление, но отличается от него тем, что всегда приводит к фазовому сдвигу между током и напряжением, а так же рассеивает нулевую мощность. Из-за указанных различий, данное сопротивление носит несколько иное название - реактивное сопротивление. Реактивное сопротивление, как и обычное, измеряется в Омах, только обозначается оно символом Х, а не R. Для большей конкретики, реактивное сопротивление катушки индуктивности обычно обозначают заглавной буквой Х с буквой L в качестве индекса: X L .

Поскольку напряжение на катушке индуктивности пропорционально скорости изменения тока, оно будет больше для быстро меняющихся токов, и меньше - для токов с более медленным изменением. Это означает, что реактивное сопротивление любой катушки индуктивности (в Омах) прямопропорционально частоте переменного тока. Точная формула расчета реактивного сопротивления выглядит следующим образом:

Если на катушку индуктивностью 10 мГн воздействовать частотами 60, 120 и 2500 Гц, то ее реактивное сопротивление примет следующие значения:

В уравнении реактивного сопротивления выражение “2πf” имеет важное значение. Оно означает число в радианах в секунду, характеризующее "вращение" переменного тока (один полный цикл переменного тока представляет собой одно полное круговое вращение). Радиан - это единица измерения углов: в одном полном круге есть 2π радиан, точно так же, как в нем есть 360 o . Если генератор переменного тока двухполюсный, то он произведет один полный цикл для каждого полного оборота вала, что будет означать 2π радиан или 360 o . Если постоянную 2π умножить на частоту в герцах (циклах в секунду), то результатом будет число в радианах в секунду, известное как угловая (циклическая) частота переменного тока.

Помимо выражения 2πf, угловая частота переменного тока может обозначаться строчной греческой буквой ω (Омега). В этом случае формула X L = 2πfL может быть написана как X L = ωL.

Необходимо понимать, что угловая частота является выражением того, насколько быстро проходит полный цикл волны, равный 2π радиан. Она необязательно представляет фактическую скорость вала генератора, производящего переменный ток. Если генератор имеет более двух полюсов, его угловая частота будет кратной скорости вращения вала. По этой причине ω иногда выражается в единицах электрических радиан в секунду, чтобы отличить ее от механического движения.

При любом способе выражения угловой частоты очевидно, что она прямопропорциональна реактивному сопротивлению катушки индуктивности. При увеличении частоты переменного тока (или скорости вращения вала генератора), катушка индуктивности будет оказывать большее сопротивление прохождению тока и наоборот. Переменный ток в простой индуктивной цепи равен напряжению (в Вольтах) поделенному на реактивное сопротивление катушки индуктивности (в Омах). Как видите, это аналогично тому что переменный или постоянный ток в простой резистивной цепи равен напряжению (в Вольтах) поделенному на сопротивление (в Омах). В качестве примера давайте рассмотрим следующую схему:

Однако, мы должны иметь в виду, что напряжение и ток имеют разные фазы. Как было сказано ранее, напряжение имеет фазовый сдвиг +90 o по отношению к току (рисунок ниже). Если представить фазовые углы напряжения и тока математически (в виде комплексных чисел), то мы увидим, что сопротивление катушки индуктивности переменному току обладает следующим фазовым углом:

Ток на катушке индуктивности отстает от напряжения на 90 o .

Математически можно сказать, что фазовый угол сопротивления катушки индуктивности переменному току составляет 90 o . Фазовый угол реактивного сопротивления току очень важен при анализе цепей. Особенно эта важность проявляется при анализе сложных цепей переменного тока, где реактивные и простые сопротивления взаимодействуют друг с другом. Он также окажется полезным для представления сопротивления любого компонента электрическому току с точки зрения комплексных чисел (а не скалярных величин сопротивления и реактивного сопротивления).

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания , который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра :


132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!


Как вы помните из , конденсатор у нас не пропускал постоянный электрический ток:


Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится , генератор частоты , собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:


Получилось как то так:


Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.


Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф


Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F =1 Килогерц, а Ма =1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц


Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц


Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется . Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Увеличиваем частоту до 200 Килогерц


На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.


Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц


Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц


Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца


Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:


Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.


Итак, прогоняем все по тем же значениям частоты


При частоте в 1 Килогерц у нас значение почти не изменилось.

10 Килогерц


Здесь тоже ничего не изменилось.

100 Килогерц


Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц


Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц


Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц


Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц


Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 Мегагерца, предел моего генератор частоты


Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

где

Х L — катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

В данном опыте мы с вами получили (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:



Добавить свою цену в базу

Комментарий

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу – индуктивности – является реальный элемент электрической цепи – индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода.

Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).

Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца– знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.

Свойства индуктивности

  • Индуктивность всегда положительна.
  • Индуктивность зависит только от геометрических размеров контура и магнитных свойств среды (сердечника).

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника. Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна

Где ψ — потокосцепление, µ 0 = 4π*10 -7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах.

Цели применения различны:

  • подавление помех в электрической цепи;
  • сглаживание уровня пульсаций;
  • накопление энергетического потенциала;
  • ограничение токов переменной частоты;
  • построение резонансных колебательных контуров;
  • фильтрация частот в цепях прохождения электрического сигнала;
  • формирование области магнитного поля;
  • построение линий задержек, датчиков и т.д.

Применение в технике

Катушки индуктивности применяются:


По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности. Следуя традиции древних изображения плоской Земли, стоящей на трёх слонах или китах, сегодня мы могли бы с большим основанием утверждать, что жизнь на Земле покоится на катушке индуктивности.

– это качество работы катушки в цепях переменного тока. Добротность катушки индуктивности определяют как отношение её индуктивного сопротивления к активному сопротивлению. Грубо говоря, индуктивное сопротивление – это сопротивление катушки переменному току, а активное сопротивление – это сопротивление катушки постоянному току и сопротивление, обусловленное потерями электрической мощности в каркасе, сердечнике, экране и изоляции катушки. Чем меньше активное сопротивление, тем выше добротность катушки и её качество. Таким образом, можно сказать, что чем выше добротность, тем меньше потери энергии в катушке индуктивности.

Индуктивное сопротивление определяется формулой:

X L = ωL = 2πfL

Где ω = 2πf – круговая частота (f – частота, Гц); L – индуктивность катушки, Гн.

Добротность катушки индуктивности определяется формулой:

Q = X L / R = ωL / R = 2πfL / R

Где R – активное сопротивление катушки индуктивности, Ом.

Энергия магнитного поля тока

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии. В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? – выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги).