MIMO антенна - что это такое и в чем ее приемущество? MIMO антенна что это? О технологии MIMO

Одно из самых существенных и важных нововведений Wi-Fi за прошедшие 20 лет - технология Multi User - Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.

Давайте разберемся как это работает!

Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных. Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.

SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.

Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.

По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, что несфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.

С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.

Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.

Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали

Сегодня беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.

1. MU-MIMO использует только «Downstream» поток (от точки доступа к мобильному устройству).

В отличие от SU-MIMO, технология MU-MIMO в настоящее время работает только для п ередачи данных от точки доступа к мобильному устройству. Только беспроводные маршрутизаторы или точки доступа могут одновременно передавать данные нескольким пользователям, будь то один или несколько потоков для каждого из них. Сами же беспроводные устройства (такие, как смартфоны, планшеты или ноутбуки) по-прежнему должны по очереди направлять данные к беспроводному маршрутизатору или точке доступа, хотя при этом при наступлении их очереди они по отдельности могут использовать технологию SU-MIMO для передачи нескольких потоков.

Технология MU-MIMO будет особенно полезной в тех сетях, где пользователи больше скачивают данные, чем загружают.

Возможно, в будущем будет реализована версия технологии Wi-Fi: 802.11ax , где метод MU-MIMO будем применим и для «Upstream» трафика.

2. MU-MIMO работает только в Wi-Fi-диапазоне частот 5 ГГц

Технология SU-MIMO работает как в диапазоне частот 2,4 ГГц, так и 5 ГГц. Беспроводные роутеры и точки доступа второго поколения стандарта 802.11ac Wave 2 могут одновременно обслуживать несколько пользователей только на полосе частот 5 ГГц. С одной стороны, конечно, жаль, что на более узкой и более перегруженной полосе частот 2,4 ГГц мы не сможем использовать новую технологию. Но, с другой стороны, на рынке появляется все больше двухдиапазонных беспроводных устройств, поддерживающих технологию MU-MIMO, которые мы можем использовать для разворачивания производительных корпоративных Wi-Fi-сетей.

3. Технология Beamforming помогает направлять сигналы

В литературе СССР можно встретить понятие Фазированная Антенная Решётка, которая была разработана для военных радаров в конце 80-х. Аналогичная технология была применена в современном Wi-Fi. MU-MIMO использует технологию формирования направленного сигнала (в англоязычной технической литературе известной как «beamforming»). Beamfiorming позволяет направлять сигналы в направлении предполагаемого местоположения беспроводного устройства (или устройств), а не посылать их случайным образом во всех направлениях. Таким образом получается сфокусировать сигнал и существенно увеличить дальность действия и скорость работы Wi-Fi-соединения.

Хотя технология beamforming стала опционально доступна еще со стандартом 802.11n, тем ни менее большинство производителей реализовывали свои проприетарные версии этой технологии. Эти вендоры и сейчас предлагают проприетарные реализации технологии в своих устройствах, но теперь им придется включить хотя бы упрощенную и стандартизированную версию технологии формирования направленного сигнала, если они хотят поддерживать технологию MU-MIMO в своей продуктовой линейке стандарта 802.11ac.

4. MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств

К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).​

5. От пользовательских устройств не требуется наличие нескольких антенн

Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.

Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.

Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои ноутбуки и планшеты поддержкой технологии MU-MIMO.​

6. Точки доступа выполняют «тяжелую» обработку

Стремясь к упрощению требований к устройствам конечных пользователей, разработчики технологии MU-MIMO постарались переложить на точки доступа большую часть работы по обработке сигнала. Это еще один шаг вперед по сравнению с технологией SU-MIMO, где бремя по обработке сигнала большей частью лежало на пользовательских устройствах. И опять же, это поможет производителям клиентских устройств экономить на мощности, размере и других затратах при производстве своих продуктовых решений с поддержкой MU-MIMO, что должно весьма позитивно сказаться на популяризации данной технологии.

7. Даже бюджетные устройства получают ощутимую выгоду от одновременной передачи через несколько пространственных поток

Подобно агрегации каналов в сети Ethernet (802.3ad и LACP), объединение потоков 802.1ac не увеличивает скорость соединения «точка-точка». Т.е. если вы единственный пользователь и у Вас запущено только одно приложение - вы задействует только 1 пространственный поток.

Однако существует возможность увеличить общую пропускную способность сети за счет предоставления возможности по обслуживанию точкой доступа нескольких пользовательских устройств одновременно.

Но если все используемые в вашей сети пользовательские устройства поддерживают работу только с одним потоком, то MU-MIMO позволит вашей точке доступа обслуживать одновременно до трех устройств, вместо одного за раз, в то время как другим (более продвинутым) пользовательским устройствам придется ожидать своей очереди.




Рисунок 2​.

8. Некоторые пользовательские устройства имеют скрытую поддержку технологии MU-MIMO

Не смотря на то, что в настоящее время все еще не так много маршрутизаторов, точек доступа или мобильных устройств поддерживают MU-MIMO, в компании-производителе Wi-Fi-чипов утверждают, что часть производителей в своем производственном процессе учла аппаратные требования для поддержки новой технологии для некоторых своих устройств для конечных пользователей еще несколько лет назад. Для таких устройств относительно простое обновление программного обеспечения добавит поддержку технологии MU-MIMO, что также должно ускорить популяризацию и распространение технологии, а также стимулировать компании и организации модернизировать свои корпоративные беспроводные сети с помощью оборудования с поддержкой стандарта 802.11ac.

9. Устройства без поддержки MU-MIMO также оказываются в выигрыше

Не смотря на то, что Wi-Fi-устройства обязательно должны иметь поддержку MU-MIMO для того, чтобы использовать эту технологию, даже те клиентские устройства, которые такой поддержкой не имеют, могут получить косвенную выгоду от работы в беспроводной сети, где маршрутизатор или точки доступа поддерживают технологию MU-MIMO. Следует помнить, что скорость передачи данных по сети напрямую зависит от общего времени, в течение которого абонентские устройства подключены к радиоканалу. И если технология MU-MIMO позволит обслуживать часть устройств быстрее, то это означает, что у точек доступа в такой сети останется больше времени на обслуживание других клиентских устройств.

10. MU-MIMO помогает увеличить пропускную способность беспроводной сети

Когда вы увеличиваете скорость Wi-Fi-соединения, вы также увеличиваете пропускную способность беспроводной сети. Так как устройства обслуживаются более быстро, то у сети появляется больше эфирного времени на обслуживание большего количества клиентских устройств. Таким образом, технология MU-MIMO может значительно оптимизировать работу беспроводных сетей с интенсивным трафиком или большим количеством подключенных устройств, таких как общественные Wi-Fi-сети. Это прекрасная новость, так как количество смартфонов и других мобильных устройств с возможностью подключения к Wi-Fi-сети, скорее всего, продолжит увеличиваться.

11. Поддерживается любая ширина канала

Одним из способов расширения пропускной способности Wi-Fi-канала является связывание каналов, когда объединяются два соседних канала в один канал, который в два раза шире, что фактически удваивает скорость Wi-Fi-соединения между устройством и точкой доступа. Стандарт 802.11n предусматривал поддержку каналов шириной до 40 МГц, в оригинальной спецификации стандарта 802.11ac поддерживаемая ширина канала была увеличена до 80 МГц. В обновленном стандарте 802.11ac Wave 2 поддерживаются каналы шириной 160 МГц.



Рисунок 3. На сегодняшний день стандарт 802.11ac поддерживает каналы шириной до 160 МГц в диапазоне частот 5 ГГц

Однако, не следует забывать, что использование в беспроводной сети каналов большей ширины увеличивает вероятность возникновения помех в совмещенных каналах. Поэтому такой подход не всегда будет правильным выбором для разворачивания всех без исключения Wi-Fi-сетей. Тем ни менее, технология MU-MIMO, как мы можем убедиться, может быть использована для каналов любой ширины.

Тем ни менее, даже если ваша беспроводная сеть использует более узкие каналы шириной 20 МГц или 40 МГц, технология MU-MIMO все равно может помочь ей работать быстрее. А вот насколько быстрее, будет зависеть от того, сколько необходимо будет обслуживать клиентских устройств и сколько потоков каждое из этих устройств поддерживает. Таким образом, использование технологии MU-MIMO даже без широких связанных каналов может более чем в два раза увеличить пропускную способность выходного беспроводного соединения для каждого устройства.

12. Обработка сигналов повышает безопасность

Интересным побочным эффектом технологии MU-MIMO является то, что маршрутизатор или точка доступа шифрует данные перед их отправкой через радиоканалы. Достаточно трудно декодировать данные, передаваемые с использованием технологии MU-MIMO, т. к. не ясно какая часть кода в каком пространственном потоке находится. Хотя впоследствии могут быть разработаны специальные инструменты, позволяющие другим устройствам перехватывать передаваемый трафик, на сегодняшний день технология MU-MIMO эффективно маскирует данные от расположенных вблизи устройств прослушивания. Таким образом, новая технология помогает повысить Wi-Fi-безопасность, что особенно актуально для открытых беспроводных сетей, таких как общественные Wi-Fi-сети, а также точек доступа, работающих в персональном режиме или использующих упрощенный режим аутентификации пользователей (Pre-Shared Key, PSK) на базе технологий защиты Wi-Fi-сети WPA или WPA2.

13. MU-MIMO лучше всего подходит для неподвижных Wi-Fi-устройств

Также существует одно предостережение о технологии MU-MIMO: она не очень хорошо работает с быстродвижущимися устройствами, так как процесс формирования направленного сигнала по технологии beamforming становится более сложным и менее эффективным. Поэтому MU-MIMO не сможет обеспечить вам заметную пользу для устройств, часто использующих роуминг в вашей корпоративной сети. Однако, следует понимать, что эти «проблемные» устройства никак не должны повлиять ни на MU-MIMO-передачу данных другим клиентским устройствам, которые менее подвижны, ни на их производительность.

Подписка на новости

На пальцах о MIMO.

Представим, что информация это люди, а модем и базовая станция оператора это два города между которыми проложен один путь, а антенна это вокзал. Перевозить людей будем на поезде, который, для примера, может перевезти не больше ста человек. Пропускная способность между такими городами будет ограничена, т.к. поезд может отвезти только сто человек за один раз.

Чтобы 200 человек смогли прибыть в другой город в один и тот же момент времени между городами строят второй путь и запускают второй поезд одновременно с первым, тем самым увеличивая поток людей в два раза. Точно также работает и MIMO технология, по сути мы просто удваиваем количество потоков. Количество потоков определяет стандарт MIMO, два потока - MIMO 2x2, четыре потока - MIMO 4x4 и т.д. Для передачи данных по сети интернет, будь то 4G LTE или WiFi на сегодня, как правило, используется стандарт MIMO 2x2. Чтобы принимать двойной поток одновременно потребуется две обычных антенны или по аналогии два вокзала, или, для экономии средств одна MIMO антенна, как если бы это был один вокзал с двумя платформами. То есть, MIMO антенна - это две антенны внутри одной.

Панельная MIMO антенна может буквально иметь два набора излучающих элементов("патчей" ) в одном корпусе(например четыре патча работают в вертикальной поляризации, другие четыре в горизонтальной, всего восемь патчей ). Каждый набор подключен к своему гнезду.

А может иметь один набор патчей но имеющий двухпортовая(ортогональную) запитку, таким образом элементы антенны запитываются со сдвигом фазы на 90 градусов, и тогда каждый патч будет работать в вертикальной и горизонтальной поляризации одновременно.

В таком случае один набор патчей будет подключен сразу к двум гнёздам, именно такие MIMO антенны и продаются в нашем интернет магазине.

Подробнее

Мобильная трансляция цифрового потока LTE напрямую относится к новым разработкам 4G. Взяв для анализа 3G сеть, можно обнаружить, что ее скорость передачи данных в 11 раз меньше, чем 4G. Все же скорость, как получения, так и трансляции данных LTE нередко бывает плохого качества. Связано это с нехваткой мощности или уровня сигнала, который получает модем 4G LTE от станции. Для существенного улучшения качества распространения информации внедряют антенны 4G MIMO.

Измененные антенны, по сравнению с обычными системами распределения данных, имеют другую схему передатчика. К примеру, нужен делитель цифровых потоков, чтобы распределять информацию на потоки с низкой скоростью, количество которых связано с числом антенн. Если скорость входящего потока примерно 200 Мегабит в секунду, то создастся два потока – оба по 100 Мегабит в секунду. Каждый поток должен транслироваться посредством отдельной антенны. Поляризация радиоволны, передающейся от каждой из двух антенн, будет отличаться, чтобы расшифровать данные во время приема. Приёмное устройство, чтобы сохранить скорость передачи данных должно так же иметь две приёмные антенны в разных поляризациях.

Достоинства MIMO

MIMO – это раздача сразу нескольких потоков информации всего по одному каналу с последующим прохождением их через пару или большее количество антенн до попадания в приемные независимые устройства для трансляции радиоволн. Это позволяет существенно улучшить пропускную способность сигнала, не прибегая к расширению полосы.

При трансляции радиоволн цифровой поток в радиоканале селективно замирает. Это можно заметить, если вы находитесь в окружении городских многоэтажных домов, двигаетесь на большой скорости или удаляетесь от зоны, которую могут охватить радиоволны. Для избавления от этой проблемы была создана антенна MIMO, способная транслировать информацию по нескольким каналам с незначительной задержкой. Информация предварительно кодируется, а затем восстанавливается на приемной стороне. В итоге не только увеличивается скорость распределения данных, но и значительно улучшается качество сигнала.

По своей конструктивной особенности антенны LTE делятся на обыкновенные и состоящие из двух приемопередающих устройств (MIMO). Обычная система распространения сигнала позволяет добиться скорости не более чем 50 Мегабит в секунду. MIMO дает шансы увеличить скорость трансляции сигнала более чем дважды. Достигается это благодаря монтажу в коробе сразу нескольких антенн, которые располагают на незначительном удалении одна от другой.

Одновременное получение, а также раздача цифрового потока антеннами к получателю происходит через два независимых кабеля. Это позволяет существенно увеличить скоростные параметры. MIMO применяется успешно в таких беспроводных системах, как WiFi, а также сотовые сети и WiMAX. Применение этой технологии, имеющей, как правило, два входа и два выхода, позволяет улучшить спектральные качества WiFi, WiMAX, 4G/LTE и прочих систем, поднять скорость передачи информации и емкость потока данных. Перечисленные достоинства достижимы благодаря трансляции данных от 4G антенны MIMO к получателю посредством нескольких беспроводных соединений. Отсюда и берется название этой технологии(Multiple Input Multiple Output - множественный вход и множественный выход).

. Где применяется MIMO

MIMO очень быстро завоевала популярность за счет увеличения емкости и пропускной способности таких протоколов передачи данных, как WiFi. Можно взять стандарт WiFi 802.11n в качестве наиболее популярного случая использования MIMO. Благодаря технологии связи MIMO в этом протоколе WiFi удается развить скорость более чем 300 Мегабит в секунду.

Помимо ускорения передачи потока информации, беспроводная сеть благодаря MIMO получила улучшенные характеристики в плане качества передачи данных даже в местах, где уровень приемного сигнала достаточно низок. WiMAX благодаря новой технологии получил возможность транслировать данные со скоростью до 40 Мегабит в секунду.

В стандарте 4G (LTE) возможно применение MIMO с конфигурацией до 8x8. Теоретически это позволит транслировать цифровой поток от основной станции к получателю на скорости больше 300 Мегабит в секунду. Еще одним привлекательным моментом от применения новой системы является качественное и устойчивое соединение, наблюдаемое даже на границе действия соты.

Это означает, что даже на существенном расстоянии от станции, а также при расположении в помещении с толстыми стенами, будет замечено только небольшое снижение скоростных характеристик. MIMO можно применять почти в каждой системе передачи информации беспроводным путем. Надо отметить, что потенциал этой системы неисчерпаем.

Неустанно ищут пути по разработке новых конфигураций MIMO антенн, например, до 64x64. В недалеком будущем это даст возможность еще больше улучшить эффективность спектральных показателей, увеличить ёмкость сетей и величину скорости транслирования информации.

Существующие сети мобильной связи используются не только для осуществления звонков и передачи сообщений. Благодаря цифровому методу передачи, с помощью существующих сетей возможна также передача данных. Данные технологии, в зависимости от уровня развития, обозначаются 3G и 4G. Технологию 4G поддерживает стандарт LTE. Скорость передачи данных зависит от некоторых особенностей сети (определяется оператором), достигая теоретически до 2 Мб/с для сети 3G и до 1 Гб/с для сети 4G. Все указанные технологии работают эффективнее при наличии сильного и стабильного сигнала. Для этих целей большинство модемов предусматривает подключение внешних антенн.

Панельная антенна

В продаже можно встретить различные варианты антенн для улучшения качества приема. Большой популярностью пользуется панельная антенна 3G. Коэффициент усиления подобной антенны составляет около 12 дБ в диапазоне частот 1900-2200 МГц. Подобный тип устройств способен также улучшить качество сигнала 2G – GPRS и EDGE.

Как и подавляющее большинство других пассивных устройств, она имеет одностороннюю направленность, что вместе с увеличением принимаемого сигнала позволяет снизить уровень помех с боковых направлений и сзади. Таким образом, даже в условиях неустойчивого приема можно поднять уровень сигнала до приемлемых значений, тем самым увеличивая скорость приема и передачи информации.

Применение панельных антенн для работы в сетях 4G

Поскольку рабочий диапазон сетей 4G практически совпадает с диапазоном предыдущего поколения, то не возникает никаких сложностей в использовании данных антенн в сетях 3G 4G LTE. Для любой из технологий применение антенн позволяет более приблизить скорости передачи данных к максимальным значениям.

Еще более увеличить скорости приема и передачи данных позволила новая технология, использующая раздельные приемники и передатчики в одной полосе частот. Конструкция существующего 4G модема предусматривает использование технологии MIMO.

Несомненное достоинство панельных антенн – их невысокая стоимость и исключительная надежность. В конструкции практически нет ничего, что может поломаться даже при падении с большой высоты. Единственное слабое место – высокочастотный кабель, который может переломиться в месте ввода в корпус. Для того чтобы продлить срок службы устройства, кабель должен быть надежно закреплен.

Технология MIMO

Для увеличения пропускной способности канала связи между приемником и передатчиком данных разработан метод обработки сигнала, когда прием и передача ведутся на различные антенны.

Обратите внимание! Применяя антенны LTE MIMO, можно увеличить пропускную способность на 20-30% относительно работы с простой антенной.

Основной принцип заключен в устранении взаимосвязи между антеннами.

Электромагнитные волны могут иметь различное направление относительно плоскости земли. Это носит название поляризации. В основном используется вертикально и горизонтально поляризованные антенны. Для исключения взаимного влияния между собой антенны отличаются друг от друга поляризацией на угол 90 гр. Чтобы влияние земной поверхности было одинаково для обеих антенн, плоскости поляризации каждой смещают на 45 гр. относительно земли. Таким образом, если одна из антенн имеет угол поляризации 45 гр., то другая, соответственно, 45 гр. Относительно друг друга смещение составляет необходимые 90 гр.

На рисунке наглядно видно, как развернуты антенны относительно друг друга и относительно земли.

Важно! Поляризация антенн должна быть такой же, как и на базовой станции.

Если для технологий 4G LTE поддержка MIMO по умолчанию имеется на базовой станции, то для 3G в связи с большим количеством устройств без MIMO, операторы не спешат внедрять новые технологии. Дело в том, что в сети MIMO 3G устройства будут работать гораздо медленнее.

Установка антенн для модема своими руками

Правила установки антенн не отличаются от обычных. Главное условие – отсутствие препятствий между клиентской и базовой станциями. Растущее дерево, крыша соседнего здания или, что еще хуже, линия электропередач, служат надежными экранами для электромагнитных волн. И чем выше частота сигнала, тем большее затухание будут вносить расположенные на пути распространения радиоволн препятствия.

В зависимости от типа крепления антенны можно устанавливать на стене здания или закреплять на мачте. Есть два вида антенн MIMO :

  • моноблочные;
  • разнесенные.

Моноблочные уже содержат внутри две конструкции, установленные с необходимой поляризацией, а разнесенные – состоят из двух антенн, которые нужно крепить отдельно, каждая из них должна быть направлена точно на базовую станцию.

Все нюансы установки антенны MIMO своими руками четко и подробно описаны в сопроводительной документации, но лучше предварительно проконсультироваться с провайдером или пригласить представителя для установки, заплатив не очень большую сумму, но получив определенную гарантию на произведенные работы.

Как сделать антенну самостоятельно

Принципиальных сложностей при самостоятельном изготовлении нет. Нужны навыки работы с металлом, умение держать в руках паяльник, желание и аккуратность.

Непременное условие – строгое соблюдение геометрических размеров всех, без исключения, составляющих частей. Геометрические размеры высокочастотных устройств должны быть соблюдены с точностью до миллиметра и точнее. Любое отклонение ведет к ухудшению характеристик. Упадет коэффициент усиления, увеличится взаимосвязь между антеннами MIMO. В конечном итоге вместо усиления сигнала буден наблюдаться его ослабление.

К сожалению, в широком доступе отсутствуют точные геометрические размеры. Как исключение, имеющиеся в сети материалы основаны на повторении некоторых заводских конструкций, не всегда скопированных с заданной точностью. Поэтому не стоит возлагать большие надежды на публикуемые в интернете схемы, описания и методики.

С другой стороны, если не требуется сверх сильного усиления, то выполненная самостоятельно, с соблюдением указанных размеров антенна MIMO, все равно даст, хоть и не большой, но положительный эффект.

Стоимость материалов невысока, затраты времени при наличии навыков также не слишком велики. К тому же никто не мешает испытать несколько вариантов и выбрать приемлемый по результатам тестирования.

Для того чтобы сделать MIMO антенну 4G LTE своими руками, нужны два абсолютно ровных листа оцинкованной стали толщиной 0.2-0.5 мм, а лучше одностороннего фольгированного стеклотекстолита. Один из листов пойдет на изготовление рефлектора (отражателя), а другой – на изготовление активных элементов. Кабель для подключения к модему должен иметь сопротивление 50 Ом (таков стандарт для модемного оборудования).

Телевизионный кабель использовать нельзя по двум причинам:

  • сопротивление 75 Ом вызовет рассогласованность со входами модема;
  • большая толщина.

Также необходимо подобрать разъемы, которые должны в точности соответствовать разъемам на модеме.

Важно! Указанное расстояние между активными элементами и рефлектором должно отсчитываться от слоя фольги в случае использования фольгированного материала.

Кроме того понадобится небольшой отрезок медного провода толщиной 1-1.2 мм.

Изготовленная конструкция должна быть помещена в пластиковый корпус. Металл использовать нельзя, поскольку таким образом антенна будет заключена в электромагнитный экран и работать не будет.

Обратите внимание! Большая часть чертежей относится не к MIMO антеннам, а к панельным. Внешне они отличаются тем, что к простой панельной антенне подводится один кабель, а к MIMO нужно два. Оцените статью:

Технология MIMO сыграла огромную роль в развитии WiFi. Несколько лет назад невозможно было представить и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно - IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в .

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO - это многопотоковая передача данных . Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 - это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование . За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 - a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output - его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт - также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально - практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания . Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании - (базовая станция), (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX . Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно - недорого. В отличие от аналогичного оборудования, используемого в WiMAX - сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами.


сайт

Для того, чтобы лучше понять принцип работы MIMO антенны давайте вообразим следующую ситуацию: базовая станция (БС) оператора мобильной сети и модем стали двумя географическими пунктами А и Б, между этими объектами проложен определенный путь, люди, передвигающиеся по этому пути олицетворяют информацию, А - это ваша приемная Антенна, Б - это БС сотового оператора. Люди передвигаются из одного пункта в другой с помощью поезда, вместимость которого- 100 человек. Но людей, которые хотят из пункта Б добраться в пункт А гораздо больше. Поэтому строится второй путь и запускается новый поезд, вместимость которого, тоже 100 человек. Таким образом, производительность и эффективность двух поездов в 2 раза выше.

Точно также же устроена и новейшая технология MIMO (англ. Multiple Input Multiple Output) , она позволяет принимать одновременно больше потоков. Для этого используются различные поляризации сигналов, например горизонтальная и вертикальная - 2х2. Раньше, чтобы принимать больше информации, то есть больше потоков, потребовалось бы приобретение двух простых антенн.

Сегодня же достаточно приобрести только одну антенну MIMO. Улучшенная антенна MIMO содержит в одном корпусе сразу два набора излучающих элементов, так называемых патчей, каждый из которых подключен к отдельному гнезду. Второй вариант устройства: имеется один набор патчей и запитка для двух портов, что позволяет патчу функционировать в двух направлениях: горизонтальном и вертикальном. В этом случае к двум гнездам присоединяется единственный набор патчей. Именно второй вариант (с двумя кабельными вводами) вы можете найти в ассортименте нашей компании.

А как же подключить 2 кабеля, выходящих из мимо-антенны к одному модему? Все очень просто. Сегодня не только антенны поддерживают эту функцию, но и модемы. Существуют модемы с 2 входами для подключения внешних антенн, например широко распространенный Huawei .

Преимущества технологии MIMO

К главным преимуществам относится возможность улучшения пропускной способности, не расширяя при этом полосу. Так устройство одновременно раздает несколько потоков информации по единственному каналу.

Качество передаваемого сигнала и скорость передачи данных становится лучше. Потому что технология сначала кодирует данные, а затем на приемной стороне восстанавливает их.

Более чем в два раза увеличивается скорость трансляции сигнала.

Увеличиваются и многие другие параметры скорости за счет использования двух независимых кабелей, через которые одновременно происходит раздача и получение информации в виде цифрового потока. Улучшаются качества спектра следующих систем: 3G, 4G/LTE, WiMAX, WiFi, благодаря использованию двух входов и двух выходов.

Сфера применения антенн MIMO

Чаще всего технология MIMO применяется для передачи данных такого протокола, как WiFi. Это объясняется увеличенными пропускной способностью и емкостью. Для примера возьмем протокол 802.11n, в нем при использовании описываемой технологии, можно достичь скорость до 350 Мегабит/сек. Также улучшилось качество передачи данных, даже на тех участках, где сигнал приема низкий. Примером уличной точки доступа с антенной MIMO может послужить всем известная .

Сеть WiMAX, при использовании MIMO, теперь может транслировать информацию со скоростью до 40 Мегабит/секунду.

В применяется технология MIMO до 8x8. Благодаря этому достигается высокая скорость передачи - более 35 Мегабит/секунду. Помимо этого, обеспечивается надежное и высококачественное соединение отличного качества.

Постоянно ведутся работы по улучшению и усовершенствованию конфигураций технологии. В скором времени это позволит улучшить показатели спектра, усовершенствовать емкость сетей и ускорить скорость передачи данных.