Ключевым элементом системы с расширением спектра является. Расширенный диапазон ISO: действительно полезная функция или хитрый маркетинговый ход? Основы беспроводной технологии

Расширение спектра скачкообразной перестройкой частоты Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS) – метод основанный на периодической смене несущей частоты в соответствии с алгоритмом известном передатчику и приемнику. Принципы реализации: Диапазон частот радиоканала делится на пронумерованные подканалы; В процессе работы алгоритма генерируется псевдослучайная последовательность чисел, каждому числу сопоставляется номер частотного подканала; В процессе передачи одного отдельного бита частота может не изменяться (медленное расширение спектра) или изменяться несколько раз (быстрое расширение спектра); Для линейного кодирования используют частотную или фазовую модуляции.


Особенности метода: При прослушивании отдельного подканала получают шумоподобный сигнал не позволяющий восстановить передаваемые данные; В случае использования быстрого расширения спектра, искажение сигнала передаваемого по отдельному подканалу не приводит к потери передаваемого бита; В следствии смена несущих частот снижается эффект межсимвольной интерференции; Метод может использоваться для организации мультиплексирования нескольких потоков данных – для каждого потока выбираться отдельная псевдослучайная последовательность; Простота реализации.


Прямое последовательное расширение спектра Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum, DSSS) – метод основан на замене каждого передаваемого бита N битами, что влечет увеличение в N- раз тактовой частоты передатчика и расширение спектра. Принцип реализации: Каждый передаваемая двоичная единица заменяется последовательностью битов называемой элементарной (расширяющей) последовательностью. Двоичный ноль заменяется инверсным значением расширяющей последовательности. Бит расширяющей последовательности называется элементарным сигналом (чипом). Скорость передачи чипов называют чиповой скоростью. Кол-во битов в элементарной последовательности называют коэффициентом расширения;


Пример: Если в качестве элементарной последовательности используется (последовательность Баркера) Тогда для передачи будет передана следующая последовательность чипов:


Особенности метода: Чем больше коэффициент расширения тем шире спектр передаваемого сигнала; Метод в меньшей степени обеспечивает защиту от помех чем метод FHSS, поскольку искажение сигнала в узкой полосе частот может привести к ошибочному распознаванию принятого бита приемником;


Множественный доступ с кодовым разделением Множественный доступ с кодовым разделением (Code Division Multiplexing Access, CDMA) основан на методе DSSS. Принципы реализации: В процессе передачи каждый узел CDMA-сети использует уникальную элементарную последовательность (э.п.) ; Обозначим m - длину расширяющей последовательности, Вектор соответствующий э. п. обозначим S, дополнение (инверсию) э.п. обозначим S (для записи вектора будем использовать биполярную запись: двоичный 0 будем обозначим -1, двоичную единицу +1). Элементарные последовательности выбираются так чтобы они были попарно ортогональны. Т.е. для каждых векторов S и T, их нормированное скалярное произведение ST должно быть равно 0: Σ i=1 m 1 – m S i T i = 0 ST


Из ST = 0 следует ST=0 Отметим, что нормированное скалярное произведение э.п. на саму себя равно 1. Σ i=1 m 1 – m SiSiSiSi SS = Σ i=1 m 1 – m Si2Si2 = Σ m 1 – m ±1 2 = = 1 SS = -1 Предположим, что все станции синхронизированы, т.е. все станции начинаю передачу битов данных одновременно. При одновременной передачи биполярные сигналы линейно складываются. Пример 1. Если станция A, B и C посылают соответственно +1, -1 и +1, то в результате получим +1.


Пример 2. Пусть станции A, B, C используют следующие э.п.: A: = () B: = () C: = () Рассмотрим примеры одновременной передачи данных этими станциями: _ _ 1 С = () _ 1 1 B+C = () 1 0 _ A+B = () A+B+C = ()


Приемнику заранее известны элементарные последовательности всех передающих станций. Для декодирования производится вычисление нормированного скалярного произведения принятой последовательности (суммы принятых сигналов) и элементарной последовательности станции. Пример 3. Пусть станции A, B и C передают соответственно 1, 0, 1 (в биполярной записи +1, -1, +1). Приемник получает сумму сигналов S=A+B+C, тогда SA = (A+B+C)A = AA + BA + CA = = 1 SB = (A+B+C)B = AB + BB + CB = = -1 SC = (A+B+C)C = AC + BC + CC = = 1 Пусть станции A, B и C передают соответственно 1, 0, _ (в биполярной записи +1, -1, _). Приемник получает сумму сигналов S=A+B, тогда SA = (A+B)A = AA + BA = 1+0 = 1 SB = (A+B)B = AB + BB = 0-1 = -1 SC = (A+B)C = AC + BC = 0+0 = 0


Особенности метода: Попарно ортогональные последовательности генерируются с помощью метода Уолша (коды Уолша); Чем длиннее э.п. тем больше вероятность ее корректного распознавания на фоне шумов (на практике часто применяют последовательности с 64 или 128 чипами); Для повышения надежности, используют коды с коррекцией ошибок. Для выравнивания мощностей сигналов принимаемых от различных станций применяют метод компенсации мощностей (чем слабее сигнал принимаемый от базовой станции тем более мощный сигнал должна передавать мобильная станция). Допущения в описании алгоритма: Синхронизация станций сети; Равенство мощностей всех принимаемых сигналов (равноудаленность мобильных станций от базовой станции); Знание базовой станцией э.п. всех передающих станций.


Формат кадра Управление кадром ДлительностьA.1А. 2А. 3НомерА.4Данные Контрольная сумма ВерсияТип К DS От DS MFПовторПитание Продол- жение WПодтипO Типы кадров: информационные служебные управляющие 1.Управление кадром (2 байта) Версия (2 бита) – версия протокола; Тип (2 бита) – тип кадра (информационный, служебный, управляющий); Подтип (4 бита) – подтип кадра (CTS, RTS, сигнальный, аутенитификация и т. д.); Информационный кадр:


К DS (1 бит) – кадр передается в направлении к распределительной системы; От DS (1 бит) – кадр передается в направлении от распределительной системы; MF (больше фрагментов, 1 бит) – указывает на то, что далее следует еще один фрагмент; Повтор (1 бит) – указание на повторную посылку фрагмента; Питание (1 бит) – указание станции перейти в режим пониженного энергопотребления или выйти из него; Продолжение (больше данных, 1 бит) – указывает на то, что у отправителя имеются еще кадры для пересылки; W (1 бит) – указывает на использование шифрования по алгоритму WEP; O (1 бит) – указывает на необходимость обработки кадров строго по порядку;


2. Длительность (2 байта) – указание предположительного времени передачи кадра и получения подтверждения (ACK) 3. A.1 (6 байт) – адрес отправителя 4. A.2 (6 байт) – адрес получателя 5. A.3 (6 байт) – адрес исходной ячейки 6.Номер (2 байта) – содержит 4-битовое подполе номера фрагмента, используемое для фрагментации и повторной сборки, и 12-битовый порядковый номер, используемый для нумерации кадров; 7. A.4 (6 байт) – адрес целевой ячейки; 8. Данные (байт) – передаваемые данные; 9. Контрольная сумма (4 байта). В управляющих кадрах отсутствуют поля A3 и A4. В служебных кадрах (RTS, CTS, ACK)отсутствуют поля A3, A4, Номер, Данные.


Уменьшение зоны радиопокрытия до минимально приемлемой (идеал – зона радиопокрытия не должна выходить за пределы контролируемой территории). Разграничение доступа, основанное на MAC-аутентификации. Использование уникальных последовательность частотных прыжков в технологии FHSS. Фильтрация устройств по заранее заданным IP-адресам. Использование WEP (Wired Equivalent Privacy) - шифрование на основе алгоритма RC4 с 64 и 128-битовыми ключами (в алгоритме были найдены серьезные уязвимости). Методы защиты реализуемые в оборудовании WiFi:


Аутентификация и авторизация на основе стандарта IEEE 802.1x - использование серверов AAA (например RADIUS) и динамических ключей шифрования. Использование протокола WPA и WPA2 (Wi-Fi Protected Access). WPA реализует принцип временных ключей шифрования и взаимосвязан с TKIP Temporal Key Integrity Protocol (WPA был разработан как замена WEP). В 2008 г. В технологии WPA найдены уязвимости. WPA2 реализует стандарт i – надежный протокол безопасности использующий алгоритм шифрования AES (Advanced Encryption Standart). Реализация WiFi сетей на основе VPN - развертывание виртуальной частной сети поверх имеющейся беспроводной.

d irect s equence s pread s pectrum ) - широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых на сегодняшний день (см. методы расширения спектра). Это метод формирования широкополосного радиосигнала , при котором исходный двоичный сигнал преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Используется в сетях стандарта IEEE 802.11 и CDMA для преднамеренного расширения спектра передаваемого импульса.

Метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов - по стандарту 802.11 этих подканалов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются как бы одновременно и параллельно (физически сигналы передаются последовательно), используя все 11 подканалов. При приёме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при её кодировке. Другая пара приёмник-передатчик может использовать другой алгоритм кодировки - декодировки, и таких различных алгоритмов может быть очень много.

Первый очевидный результат применения этого метода - защита передаваемой информации от подслушивания («чужой» DSSS-приёмник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика).

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (то есть случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. И наоборот - обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут целиком заглушить весь широкополосный сигнал.

Использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды - обычными узкополосными устройствами и «поверх них» - широкополосными.

Энциклопедичный YouTube

    1 / 3

    ☙◈❧ Сэнсэй-3 . ͟͟И͟͟с͟͟к͟͟о͟͟н͟͟н͟͟ы͟͟й͟͟ ͟͟Ш͟͟а͟͟м͟͟б͟͟а͟͟л͟ы͟ ☙◈❧ Анастасия Новых. аудиокниги

    2012 Crossing Over A New Beginning "FIRST EDITION"

    ☙◈❧ Эзоосмос ☙◈❧ Необычная рыбалка. Скрытая реальность. Тамга Прави. Анастасия Новых.

Технология

В каждый передаваемый информационный бит (логический 0 или 1) встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определённым требованиям автокорреляции . Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приёмнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приёмника (если не используется приёмник с алгоритмом Боцмана).

Для того, чтобы послать радиосигнал большой мощности в СВЧ-диапазоне, нужен дорогостоящий передатчик с усилителем и дорогостоящая антенна большого диаметра. Для того, чтобы принять без помех сигнал малой мощности, также нужна дорогая большая антенна и дорогой приемник с усилителем.

Так обстоит дело при использовании обычного "узкополосного" радиосигнала, когда передача происходит на одной определенной частоте, а точнее, в узкой полосе радио-спектра, окружающей эту частоту (частотном канале). Картину усложняют еще и различные взаимные помехи между узкополосными сигналами большой мощности, передаваемыми близко друг от друга или на близких частотах. В частности, узкополосный сигнал может быть просто заглушен (случайно или намеренно) передатчиком достаточной мощности, настроившимся на ту же частоту.

Именно эта незащищенность от помех обычного радиосигнала вызвала к жизни разработку, сначала для военных применений, совершенно иного принципа радиопередачи, называемого технологией широкополосного сигнала, или шумоподобного сигнала (обоим вариантам термина соответствует аббревиатура Spread Spectrum). После многих лет успешного оборонного использования эта технология нашла и гражданское применение, и именно в этом качестве она будет здесь обсуждаться.

Обнаружилось, что кроме своих характеристических свойств (собственная помехозащищенность и низкий уровень создаваемых помех), данная технология оказалась относительно дешевой при массовом производстве. Экономичность происходит за счет того, что вся сложность широкополосной технологии запрограммирована в нескольких микроэлектронных компонентах ("чипах"), а стоимость микроэлектроники при массовом производстве очень мала. Что же касается остальных компонентов широкополосных устройств - СВЧ-электроники, антенн - то они дешевле и проще, чем в обычном "узкополосном" случае, за счет чрезвычайно малой мощности используемых радиосигналов.

Идея Spread Spectrum состоит в том, что для передачи информации используется значительно более широкая полоса частот, чем это требуется при обычной (в узком частотном канале) передаче. Разработано два принципиально различающихся между собой метода использования такой широкой полосы частот - метод прямой последовательности (Direct Sequence Spread Spectrum - DSSS) и метод частотных скачков (Frequency Hopping Spread Spectrum - FHSS). Оба эти метода предусматриваются стандартом 802.11 (Radio-Ethernet).

Современное состояние беспроводной связи определяется ситуацией со стандартом IEEE 802.11. Разработкой и совершенствованием стандарта занимается рабочая группа по беспроводным локальным сетям (Working Group for Wireless Local Area Networks) комитета по стандартизации Института Инженеров Электротехники и Электроники (Institute of Electrical and Electronic Engineers, IEEE) под председательством Вика Хэйса (Vic Hayes) из компании Lucent Technologies. В группе около ста членов с решающим и около пятидесяти с совещательным голосом; они представляют практически всех изготовителей оборудования, а также исследовательские центры и университеты. Четыре раза в год группа собирается на пленарные заседания и принимает решения по совершенствованию стандарта.

Стандарт определяет один тип протокола доступа к среде MAC-уровня и три различных протокола для физических (PHY) каналов.

На MAC-уровне определяются базовые составляющие архитектуры сети и перечень услуг, предоставляемых этим уровнем. Предусмотрено два типовых варианта архитектуры беспроводных сетей:

Независимая конфигурация “ad-hoc”, когда станции могут связываться непосредственно друг с другом. Площадь такой сети и функциональные возможности ограничены.

Инфраструктурная конфигурация, при которой станции связываются через точку доступа, либо работающую автономно, либо подключенную к кабельной сети. Стандарт определяет интерфейс радиоканала между станциями и точкой доступа. Точки доступа могут соединяться между собой с помощью радиомостов или сегментов кабельной сети.

В стандарте зафиксирован протокол использования единой среды передачи, получивший название Carrier Sense Multiple Access Collision Avoidance (CSMA/CA). Вероятность конфликтов для беспроводных узлов минимизируется путем предварительной отправки всем узлам короткого сообщения (ready to send, RTS) об адресате и продолжительности предстоящей передачи. Узлы задерживают передачу на время, равное объявленной длительности сообщения. Приемная станция отвечает на RTS посылкой (CTS), по которой передающий узел узнает, свободна ли среда и готов ли узел к приему. После приема пакета данных узел передает подтверждение (ACK) безошибочного приема. Если ACK не получено, пакет данных будет передан повторно.

Предусмотренная стандартом спецификация предписывает разбиение данных на пакеты, снабженные контрольной и адресной информацией. После этой информации, занимающей около 30 байт, следует информационный блок длиной до 2048 байт. Затем следует 4-байт CRC-код информационного блока. Стандарт рекомендует использовать пакеты длиной 400 байт для физического канала типа FHSS и 1500 или 2048 для канала DSSS.

В стандарте предусмотрено обеспечение безопасности данных, включающее аутентификацию (для проверки того, что узел, входящий в сеть, авторизован в ней) и шифрование данных по алгоритму RC4 с 40-разрядным ключом. Для портативных компьютеров стандарт предусматривает режим энергосбережения: перевод устройства в “дремлющий” режим и вывод его из этого состояния на непродолжительное время, необходимое для приема служебного сигнала от узлов сети, начинающих передачу. Предусмотрен также режим роуминга, позволяющий мобильному абоненту передвигаться между точками доступа без потери связи.

Расширение спектра

На физическом уровне стандарт допускает использование одного из двух типов радиоканалов и одного типа канала инфракрасного диапазона. Оба типа радиоканалов используют технологию расширения спектра, приводящую к уменьшению среднего значения спектральной плотности мощности сигнала благодаря распределению энергии в полосе частот, более широкой, чем необходимо для обеспечения заданной скорости передачи. Эта технология позволяет уменьшить уровень создаваемых помех и обеспечивает повышенную помехоустойчивость приема.

Первый тип радиоканала - Frequency Hopping Spread Spectrum (FHSS) Radio PHY. Предусмотрена скорость передачи 1 Мбит/с (факультативно 2 Мбит/с). Версия 1 Мбит/с использует двухуровневую гауссову частотную модуляцию (2GFSK), а версия 2 Мбит/с - четырехуровневую (4GFSK). При скорости 1 Мбит/с частота сигнала изменяется на длительности символа сообщения, равной 1 мкс, по гауссову закону от номинального значения до значения +170 кГц и возвращается к номинальному значению. Для передачи нуля частота сигнала изменяется на величину –170 кГц. Для скорости 2 Мбит/с предусмотрено четыре уровня отклонения частоты (+225, +75, –75, –225 кГц), поэтому каждая элементарная посылка (символ) переносит два бита сообщения. Ширина спектра сигнала при такой модуляции равна 1 МГц, независимо от скорости передачи. Это дает возможность использовать для передачи 79 частотных позиций в диапазоне от 2402 до 2480 МГц с шагом 1 МГц. Для расширения спектра частота сигнала изменяется по псевдослучайному закону не реже одного раза в 400 мс.

Второй тип радиоканала - Direct Sequence Spread Spectrum (DSSS) Radio PHY. В этом варианте предусматривается передача со скоростями 1 и 2 Мбит/с. При скорости передачи 1 Мбит/с используется двоичная фазовая манипуляция - Binary Phase Shift Keying (BPSK). Единичный бит представляется 11-элементным кодом Баркера вида 11100010010, а нулевой бит - инверсным кодом Баркера. Элементарные символы кода Баркера не переносят информации, биты передаются сразу всем кодом Баркера - прямым или инверсным. Это позволяет придать сигналу свойства шума, обеспечивающие помехоустойчивость. Ширина спектра такого сигнала составляет 22 МГц. Для скорости 2 Мбит/с стандарт предусматривает квадратурную фазовую манипуляцию - QPSK. На длительности символа сообщения в этом случае передаются два бита. Для этого необходимо уже не два, а четыре различных сигнала. Поэтому вместе с основным несущим колебанием используется дополнительное, сдвинутое относительно него по фазе на 90°. Фаза каждого из этих колебаний управляется прямой или инверсной последовательностью Баркера, и оба колебания складываются. Таким образом, на длительности символа сигнал имеет четыре степени свободы, позволяющие передавать два бита. При этом скорость передачи увеличивается вдвое при сохранении той же полосы частот, что и при двоичной передаче. Для передачи сигнала DSSS используется одна из 14 перекрывающихся частотных полос, определенных стандартом в общей полосе частот 83,5 МГц.

Для инфракрасного канала (Infrared PHY) стандарт предусматривает скорость 1 Мбит/с (факультативно 2 Мбит/с) с импульсно-позиционной модуляцией. Большого интереса этот тип канала не представляет, поскольку дальность передачи, предусмотренная стандартом, не превышает 20 м.

Существует несколько различных технологий уширения спектра, однако для дальнейшего понимания протокола 802.11 нам необходимо детально познакомиться лишь с технологией уширения спектра методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS).

Технология DSSS

При потенциальном кодировании информационные биты - логические нули и единицы - передаются прямоугольными импульсами напряжений. Прямоугольный импульс длительности T имеет спектр, ширина которого обратно пропорциональна длительности импульса. Поэтому чем меньше длительность информационного бита, тем больший спектр занимает такой сигнал.

Для преднамеренного уширения спектра первоначально узкополосного сигнала в технологии DSSS в каждый передаваемый информационный бит (логический 0 или 1) в буквальном смысле встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Как уширить спектр сигнала и сделать его неотличимым от естественного шума, понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако, возникает вопрос: а как такой сигнал принимать? Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так то просто, если вообще возможно. Оказывается, возможно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника (рис. 7.1).

Коды Баркера

Чиповых последовательностей, отвечающих указанным требованиям автокорреляции, существует достаточно много, но для нас особый интерес представляют так называемые коды Баркера, поскольку именно они используются в протоколе 802.11.

Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение.

В протоколах семейства 802.11 используется код Баркера длиной в 11 чипов (11100010010).

Для того чтобы передать сигнал логическая единица передается прямой последовательностью Баркера, а логический нуль – инверсной последовательностью.

Скорость 1 Мбит/с

В стандарте 802.11 предусмотрено два скоростных режима: 1 и 2 Мбит/с. Для кодирования данных на физическом уровне используется метод DSSS с 11-чиповыми кодами Баркера. При информационной скорости 1 Мбит/с скорость следования отдельных чипов последовательности Баркера составляет 11×106 чип/с, а ширина спектра такого сигнала составляет 22 МГц. Учитывая, что ширина частотного диапазона составляет 83,5 МГц, получаем, что всего в данном частотном дипазоне можно уместить 3 неперекрывающихся частотных канала. Весь частотный диапазон, однако, принято делить на 11 частотных перекрывающихся каналов по 22 МГц, отстоящих друг от друга на 5 МГц. К примеру, первый канал занимает частотный диапазон от 2400 до 2423 МГц и центрирован относительно частоты 2412 МГц. Второй канал центрирован относительно частоты 2417 МГц, а последний, 11 канал, центрирован относительно частоты 2462 МГц. При таком рассмотрении первый, шестой и 11 каналы не перекрываются друг с другом и имеют 3 мегагерцовый зазор друг относительно друга. Именно эти три канала могут использоваться независимо друг от друга.

Для модуляции синусоидального несущего сигнала (процесс, необходимый для информационного наполнения несущего сигнала) используется относительная двоичная фазовая модуляция (Differential Binary Phase Shift Key, DBPSK). При этом кодирование информации происходит за счет сдвига фазы синусоидального сигнала по отношению к предыдущему состоянию сигнала. Двоичная фазовая модуляция предусматривает два возможных значения сдвига фазы - 0 и π. Тогда логический нуль может передаваться синфазным сигналом (сдвиг по фазе равен 0), а единица - сигналом, который сдвинут по фазе на π.

Скорость 2 Мбит/с

Информационная скорость 1 Мбит/с является обязательной в стандарте IEEE 802.11 (Basic Access Rate), но опционально возможна и скорость в 2 Мбит/с (Enhanced Access Rate). Для передачи данных на такой скорости используется та же технология DSSS с 11-чиповыми кодами Баркера, но для модуляции несущего колебания применяется относительная квадратурная фазовая модуляция (Differential Quadrature Phase Shiftey). При относительной квадратурной фазовой модуляции сдвиг фаз может принимать четыре различных значения: 0, π/2, π и 3π/2. Используя четыре различных состояния сигнала, можно в одном дискретном состоянии закодировать последовательность двух информационных бит (дибит) и тем самым в два раза повысить информационную скорость передачи. К примеру, дибиту 00 может соответствовать сдвиг фазы, равный 0; дибиту 01 - сдвиг фазы, равный π/2; дибиту 11 - сдвиг фазы, равный π; дибиту 10 - сдвиг фазы, равный 3π/2.

В заключение рассмотрения физического уровня протокола 802.11 отметим, что при информационной скорости 2 Мбит/с скорость следования отдельных чипов последовательности Баркера остается прежней, то есть 11×10 6 чип/с, а следовательно, не меняется и ширина спектра передаваемого сигнала.

7.2 7.2 Физический уровень протокола 802.11b/b+

Протокол IEEE 802.11b, принятый в июле 1999 года, является своего рода расширением базового протокола 802.11 и кроме скоростей 1 и 2 Мбит/с предусматривает скорости 5,5 и 11 Мбит/с. Для работы на скоростях 1 и 2 Мбит/с используются технология уширения спектра с использованием кодов Баркера, а для скоростей 5,5 и 11 Мбит/с используются так называемые комплементарные коды (Complementary Code Keying, CCK).

CCK-последовательности

Комплементарные коды или CCK-последовательности обладают тем свойством, что сумма их автокорреляционных функций для любого циклического сдвига, отличного от нуля, всегда равна нулю.

В стандарте IEEE 802.11b речь идет о комплексных комплементарных 8-чиповых последовательностях, определенных на множестве комплексных элементов.

Тут стоит сделать небольшое лирическое отступление, дабы не оттолкнуть читателя сложностью используемого математического аппарата. Математика комплексных чисел может вызывать массу негативных воспоминаний, ассоциируясь с чем-то уж совсем абстрактным. Но в данном случае все достаточно просто. Комплексное представление сигнала - это лишь удобный математический аппарат для представления модулированного по фазе сигнала.

Используя множество комплексных элементов {1, –1, j, –j} можно сформировать восемь одинаковых по модулю, но отличающихся по фазе комплексных чисел. То есть, элементы 8-чиповой CCK-последовательности могут принимать одно из следующих восьми значений: 1, –1, j, –j, 1+j, 1–j, –1+j, –1–j. Основное отличие CCK-последовательностей от рассмотренных ранее кодов Баркера заключается в том, что существует не строго заданная последовательность, посредством которой можно было кодировать либо логический нуль, либо единицу, а целый набор последовательностей. Учитывая, что каждый элемент 8-сиповой последовательности может принимать одно из восьми значений в зависимости от значения фазы, ясно, что можно скомбинировать 8 8 =16777216 вариантов последовательностей, однако, не все они будут комплементарными. Но даже с учетом требования комплементарности можно сформировать достаточно большое число разных CCK-последовательностей. Это обстоятельство позволяет кодировать в одном передаваемом символе несколько информационных бит и тем самым повысить информационную скорость передачи.

Вообще говоря, использование CCK-кодов позволяет кодировать 8 бит на один символ при скорости 11 Мбит/с и 4 бит на символ при скорости 5,5 Мбит/с. При этом в обоих случаях символьная скорость передачи составляет 1,385×10 6 символов в секунду (11/8 = 5,5/4 = 1,385), а учитывая, что каждый символ задается 8-чиповой последовательностью, получаем, что в обоих случаях скорость следования отдельных чипов составляет 11×10 6 чипов в секунду. Соответственно, и ширина спектра сигнала как при скорости 11 Мбит/с и 5,5 Мбит/с составляет 22 МГц.

Рассматривая возможные скорости передачи 5,5 и 11 Мбит/с в протоколе 802.11b, мы до сих пор оставляли без внимания вопрос, зачем нужна скорость 5,5 Мбит/с, если использование CCK-последовательностей позволяет передавать данные на скорости 11 Мбит/с. Теоретически это действительно так, но только если не учитывать при этом помеховой обстановки. В реальных условиях зашумленность каналов передачи и соответственно соотношение уровней шума и сигнала может оказаться таковым, что передача на высокой информационной скорости, то есть когда в одном символе кодируется множество информационных бит, может оказаться невозможной по причине их ошибочного распознавания. Не вдаваясь в математические детали, отметим лишь, что чем выше зашумленность каналов связи, тем меньше информационная скорость передачи. При этом важно, что приемник и передатчик правильно анализировали помеховую обстановку и выбирали приемлемую скорость передачи.


Похожая информация.


Методы расширения спектра

Изначально методы расширения спектра (PC или SS – Spread-Spectrum) использовались при разработке военных систем управления и связи. Во время Второй мировой войны расширение спектра использовалось в радиолокации для борьбы с намеренными помехами. В последние годы развитие данной технологии объясняется желанием создать эффективные системы радиосвязи для обеспечения высокой помехоустойчивости при передаче узкополосных сигналов по каналам с шумами и осложнения их перехвата.

Система связи является системой с расширенным спектром в следующих случаях :

Полоса частот, которая используется при передаче, значительно шире минимально необходимой для передачи текущей информации. При этом энергия информационного сигнала расширяется на всю ширину полосы частот при низком соотношении сигнал/шум, в результате чего сигнал трудно обнаружить, перехватить или воспрепятствовать его передаче путем внесения помех. Хотя суммарная мощность сигнала может быть большой, соотношение сигнал/шум в любом диапазоне частот является малым, что делает сигнал с расширенным спектром трудно определяемым при радиосвязи и, в контексте скрытия информации стеганографическими методами, трудно различимым человеком.

Расширение спектра выполняется с помощью так называемого расширяющего (или кодового) сигнала, который не зависит от передаваемой информации. Присутствие энергии сигнала во всех частотных диапазонах делает радиосигнал с расширенным спектром стойким к внесению помех, а информацию, встроенную в контейнер методом расширения спектра, стойкой к ее устранению или извлечению из контейнера. Компрессия и другие виды атак на систему связи могут устранить энергию сигнала из некоторых участков спектра, но поскольку последняя была распространена по всему диапазону, в других полосах остается достаточное количество данных для восстановления информации. В результате, если, разумеется, не разглашать ключ, который использовался для генерации кодового сигнала, вероятность извлечения информации неавторизованными лицами существенно снижается.

Восстановление первичной информации (то есть «сужение спектра») осуществляется путем сопоставления полученного сигнала и синхронизированной копии кодового сигнала.

В радиосвязи применяют три основных способа расширения спектра:

С помощью прямой ПСП (РСПП);

С помощью скачкообразного перестраивания частот;

С помощью компрессии с использованием линейной частотной модуляции (ЛЧМ).

При расширении спектра прямой последовательностью информационный сигнал модулируется функцией, которая принимает псевдослучайные значения в установленных пределах, и умножается на временную константу – частоту (скорость) следования элементарных посылок (элементов сигнала). Данный псевдослучайный сигнал содержит составляющие на всех частотах, которые, при их расширении, модулируют энергию сигнала в широком диапазоне.

В методе расширения спектра с помощью скачкообразного перестраивания частот передатчик мгновенно изменяет одну частоту несущего сигнала на другую. Секретным ключом при этом является псевдослучайный закон изменения частот.

При компрессии с использованием ЛЧМ сигнал модулируется функцией, частота которой изменяется во времени.

Очевидно, что любой из указанных методов может быть распространен на использование в пространственной области при построении стеганографических систем.

Рассмотрим один из вариантов реализации метода РСПП, авторами которого являются Смит (J.R. Smith) и Комиски (В.О. Comiskey). Алгоритм модуляции следующий: каждый бит сообщения , представляется некоторой базисной функцией , размерностью , умноженной, в зависимости от значения бита (1 или 0), на +1 или -1:

(11.7)

Модулированное сообщение ,полученное при этом, попиксельно суммируется с изображением-контейнером , в качестве которого используется полутоновое изображение размером . Результатом является стеганоизображение , при .

Расширение спектра

В данной лекции мы рассмотрим основные принципы технологии расширения спектра сигнала.

Расширение спектра – технология, говоря простыми словами, в которой модулированный сигнал представляется сигналом с полосой, намного превышающую полосу информационного сигнала.

Современные мобильные средства коммуникации основаны на технологии расширения спектра и широко распространены под названием «CDMA».

Рассмотрим стандарт CDMA IS-95 (cdmaOne) как наиболее широко используемый в настоящее время. Технология расширения спектра впервые была предложена для мобильных коммуникаторов в 1980-х годах, коммерческим распространением занялась впервые компания Qualcomm Inc, представившая данный стандарт формате DS-CDMA (Direct Sequence Code Division Multiple Access). Коммерческая эксплуатация стандарта IS-95 началась в 1996 году в США. Аббревиатура IS (interim standard - временной стандарт) используется для учета в TIA, а цифра означает порядковый номер. Из полного названия стандарта TIA/EIA/IS-95 видно, что в его рассмотрении принимал также участие EIA, который объединяет семь крупных организаций США.

Разновидности множественного доступа: Множественный доступ – проблема нумерации пользователей, которые хотят использовать одинаковый электромагнитный спектр. Она может быть решена несколькими способами:

- Выбор с разделением по частоте (сигналы распространяются только между конкретными коммуникаторами);

- Пространственная фильтрация;

- Множественный доступ с разделением по частоте (FDMA);

- Множественный доступ с разделением по времени (TDMA);

- Множественный доступ с кодовым разделением (CDMA).

TDMA (Time Division Multiple Access- множественный доступ с разделением по времени) - способ использования радиочастот, когда в одном частотном интервале находятся несколько абонентов, разные абоненты используют разные временные слоты (интервалы) для передачи. TDMA предоставляет каждому пользователю полный доступ к интервалу частоты в течение короткого периода времени.

FDMA (Frequency Division Multiple Access- множественный доступ с разделением каналов по частоте) - способ использования радиочастот, когда в одном частотном диапазоне находится только один абонент, разные абоненты используют разные частоты в пределах соты.

CDMA (Code Division Multiple Access- множественный доступ с кодовым разделением) - технология мобильной связи, при которой каналы передачи имеют общую полосу частот, но разную кодовую модуляцию.

В основном CDMA используется в качестве термина для системы модуляции информации в сигнал, имеющий более широкую полосу пропускания, т.е. расширение спектра. Это расширение осуществляется посредством двоичного "кода", который, как правило, очень длинный, и для большинства замечаний и соображений, носит случайный характер. Конечно код не является случайным, он вполне предсказуем, и часто используется термин псевдо-случайный (запутанной термин сам по себе).

Одно из фундаментальных понятий, определяющее помехоустойчивость и эффективность системы CDMA, - «база сигнала» (в англоязычной литературе используется термин «processing gain»). Физический смысл этого понятия - увеличение полосы частот передаваемого сигнала относительно исходного (измеряется в децибелах). Для систем с расширенным спектром база сигнала определяется как отношение ширины полос излучаемого и исходного сигналов. Однако чаще величина базы сигнала (В) вычисляется как произведение ширины спектра (F) на длительность элементарного символа (Т). Для широкополосных сигналов база значительно превышает 1 (В>>1). Ясно, чем шире полоса частот в эфире и ниже скорость входного сигнала, тем больше база сигнала и, соответственно, выше помехоустойчивость.

Однако важно понимать, что база сигнала - это характеристика не всей CDMA-системы, а только ее отдельного канала. Поясним сказанное на примере. Так, при чиповой скорости 1,2288 Мчип/с (IS-95) и информационной скорости 9,6 кбит/c база сигнала равна 21,1 дБ (1,2288x103 /9,6 = 128). База сигнала пропорциональна скорости его передачи.

Широкополосной называется система, которая передает сигнал, занимающий очень широкую полосу частот, значительно превосходящую ту минимальную ширину полосы частот, которая фактически требуется для передачи информации. В широкополосной системе исходный модулирующий сигнал (например, сигнал телефонного канала) с полосой всего несколько килогерц распределяют в полосе частот, ширина которой может быть несколько мегагерц. Это осуществляется путем двойной модуляции несущей передаваемым информационным сигналом и широкополосным кодирующим сигналом. Основной характеристикой широкополосного сигнала является его база B, определяемая как произведение ширины спектра сигнала F на его период Т. В результате перемножения сигнала источника псевдослучайного шума с информационным сигналом энергия последнего распределяется в широкой полосе частот, т.е. его спектр расширяется.

Технология оптимизирована для предоставления высокоскоростных мультимедийных услуг типа видео, доступа в Интернет и видеоконференций; обеспечивает скорости доступа вплоть до 2 Мбит/с на коротких расстояниях и 384 Кбит/с на больших с полной мобильностью. Такие величины скорости

передачи данных требуют широкую полосу частот, поэтому ширина полосы WCDMA составляет 5 МГц.

Технология может быть добавлена к существующим сетям GSM и PDC, что делает стандарт WCDMA наиболее перспективным с точки зрения использования сетевых ресурсов и глобальной совместимости.

В передатчике узкополосный информационный сигнал умножается на опорную псевдошумовую N-символьную последовательность, а полученный сигнал модулируется методом BPSK или QPSK (прямая операция). База результирующего сигнала равна числу символов псевдослучайной последовательности (B = N). При этом использование шумоподобных сигналов с высокой тактовой частотой приводит к тому, что исходный узкополосный

сигнал «размазывается» в широкой полосе и становится меньше уровня шума.

В приемнике исходный сигнал восстанавливается с помощью псевдослучайной последовательности известной структуры (обратная операция). Иные сигналы, поступающие на данный приемник, воспринимаются как шум.

Аналогичным образом происходит подавление мощных узкополосных помех от других работающих передатчиков. В приемнике такая помеха тоже «размазывается» в широкой полосе частот и после фильтрации лишь незначительно ухудшает качество связи. При дальнейшей цифровой обработке помехи можно подавить полностью.

Кроме наиболее часто применяемого метода DS-CDMA существуют и другие технологии расширения спектра, например с помощью нескольких несущих - MC-CDMA (Multi-Carrier CDMA) или скачкообразной перестройки частоты - FHCDMA (Frequency Hopping CDMA). Особенности этих технологий будут рассмотрены в следующих номерах журнала.

Цифровая обработка сигнала в реальном масштабе времени до передачи по РЧ. Принцип построения передатчика/приемника тот же, что и при DS-CDMA, только к ЦАП поступает уже конечный модулированный сигнал. В передатчике/приемнике используется особый фильтр, имеющий название фильтр приподнятого косинуса, который минимизирует межсимвольные искажения путем представления части спектра простейшей формы в косинусоиду, приподнятую таким образом, что чтобы она «сидела» на горизонтальной оси.

Чиппинг - любая операция, посредством которой символы (биты) разбиваются (чиппуются) на меньшие интервалы по времени. Операции скрэмблирования, каналообразования и расширения представляют собой оперцию чиппинга.

Скрэмблирование - это обратимое преобразование цифрового потока без изменения скорости передачи с помощью случайной последовательности. После скремблирования появление «1» и «0» в выходной последовательности равновероятны. Скремблирование - обратимый процесс, то есть исходное сообщение можно восстановить применив обратный алгоритм.

Каналообразование - обратимое преобразование цифрового потока путм разбиения информационного сигнала на чипы с помощью фиксированной последовательности.

Комплексное представление.

Отметим, что комплексное представление является чисто математическим и вводится для удобства записи. В сетях третьего поколения CDMA используются все три представления в комплексном виде. Каналообразование в Uplink-системе осуществляется первым методом представления, а в Downlink-системе – вторым.

Каждый пользователь имеет уникальный расширяющий/ каналообразующий код, скорее всего, ортогональный код Уолша. При нисходящей передачи сигнала берется за основу реальная часть при комплексном представлении чиппованной последовательности и передается с той же скоростью. Переданные закодированные сигналы будут синхронизированы. Каждая подвижная станция знает код скремблирования текущей базовой станции, и ее установленный (и единственный) код расширения - отсюда и восстанавливаются переданные данные.

Логические каналы линии «вниз» включают:

Пилотный канал;

Канал синхронизации;

Канал персонального вызова;

Канал прямого трафика.

В прямом канале (от БС к подвижной) модуляция сигнала функциями Уолша (бинарная фазовая манипуляция) используется для различения разных физических каналов данной БС; модуляция длинной ПСП (бинарная фазовая

манипуляция) - с целью шифрования сообщений; модуляция короткой ПСП (квадратурная фазовая манипуляция двумя ПСП одинакового периода) - для расширения полосы и различения сигналов разных БС.

Различение сигналов разных станций обеспечивается тем, что все БС используют одну и ту же пару коротких ПСП, но со сдвигом на 64 дискрета между разными станциями, т.е. всего в сети 511 кодов; при этом все физические каналы одной БС имеют одну и ту же фазу последовательности.

На БС формируется 4 типа каналов: канал пилот-сигнала (PI), синхроканал (SYNC), вызывной канал (РСН) и канал трафика (ТСН).

Сигналы разных каналов взаимно ортогональны, что гарантирует отсутствие взаимных помех между ними на одной БС. Внутрисистемные помехи в основном возникают от передатчиков других БС, работающих на той же частоте, но с иным циклическим сдвигом.

Излучение пилот-сигнала происходит непрерывно. Для его передачи используют функцию Уолша нулевого порядка (W0 ). Пилот-сигнал - это сигнал несущей, который используется ПС для выбора рабочей ячейки (по наиболее мощному сигналу), а также в качестве опорного для синхронного детектирования сигналов информационных каналов. Обычно на пилот-сигнале излучается около 20% общей мощности, что позволяет мобильной станции (МС) обеспечить точность выделения несущей частоты и осуществить когерентный прием сигналов.

В синхроканале (SYNC) входной поток со скоростью 1,2 кбит/с перекодируется в поток, передаваемый со скоростью 4,8 кбит/с. Синхросообщение содержит технологическую информацию, необходимую для установления начальной синхронизации на МС: данные о точном системном времени, о скорости передачи в канале РСН, о параметрах короткого и длинного кода. Скорость передачи в синхроканале ниже, чем в вызывном (РСН) или канале графика (ТСН), благодаря чему повышается надежность его работы. По завершении процедуры синхронизации МС настраивается на канал вызова РСН и постоянно контролирует его. Для кодирования синхроканала используется функция W32 .

В обратном канале (линии «вверх») асинхронный вариант кодового разделения реализуется в комбинации с некогерентным приемом сигналов на БС. Благодаря этому отпадает необходимость в пилотном канале и канале синхронизации. В итоге остаются лишь два типа логических каналов линии «вверх»:

Канал доступа;

- канал обратного трафика.

Асинхронность кодового разделения делает нерациональным применение функций Уолша в роли каналообразующих последовательностей (сигнатур) физических каналов, так как при относительных временных сдвигах они не могут сохранять ортогональность и имеют весьма непривлекательные взаимные корреляционные свойства.

Канал доступа обеспечивает соединение МС и БС, пока МС не настроилась на назначенный ей канал обратного трафика. Процесс выбора канала доступа случаен – МС произвольно выбирает номер канала из определенного диапазона. Канал доступа используется для регистрации МС в сети, передачи на БС запроса на установление соединения, ответа на команды, переданные по каналу вызова и др. Скорость передачи данных по каналу доступа фиксирована и составляет 4,8 кбит/с.

Канал обратного трафика обеспечивает передачу речевой информации и данных абонента, а также управляющей информации с МС на БС, когда МС уже занимает выделенный ей физический канал.

Коды Уолша.

В стандарте CDMA для кодового разделения каналов используются ортогональные коды Уолша. Коды Уолша формируются из строк матрицы Уолша:

Особенность этой матрицы состоит в том, что каждая ее строка ортогональна любой другой или строке, полученной с помощью операции логического отрицания. В стандарте IS-95 используется матрица 64-го порядка. Для выделения сигнала на выходе приемника применяется цифровой фильтр. При ортогональных сигналах фильтр можно настроить таким образом, что на его выходе всегда будет логический «0», за исключением случаев, когда принимается сигнал, на который он настроен. Кодирование по Уолшу применяется в прямом канале (от БС к AT) для разделения пользователей. В системах, использующих стандарт IS-95, все АС работают одновременно в одной полосе частот. Согласованные фильтры приемников БС квазиоптимальны в условиях взаимной интерференции между абонентами одной соты и весьма чувствительны к эффекту «далекоблизко». Для максимизации абонентской емкости системы необходимо, чтобы терминалы всех абонентов излучали сигнал такой мощности, которая обеспечила бы одинаковый уровень принимаемых БС сигналов. Чем точнее управление мощностью, тем больше абонентская емкость системы.

Псевдо-случайная последовательность.

ПСП – это детерминированный периодический сигнал, который известен обоим корреспондентам. Он имеет все статистические свойства белого шума и для третьей стороны он будет казаться абсолютно случайным - псевдошумовым сигналом. Для того, чтобы ПСП была случайным процессом, необходимо выполнение ряда условий:

- число двоичных единиц не должно отличаться от числа двоичных нулей не более, чем на один элемент;

- ПСП должна обладать хорошими корреляционными свойствами, а, именно, уровни боковых лепестков АКФ такой последовательности должны иметь минимальный уровень.

Таким свойствам удовлетворяет множество последовательностей - последовательности Уолша, Баркера, Голда, М-последовательности и многие другие.

Регистр сдвига с обратной связью по переносу (FCSR, Feedback with carry shift register) - сдвиговый регистр, функция обратной связи и регистр переноса. Длина сдвигового регистра - количество битов. Когда нужно извлечь бит, все биты сдвигового регистра сдвигаются вправо на одну позицию. Новый крайний слева бит и новое значение регистра переноса определяются функцией остальных битов сдвигового регистра и регистра переноса (их биты складываются). Младший бит результата и становится новым крайним левым битом, а новым значением регистра переноса становится остальные биты результата (кроме младшего).

В отличие от LFSR, для FCSR существует задержка, прежде чем он перейдёт в циклический режим, то есть начнёт генерировать циклически повторяемую последовательность. В зависимости от выбранного начального состояния возможны 4 различных случая:

1. Начальное состояние может оказаться частью максимального периода.

2. Начальное состояние может перейти в последовательность максимального периода, после некоторой начальной задержки.

3. Начальное состояние может после начальной задержки породить последовательность нулей.

4. Начальное состояние может после начальной задержки породить последовательность единиц.

Последовательность Голда - псевдослучайная последовательность, образуемая путем сложения по модулю 2 двух псевдослучайных последовательностей.

Касами - тип псевдослучайных последовательностей. Применяются в CDMA. Значимость этих последовательностей происходит из-за их очень низкой взаимной корреляции. Код Касами длиныN = 2m − 1, где m - четное целое число, может быть получен, беря периодические выборки из М-

последовательности и выполняя суммирование по модулю 2 на циклически сдвигаемых последовательностях. Выборки берутся через каждые s = 2m / 2 + 1 элементов М-последовательности, чтобы сформировать периодическую последовательность и затем прибавляя эту последовательность постепенно к первоначальной М-последовательности по модулю 2, чтобы сформироватьs = 2m / 2 последовательностей Касами. Взаимная корреляционная функция двух последовательностей Касами принимает значения [-1, -s, s-2].

Ортогональные коды

Возможность адаптации системы к различным скоростям передачи обеспечивается за счет применения так называемых каналообразующих кодов (channelization code). Принцип их генерации можно проиллюстрировать (рис. 1) схемой кодового дерева для ортогональных кодов переменной длины

(Orthogonal Variable Spreading Factor, OVSF).

На каждом уровне этого кодового дерева определены свои кодовые слова, длина каждого из которых равна коэффициенту расширения спектра (SF). Полное кодовое дерево содержит 8 уровней (последний, восьмой, соответствует коэффициенту SF=256).

Структура кодового дерева такова, что на каждом последующем уровне удваивается возможное число каналообразующих кодов. Так, если на уровне 2 образуется только 2 кода (SF=2), то на уровне 3 генерируется уже 4 кодовых слова (SF=4) и т.д. Ансамбль кодов OVSF не является фиксированным, а зависит от коэффициента расширения SF, т. е. фактически от скорости передачи по каналу.

Проблема ортогональности.

Предположим, существует простая система с двумя пользователями и двумя путями распространения сигнала. Два пути обладают относительной задержкой в один чип. Ортогональные коды Уолша используются для распространения последовательности данных.

В этом случае приемник будет извлекать из канала два различных сигнала для каждого пользователя, соответствующие двум различным путям, относительная задержка между ними будет один чип.

Для каждого пользователя, приемник будет получать два сигнала из канала, полезный сигнал (ПСП синхронизирован с этим сигналом) и его версия с задержкой.

Результат сужения четырех принимаемых сигналов в случае двухканальной передачи двум пользователям будет:

B N (bit of interest) от сужения нужного сигнала пользователя;

- 0 из сужения ортогональных шумоподобных сигналов, отсутствие помехи из-за использования кодов Уолша;

- нежелательные условия, когда сужение является причиной задержки полезного сигнала и помехи.

Многолучевость.

Для кодовой последовательности с идеальными корреляционными свойствами, автокорреляционная функция дает ноль а выходе в интервале , где Tc – время чипа. Это значит, что полезный сигнал (основной путь) и задержанная версия этого сигнала на время, большее 2Tc , приняты на приемнике, тогда, с условиями когерентной демодуляции/сужения спектра, приемник определит задержанный сигнал как помеху. К тому же уровень мощности задержанного сигнала меньше, чем полезного в виду отражений при многолучевости, следовательно, задержанный сигнал в виде помехи «размазывается» по всей пропускной полосе, а приемник принимает лишь полезный сигнал.

Проблема «близкий - далекий».

Несмотря на высокую эффективность технологии CDMA у нее есть и ряд недостатков. Один из них - высокая чувствительность к разбросу мощностей мобильных станций. Наиболее сложная ситуация возникает вследствие проблемы «дальний-ближний» (far-near problem), когда мобильная станция, расположенная вблизи базовой, работает на большой мощности, создавая недопустимо высокий уровень помех при приеме других, «дальних» сигналов, что приводит к снижению пропускной способности системы в целом. Эта проблема существует у всех систем мобильной связи, однако наибольшие искажения сигнала возникают именно в CDMA-системах, работающих в общей полосе частот, в которых используются ортогональные шумоподобные сигналы. Если бы в этих системах отсутствовала регулировка мощности, то они существенно уступали бы по характеристикам сотовым сетям на базе TDMA. Поэтому ключевой проблемой в CDMA-системах можно считать индивидуальное управление мощностью каждой станции.

Детектирование.

Приемник имеет доступ к банку кодов, который хранит все коды, выделяемые на базовых станциях (БС). Для конкретного пользователя, БС знает, какой код ожидать и детектирование кода происходит путем сопоставления полученной последовательности с ожидаемым кодом. Операция корреляции осуществляется сужением, которое может выполняться в согласованном фильтре. Перед началом корреляции получатель должен знать точный момент времени. Синхронизация достигается при использовании пилот-сигнала, который расположен перед передаваемой информацией. Пилот-сигнал одинаков для всех пользователей. Когда синхронизация выполнена, согласованный фильтр начинает операцию корреляции: если корреляция выше заранее определенного порога, согласованный фильтр положительно определен пользователем.

Перемножение принятого сигнала и сигнала такого же источника псевдослучайного шума (ПСП), который использовался в передатчике, сжимает спектр полезного сигнала и одновременно расширяет спектр фонового шума и других источников интерференционных помех. Результирующий выигрыш в отношении сигнал/шум на выходе приемника есть функция отношения ширины полос широкополосного и базового сигналов: чем больше расширение спектра, тем больше выигрыш. Во временной области - это функция отношения скорости передачи цифрового потока в радиоканале к скорости передачи базового информационного сигнала. Для стандарта 1S-95 отношение составляет 128 раз, или 21 дБ. Это позволяет системе работать при уровне интерференционных помех, превышающих уровень полезного сигнала на 18 дБ, так как обработка сигнала на выходе приемника требует превышения уровня сигнала над уровнем помех всего на 3 дБ. В реальных условиях уровень помех значительно меньше. Кроме того, расширение спектра сигнала (до 1,23 МГц) можно рассматривать как применение методов частотного разнесения приема. Сигнал при распространении в радиотракте подвергается замираниям вследствие многолучевого характера распространения. В частотной области это явление можно представить как воздействие режекторного фильтра с изменяющейся шириной полосы режекции (обычно не более чем на 300 кГц). В стандарте AMPS это соответствует подавлению десяти каналов, а в системе CDMA подавляется лишь около 25% спектра сигнала, что не вызывает особых затруднений при восстановлении сигнала в приемнике.

Rake-приемник.

Оцифрованные выборки входных сигналов принимаются от входных каскадов ВЧ и представляются в виде квадратурных ветвей I и Q (т.е. в формате комплексного числа фильтра нижних частот на выходе приемника). Генераторы кода и коррелятор осуществляют сжатие и суммирование символов передачи данных пользователя. Устройство канала использует пилот-символы для оценки состояния канала, влияние которого затем будет скомпенсировано фазовращателем для принятых символов. Задержка компенсируется разницей во времени прибытия символов в каждый тракт. Далее сумматор Rake складывает компенсированные канальные символы, обеспечивая тем самым разнесение при многолучевом распространении как средство борьбы с замираниями.

Показан также согласованный фильтр, используемый для определения и обновления текущего профиля задержки при многолучевом распространении в канале. Этот измеренный и возможно усредненный профиль задержки при многолучевом распространении используется затем для сложения сигналов с выходов трактов приемника Rake с наибольшими пиковыми значениями.

В типичных реализациях приемник Rake, осуществляющий обработку со скоростью передачи чипов (коррелятор, генератор кодов, согласованный