Долгожданный Ivy Bridge. Успех или провал

Компания Intel — лидер мирового рынка процессоров для ПК. Данный бренд выпускает самый широкий спектр микрочипов в различных ценовых и технологических сегментах. В числе наиболее примечательных решений от американской корпорации — микропроцессоры Intel Core i7 3770. Данные чипы реализованы, в частности, на базе высокотехнологичной архитектуры Ivy Bridge. Микропроцессоры линейки традиционно рассматриваются как относящиеся к самым высокопроизводительным в играх. Микросхемы соответствующего типа также считаются хорошо поддающимися разгону и стабильно работающими в соответствующем режиме. В какой степени подобные характеристики свойственны для процессора Intel Core i7 3770? Каковы наиболее сильные и слабые стороны соответствующей микросхемы?

Основные сведения о процессоре

I7 3770 функционирует на частоте 3,5 ГГц. Классифицируется как чип, относящийся к 3 поколению микросхем Intel Core. Данный тип решений характеризуется высочайшей производительностью. Микросхема выполнена в рамках техпроцесса 22 нм на базе ядра Ivy Bridge. Инсталлируется на материнских платах, оснащенных разъемом LGA1155. Имеет 4 ядра. Благодаря концепции 2.0 частота процессора может разгоняться до показателя в 3,9 ГГц. Чип имеет графический ускоритель HD Graphics 4000. Производительность данного аппаратного компонента позволяет решать как повседневные пользовательские задачи — такие как запуск офисных приложений, работа с интернетом, так и задействовать его в качестве инструмента геймера. В числе наиболее примечательных технологических опций рассматриваемого процессора — поддержка опции Hyper-Threading. Данная технология позволяет микрочипу осуществлять вычисления в рамках двух потоков на каждом ядре. Таким образом, фактически, процессор Core i7 3770 — 8-ядерный. Чип оснащен мощной системой охлаждения, рассчитанной на работу с тепловыделением, соответствующим функционированию микросхемы на 77 Вт. В числе иных примечательных характеристик процессора — наличие кэш-памяти 3 уровня объемом 8 Мб.

Особенности технологии Ivy Bridge

Архитектура, на которой базируется процессор Intel Core i7 3770 — Ivy Bridge. Полезно будет изучить ее особенности.

Рассматриваемая технология — результат дальнейшего развития микроархитектуры Sandy Bridge. В принципе, различий между соответствующими решениями не слишком много. В частности, обновленная микроархитектура функционирует на том же разъеме, что и предшествующая — LGA1155. Соответственно, 3770 может быть использована та же, что и для более старых микросхем на базе Sandy Bridge. Коммуникации между процессорами, реализованными на базе рассматриваемой архитектуры, и компонентами системной логики осуществляется на той же шине, что и в случае с задействованием технологии Sandy Bridge, а именно — DMI в версии 2.0, обладающей пропускной способностью порядка 20 Гбит/сек.

Функциональные узлы микроархитектуры Ivy Bridge те же, что задействуются в предшествующей - Sandy Bridge. Микрочипы на базе соответствующей технологии могут иметь 2 или 4 ядра с кэшем 2 уровня объемом 256 Кбайт, 3 уровня — до 8 Мбайт. В структуре чипов на рассматриваемой микроархитектуре присутствует графическое ядро, контроллер памяти, работающий на 2 каналах, соответствующий элемент для графической шины типа PCI Express, компоненты, отвечающие за работу технологии Turbo и иных сопутствующих интерфейсов. Компоненты чипа на базе Ivy Bridge соединены с помощью шины Ring Bus — как и в случае с предыдущей микроархитектурой от Intel.

Каковы же принципиальные отличия технологии Ivy Bridge, на которой построен процессор Intel Core i7 3770 от предшествующих решений? Прежде всего это технологический процесс. Рассматриваемая архитектура реализована на 22 нм. При этом определенные отличия от предшествующих схем имеет внутреняя структура транзисторов. В соответствии с информацией от бренда-производителя, соответствующие компоненты имеют трехмерную структуру. Подобная конструкция позволяет, в частности, работать чипу при пониженном напряжении и меньшей интенсивности нагрева. Так, новая архитектура, на базе которой создан процессор Intel Core i7 3770 — Ivy Bridge, исходя из официальной информации от бренда-производителя, примерно в полтора раза эффективнее чем технология Sandy Bridge в аспекте уровня производительности в расчете на ватт. Как отмечают IT-эксперты, данное свойство новой микроархитектуры от Intel формирует потенциал для активного распространения соответствующих процессоров в сегменте ноутбуков.

Отмеченные технологические преимущества Ivy Bridge дополняются алгоритмами энергосбережения, которые компания Intel также реализовала в чипах, базирующихся на соответствующей микроархитектуре. В числе иных примечательных решений, внедренных брендом — конфигурируемый TDP. Рассмотренные нами технологические нововведения, реализованные в микроархитектуре Ivy Bridge, и в частности в чипах Intel Core i7 3770, предопределили возможность компании Intel выпускать данные чипы с площадью примерно на 35% меньшей, чем у микросхем на базе Sandy Bridge. И это стало возможно несмотря на то, что в структуре новейших микропроцессоров от Intel присутствует порядка 1,4 млрд транзисторов. В свою очередь, в чипах, базирующихся на предшествующей микроархитектуре, имеется 995 млн соответствующих компонентов.

Сравнение с конкурентами

Как выглядит на фоне конкурирующих решений процессор Intel Core i7 3770? Сравнение рассматриваемого чипа и его аналогов можно осуществить, исходя из базовых характеристик микросхем. Одним из конкурентов процессора, о котором идет речь, можно считать чип AMD FX-8350, базирующийся на микроархитектуре Piledriver, которая является результатом развития технологии Bulldozer. Данный процессор функционирует на платформе Socket AM3+, которая часто рассматривается как конкурентная LGA1155.

Процессор Intel Core i7 3770 опережает конкурента от AMD прежде всего по техпроцессу — решение от AMD реализовано на 32 нм. Чип от AMD имеет вместе с тем 8 ядер. Данное технологическое преимущество может быть значимым — но только в том случае, если на компьютере запускается приложение или игра, задействующие данный ресурс в полной мере. Однако, как мы отметили в начале статьи, фактически процессор Intel Core i7 3770 8-ядерный, благодаря тому, что он поддерживает концепцию Hyper-Threading. Поэтому, даже если два рассматриваемых чипа запускаются в схожей среде — тех приложений, что задействуют 8 потоков, — результаты будут далеко не всегда в пользу решения от AMD. Как считают IT-эксперты, именно благодаря техпроцессу в 22 нм процессор от Intel можно считать одним из самых высокопроизводительных решений в своем ценовом сегменте. Остальные характеристики чипа становятся второстепенными. Прямые конкуренты процессора Intel Core i7 3770, однако, могут быть востребованы для отдельных задач, требующих узкой специализации чипов. Например, при запуске игр, оптимизированных для чипов AMD.

Особенности графического модуля

Изучим особенности некоторых ключевых компонентов процессора, о котором идет речь. В частности, заслуживает внимания новый графический модуль — HD Graphics 4000, который встроен в чип от Intel. Основное преимущество данного аппаратного компонента — поддержка современных технологий, таких как DirectX 11, Direct Compute, а также Shader Model в версии 5.0. Более того, бренд-производитель процессора реализовал поддержку GPGPU-вычислений посредством интерфейса OpenCL версии 1.1. Графический модуль HD Graphics 4000, который присутствует в структуре процессора Intel CPU Core i7 3770, может работать с 3 независимыми дисплеями. Общий уровень производительности чипа также увеличился благодаря наличию дополнительных исполнительных элементов — их 16. Отмеченные преимущества графического модуля HD Graphics 4000 позволяют использовать его для запуска относительно требовательных игр, в том числе и на ноутбуках, что очень важно с точки зрения дальнейшего распространения влияния Intel в соответствующем сегменте рынка.

Насколько производительна архитектура Ivy Bridge?

Каков прирост производительности чипов на базе рассматриваемой микроархитектуры в сравнении с процессорами, реализованными на предшествующей технологии — Sandy Bridge? Как отмечают IT-специалисты, новая архитектура от Intel не обеспечивает революционного роста скорости чипа. Как показывают некоторые тесты, можно пронаблюдать увеличение производительности Ivy Bridge примерно на 5% в сравнении с предшествующей архитектурой — при одинаковых частотах чипа. Эксперты связывают это с тем, что в новых микросхемах от Intel, в принципе, присутствует та же структура вычислительных ядер, что и в предыдущих моделях процессоров.

Если прямо сравнивать ядра Sandy Bridge и Ivy Bridge на одинаковых частотах и при отключенной функции Hyper-Treading у второй в популярных тестах, то в некоторых случаях преимущество более новой технологии будет и вовсе едва заметным. Так, при тестировании рассматриваемых решений в программе Sandra, арифметические тесты процессора показывают практически одинаковые результаты. Разумеется — если используются ПК с одинаковыми характеристиками прочих аппаратных компонентов. При желании можно по очереди тестировать чипы на одном и том же ПК. Сначала — проверить микросхему на базе Ivy Bridge, затем инсталлировать на тот же компьютер Intel Core i7 3770.

Производительность PCI Express

Итак, с точки зрения производительности чипа в чистом виде, новая технология Ivy Bridge имеет совсем немного преимуществ относительно предшествующей микроархитектуры. Однако, как мы отметили в начале статьи, в процессоре Core i7 3770 усовершенствована поддержка технологии PCI Express. Означает ли это практический рост производительности ПК в аспекте задействования отмеченного аппаратного компонента? Как показывают тесты, проведенные экспертами, это так. Технология PCI Express — это интерфейс, отвечающий за эффективность работы ключевых аппаратных компонентов, расположенных внутри чипа. Микроархитектура Ivy Bridge совместима с контроллером PCI Express в 3-й версии. Пропускная способность соответствующей реализации интерфейса вдвое выше, чем у 2-й версии, и составляет порядка 8 гигатранзакций в секунду.

Особенности работы контроллера памяти чипа

Еще один примечательный аппаратный компонент чипа, о котором идет речь — контроллер памяти. Изучим его особенности.

В принципе, основные его характеристики в новом чипе не слишком отличаются от таковых, что наблюдаются при изучении микроархитектуры Sandy Bridge. В частности, он поддерживает работу с памятью DDR3 SDRAM в режиме двух каналов. Вместе с тем, в новом чипе реализована возможность тонкой настройки частот. Так, при работе с соответствующим параметром диапазон корректировки значений частоты может составлять 200 или же 266 МГц. Также можно отметить, что новый процессор поддерживает частоту, соответствующую модулям памяти DDR3-2800 SDRAM.

Тестирование процессора в играх

Изучим теперь то, какова производительность чипа, о котором идет речь, в играх. Как отмечают эксперты, процессоры на базе микроархитектуры Ivy Bridge немного быстрее при тестировании в соответствующем режиме, чем предшествующие модели, но, как и в случае с измерением скорости работы чипов в Sandra, ненамного. Можно отметить, что во многих играх рассматриваемый процессор от Intel опережает конкурента от AMD — чип FX-8150. Безусловно, тестирование чипов в играх предполагает задействование аналогичных по производительности сопутствующих аппаратных компонентов — прежде всего видеокарты. При этом специалисты рекомендуют проводить тесты процессора при минимальных настройках графики — в частности, при невысоком разрешении. Это необходимо для того, чтобы результаты проверки производительности ПК в играх были преимущественно основаны на эффективности работы процессора, а не видеокарты.

Компания Intel, наряду с базовой моделью микросхемы Intel Core i7 3770, выпускает ту, что обладает разблокированным программным коэффициентом-множителем. То есть — приспособленную к разгону. Речь идет о процессоре Intel Core i7 3770K. Изучим специфику задействования возможностей для разгона данного чипа.

Разгон чипа Intel Core 3770

Разгонять процессор можно посредством увеличения множителя до 63. К слову, предшествующая микроархитектура, Sandy Bridge, позволяет выставить значение в пределах 59. Как мы отметили выше, разогнанный чип может функционировать в режиме, соответствующем производительности DDR3-2800. Также можно отметить поддержку процессором полезной функции XMP в версии 1.3.

Насколько производителен в соответствующем режиме чип Intel Core i7 3770? Разгон процессора, как отмечают эксперты, сопровождается не слишком впечатляющими результатами. В частности, максимальный показатель стабильной частоты, при котором работает микросхема — порядка 4,6 ГГц. То есть наблюдается увеличение прироста, в сравнении с номинальным значением, примерно на 20%. Специалисты оценивают подобную результативность как весьма скромную — даже на фоне предшествующих моделей, базирующихся на архитектуре Sandy Bridge. В частности, такие чипы как Intel Core i7-2600K, а также процессор Intel Core i7-2500K могут разгоняться до значений, составляющих порядка 5 ГГц при условии приемлемых показателей напряжения. При этом, как отмечают эксперты, процессор, в принципе, не сильно нагревается, т. к. система охлаждения успешно справляется с увеличением частоты чипа. Проблемы появляются со стабильностью работы микросхемы по мере разгона. При запуске процессора в рассматриваемом режиме не рекомендуется выставлять частоту напряжения, превышающую 1,2 В.

Таким образом, разгонный потенциал чипа Intel CPU Core i7 3770 оценивается экспертами как весьма скромный. Впрочем, для энтузиастов бренда Intel открыты все возможности по «оверклоккингу» при условии задействования процессоров линейки Sandy Bridge.

Резюме

Какие выводы мы можем сделать, исследовав процессор Intel Core i7 3770? Характеристики данного чипа позволяют оценить его как один из самых передовых в сегменте. Прежде всего благодаря одному из самых совершенных техпроцессов — 22 нм. Весьма примечательна реализация поддержки микросхемой технологии PCI Express в 3-й версии. Заслуживает внимания также усовершенствованное графическое Улучшены технологии энергосбережения чипа.

Однако в аспекте фактических показателей скорости работы рассматриваемый процессор нельзя назвать революционным в сравнении с возможностями лидирующих моделей предшествующей линейки, базирующейся на микроархитектуре Sandy Bridge. При сопоставлении работы микросхем на номинальных частотах производительность новинок буквально на несколько процентов выше, да при том еще и не во всех режимах. В играх подобное преимущество и вовсе может оказаться незаметным. Касательно разгона, потенциал девайса в данном режиме работы не слишком высокий даже на фоне предшествующих моделей.

Процессор Core TM i7 3770, как считают эксперты, наилучшим образом адаптирован для продвижения бренда Intel на рынке мобильных решений. В сегменте десктопов он, в принципе, имеет те же возможности, что и более старые модели чипов. Однако в сегменте ноутбуков вполне может быть одним из самых конкурентных. Данные преимущества процессор имеет благодаря, во-первых, уменьшенным размерам, а во-вторых, более эффективному, как мы отметили выше, энергопотреблению.

Встречайте следующий "тик": 23 апреля 2012 Intel объявляет новые процессоры Ivy Bridge. В общей сложности представлено 14 новых моделей для настольных ПК и ноутбуков. Добавим к этому восемь разновидностей чипсетов, которые были уже частично представлены, а также пять опций беспроводной связи. В данной статье мы внимательно рассмотрим настольные процессоры, а мобильным CPU посвящен наш второй обзор.

Третье поколение микроархитектуры Intel Core является "тиком" из модели Intel "тик-так", то есть подразумевает уменьшение техпроцесса. По идее, Intel должна была взять микро-архитектуру предыдущего поколения "Sandy Bridge" и снизить техпроцесс. В результате CPU производились бы по 22-нм процессору, включающему новые Tri-Gate транзисторы от Intel.

Но Intel решила несколько оптимизировать CPU и внести ряд улучшений. Таким образом, процессоры Ivy Bridge - это не просто модели Sandy Bridge с меньшим техпроцессом. Как подчеркивается в маркетинговых материалах Intel, новые CPU являются "тиком+". Впрочем, как мы увидим чуть ниже, улучшения коснулись, главным образом, только графического ядра.

Для тестов мы получили следующие процессоры, по которым хорошо видно, что Intel решила ещё раз изменить схему именования.

  • Intel Core i7-3770K
  • Intel Core i5-3570K
  • Intel Core i5-3550
  • Intel Core i5-3450

Intel Core i7-3770K - новая топовая модель в семействе, призванная заменить Core i7-2700K. Тактовые частоты приведены в таблице ниже - они немного сдвинулись по сравнению с предыдущим поколением. На смену очень популярному процессору Core i5-2500K объявлен Core i5-3570K. Поддержки Hyper-Threading ожидать не приходится, как и у всех моделей Core i5, но тактовые частоты CPU довольно высоки. Третья и четвёртая полученные нами модели Core i5-3550 и Core i5-3450 являются нынешними процессорами начального уровня в семействе Ivy Bridge (модели Core i3 будут объявлены позже). Все процессоры Ivy Bridge получили в своё распоряжение контроллер памяти DDR3-1600, который позволяет рассчитывать на чуть более быстрый двухканальный интерфейс памяти.

Представляем тест: новый флагман Intel для настольного сегмента, процессор Core i7-3770K, а также младшие модели семейства Ivy Bridge.

В следующей таблице приведены характеристики настольных CPU в нашем тестировании:

Настольные процессоры Ivy Bridge (Quad Core)
Prozessor Core i7-3770K Core i5-3570K Core i5-3550 Core i5-3450 Для сравнения:
Core i7-2700K
Цена 313 долларов США
10 900 руб. в России
212 долларов США
6 900 руб. в России
194 долларов США
6 300 руб. в России
174 долларов США
5 700 руб. в России
289 евро в Европе
10 300 руб. в России
Тепловой пакет (TDP) 77 Вт 77 Вт 77 Вт 77 Вт 95 Вт
Ядра/
потоки
4
8
4
4
4
4
4
4
4
8
Частота CPU 3,5 ГГц 3,4 ГГц 3,3 ГГц 3,1 ГГц 3,5 ГГц
Turbo 4 ядра 3,7 ГГц 3,6 ГГц 3,5 ГГц 3,3 ГГц 3,6 ГГц
Turbo 2 ядра 3,9 ГГц 3,8 ГГц 3,7 ГГц 3,5 ГГц 3,8 ГГц
Turbo 1 ядро 3,9 ГГц 3,8 ГГц 3,7 ГГц 3,5 ГГц 3,9 ГГц
Интерфейс памяти Два канала DDR3-1600
(поддержка Low Voltage)
Два канала DDR3-1333
Кэш L3 8 Мбайт 6 Мбайт 6 Мбайт 6 Мбайт 8 Мбайт
Intel HD Graphics HD 4000 HD 4000 HD 2500 HD 2500 HD 3000
Частота GPU 650 МГц 650 МГц 650 МГц 850 МГц
Частота GPU Turbo 1150 МГц (макс.: 1350 МГц) 1100 МГц 1100 МГц 1350 МГц
PCIe 3.0 Да Да Да Да Нет
Intel Secure Key Да Да Да Да Нет
OS Guard Да Да Да Да Нет
vPro, VT-d, TXT, SIPP Нет, только модели не-K Да Нет Да
Разблокированный множитель Да Да Нет Нет Да

В дополнение к перечисленным моделям Intel также продаёт процессор Core i7-3770. У этой модели нет разблокированного множителя, а также и частоты несколько отличаются: у Core i7-3770 частотные характеристики аналогичны в режимах Turbo процессору Core i7-3700K, но базовая частота составляет 3,4 ГГц. Так что процессор будет медленнее модели "K", но только если выключить технологию Intel Turbo. Среди преимуществ процессоров "не K" можно отметить поддержку технологий vPro, VT-d, TXT и SIPP - впрочем, оверклокерам эти функции вряд ли будут интересны.

Скриншоты CPU-Z процессоров i7-3770K, i5-3570K ...

...и i5-3550 и i5-3450

Процессоры Intel Core i5-3550 и i5-3450 используют меньшие тактовые частоты (максимальная частота Turbo составляет 3,7 и 3,5 ГГц). Кроме того, у данных моделей используется не "старшее" графическое ядро Intel HD Graphics 4000, а "младший" вариант Intel HD Graphics 2500, у которого урезаны вычислительные блоки. "Младший" процессор i5-3450 также не имеет поддержки vPro, VT-d, TXT и SIPP.

Помимо стандартных моделей с тепловым пакетом 77 Вт Intel также представила четыре процессора с меньшим TDP: Core i7-3770S и i7-3770-T очень близки к процессорам Core i7-3770, хотя и отличаются тактовыми частотами, но при этом тепловой пакет снижен до 65 или 45 Вт, уменьшены напряжение и частоты. Процессоры Core i5-3550S и i5-3450S имеют тепловой пакет 65 Вт и соответствуют процессорам Core i5-3550 и i5-3450, но, опять же, напряжение и частоты снижены.

Если вы следите за нашими новостями, то наверняка заметили сообщение . Конечно, в данном случае речь идет только об упаковке процессоров, на которой был указан тепловой пакет 95 Вт. По данному вопросу мы получили чёткий ответ Intel:

Третье поколение четырёхъядерных процессоров Intel обладает стандартным тепловым пакетом (TDP) 77 Вт. В некоторых случаях вы могли увидеть ссылки на TDP 95 Вт. Intel требует, чтобы OEM-производители продолжали разрабатывать платформы на основе чипсетов серии Intel 7 Series, ориентируясь на целевой TDP 95 Вт, чтобы гарантировать совместимость со вторым поколением процессоров Intel.

Все модели Ivy-bridge заявлены с тепловым пакетом 77 Вт - это можно видеть по приведенному утверждению Intel, но компания оставила себе возможность объявить в будущем модели Ivy Bridge на более высоких тактовых частотах или шестиядерные процессоры с тепловым пакетом 95 Вт. Для подобного шага системные интеграторы на рынке будут иметь совместимые системы, что упростит выведение новых CPU.

Для наших тестов Intel выслала процессор Core i7-3770K. Другие модели Ivy Bridge мы получили от магазина Alternate, который предлагает немало комплектующих по выгодному соотношению цена/производительность. Симуляция других CPU через Core i7-3770K не представляется возможной из-за разных размеров кэша

ВведениеЛюбые статьи, посвящённые новым интеловским процессорам, принято начинать с рассказа о принципе «тик-так» и о, том, какое место в нём занимают новинки. У кого-то даже может сложиться впечатление, что Intel действительно неизвестно зачем слепо следует этому эмпирическому правилу. Однако в реальности все шаги по разработке и внедрению новых микроархитектур и новых производственных технологий делаются по другим законам – законам бизнеса. Тик-так же – это просто наглядная иллюстрация технического прогресса, когда-то пришедшаяся очень к месту и со временем приобретшая статус непреложной истины.

Поэтому рано или поздно принцип «тик-так» должен был быть нарушен. И случилось это теперь, в момент выхода процессоров семейства Ivy Bridge. Согласно изначальной концепции, сейчас должна происходить итерация «тик», означающая простой перевод старой микроархитектуры Sandy Bridge на новые технологические рельсы с 22-нм нормами. Но по факту Ivy Bridge несёт в себе серьёзную переработку прошлого наследия. Конечно, Intel пока ещё как-то пытается спасти своё «правило маятника», и говорит о Ivy Bridge, как о фазе «тик+», но на самом деле представители фирмы кривят душой, и новинка вполне могла быть отнесена и к противоположному такту.



Практическим результатом усовершенствований в технологическом процессе является возможность беспрепятственного снижения их рабочего напряжения и, как следствие, соответствующее падение тепловыделения. Так, с вводом 22-нм техпроцесса Intel уменьшает напряжение питания своих процессоров примерно на 0.2 В, что на практике выливается примерно в 20-процентное падение энергопотребления и тепловыделения.

Однако этим дело не ограничивается. Новый техпроцесс делает возможным усложнение процессорного кристалла, позволяя нарастить его транзисторный бюджет без ущерба для рабочих характеристик.



Обычно в этом случае разработчики увеличивают объёмы кэш-памяти, однако в Ivy Bridge открывшиеся возможности использованы по-другому.



Говоря вкратце, изменения в микроархитектуре Ivy Bridge сделаны по многим фронтам. Но ключевые улучшения, наиболее бросающиеся в глаза после знакомства с новинками, следующие:

Внедрён новый подход к управлению тепловыделением: конфигурируемый TDP;
Графическое ядро Ivy Bridge получило дополнительные исполнительные устройства и поддержку DirectX 11;
Технология Quick Sync обновлена до второй версии;
В процессоре добавился встроенный аппаратный генератор случайных чисел и защита ОС от атак типа «повышение привилегий»;
Контроллер памяти получил поддержку более скоростной и низковольтовой памяти;
Встроенный в процессор контроллер PCI Express получил поддержку PCI Express 3.0.

При этом принципы построения процессоров с микроархитектурой Ivy Bridge остались такими же, как и у Sandy Bridge. Так же как и предшественники, новые процессоры базируются на едином полупроводниковом кристалле, включающем одновременно вычислительные и графическое ядра. Кеш третьего уровня сохранил модульную структуру и доступен для всех процессорных блоков, включая графическое ядро. На своём месте в процессоре остались интегрированные контроллеры памяти и шины PCI Express. А все перечисленные составные компоненты CPU объединены в единое целое хорошо зарекомендовавшей себя кольцевой шиной.



Также, осталась без изменений и шина DMI 2.0, предназначенная для коммуникаций между процессором и чипсетом. Это означает, что Ivy Bridge может работать в тех же LGA 1155 системах, что и Sandy Bridge безо всяких ограничений. Конечно, вместе с новинками Intel предлагает использовать новые наборы логики седьмой серии во главе с Z77, однако острой необходимости в этом нет, а тот же Z77 отличается от предшествующего Z68, главным образом, внедрением шины USB 3.0.



Непосредственно в вычислительных ядрах Ivy Bridge изменений сделано не так уж и много. В первую очередь интерес вызывает появление в процессоре аппаратного датчика случайных чисел, который будет незаменим в криптографических задачах.



Здесь речь идёт не о псевдослучайном датчике, который выдаёт числа в соответствии с какой-то математической последовательностью, а о самом настоящем случайном датчике, использующем для генерации случайных чисел физический процесс с неопределённым состоянием. Часто для этой цели используется счётчик Гейгера, но Intel придумала схему, основанную на неопределённости состояния хитрой электронной полупроводниковой схемы. Это позволяет генерировать поток случайных чисел в соответствии с требованиями криптографических стандартов. Причём с высокой производительностью, достигающей 2-3 Гбит/с.

Ещё одно крайне полезное улучшение - режим Supervisory Mode Execute Protection, который должен помочь в защите от использования уязвимостей типа «повышение привилегий».



Смысл этого нововведения состоит в том, чтобы закрыть для посторонних приложений доступ в имеющие более высокие привилегии сервисы операционной системы и не дать возможности пользовательским приложениям внедрять свои данные «куда не следует». Для решения этой задачи память, задействующаяся обычными программами, может маркироваться специальным флагом, делающим невозможным исполнение её содержимого в режимах с супервизорскими полномочиями.

Кое-что сделано и для простого увеличения вычислительной производительности. Правда, Intel говорит, что на серьёзное увеличение числа исполняемых за такт инструкций рассчитывать не следует, рост быстродействия на одной тактовой частоте по сравнению с Sandy Bridge должен составить порядка 4-6 %. Основное ускорение будет наблюдаться на операциях деления целых и вещественных чисел, при преобразовании данных между 16-битным и 32-битным форматом и при перемещениях строковых данных. Помимо этого, определённые улучшения внесены в менеджмент разделяемых процессорных ресурсов при работе технологии Hyper-Threading.

Основные же переделки микроархитектуры касаются графического ядра. Именно оно поглотило почти 400 млн. транзисторов, на которые полупроводниковые Ivy Bridge превосходят своих предшественников. Это и неудивительно. Несмотря на то, что графика в Sandy Bridge стала существенно лучше, чем было раньше, пользователям явно не хватало полноценной поддержки DirectX 11, GPGPU-вычислений и более-менее нормальной производительности, по крайней мере, при мобильных применениях процессора. Теперь же, в Ivy Bridge, всё это есть. Это вполне может поставить Ivy Bridge в один ряд с AMD Llano, то есть новый интеловский процессор – это в какой-то мере даже APU.

Блок-схема графического ядра приведена на следующем рисунке:



Рост производительности графического ядра обуславливается увеличением количества исполнительных устройств. В Sandy Bridge максимальное количество таких устройств - 12, при этом на каждое из них приходится по одному текстурному блоку. В Ivy Bridge максимальное число исполнительных устройств выросло до 16, причём на каждое устройство полагается по два блока текстурирования. Ещё одно важное изменение - добавление в графическое ядро собственной быстрой кеш-памяти.

Нововведения в GPU носят не только экстенсивный характер. В графическое ядро Ivy Bridge добавлены блоки для аппаратной тесселяции, а также внесена поддержка Shader Array (что, собственно, и позволило добиться совместимости с Shader Model 5.0 и DirectX 11). Много изменений направлено и на ускорение или улучшение каких-то конкретных операций. Например, в корне переработаны алгоритмы анизотропной фильтрации, которая работает теперь на порядок качественнее.

Инновации не обошли стороной и технологию Quick Sync. Её вторая версия обещает не только возросшую производительность, но и дополнительные функции, обеспечивающие улучшение качества кодирования. Параллельно изменения претерпел и аппаратный видеодекодер. Его мощности рассчитаны теперь на одновременное воспроизведение не менее 16 видеопотоков высокого разрешения, и к тому же он сможет работать с пост-Full HD-видеоконтентом в формате 4096x2304.

Определённую работу специалисты Intel провели и в части совершенствования возможностей вывода изображения. Графика Ivy Bridge при условии использования этих процессоров вместе с материнскими платами на чипсетах седьмой серии может выводить изображение на три независимых дисплея (Sandy Bridge умеет только на два).




Впрочем, многие пользователи десктопных систем вряд ли заметят изменения графического ядра. В большинстве настольных компьютеров используется внешняя графическая карта, а встроенная в процессор графика отключается. Однако даже в этом случае процессорам Ivy Bridge есть чем похвастать. Встроенный контроллер графической шины PCI Express получил в новых CPU поддержку третьей версии данной спецификации. Это означает не только почти двукратное увеличение её пропускной способности, но и возможность подключения к шестнадцати процессорным линиям PCIe до трёх устройств, которыми могут быть не только работающие в режимах SLI и CrossfireX видеокарты, но и контроллеры шины Thunderbolt.

Модельный ряд Ivy Bridge

В целом, для десктопных пользователей образ Ivy Bridge вырисовывается не слишком привлекательным. Если не брать в рассмотрение графическое ядро, которое без лишних преувеличений можно отнести к новому поколению встраиваемых в процессоры GPU, основные улучшения новинки – это появление поддержки PCI Express 3.0 и сниженное тепловыделение. Однако самого главного, а именно увеличения числа обрабатываемых за такт инструкций, Ivy Bridge предложить не может. Тем не менее, это совершенно не помешало маркетологам Intel использовать для нумерации новых процессоров номера из трёхтысячной серии. Процессоры Ivy Bridge позиционируются как более новая замена Sandy Bridge, и они будут постепенно вытеснять предшественников из ассортимента Intel.

Надо заметить, что запуск семейства Ivy Bridge проходит не таким «широким фронтом», как это было в январе 2011 года, когда на рынок пришли Sandy Bridge. Внедрение новой 22-нм технологии породило определённые производственные проблемы, поэтому процессоры нового поколения будут появляться постепенно. Так, сегодня Intel представляет только четырёхъядерные модификации: мобильные и десктопные Core i7 и исключительно десктопные Core i5 нового поколения.



Прочие модели процессоров, использующих дизайн Ivy Bridge, будут приходить на рынок небольшими группами до конца этого года.

В сфере нашего прямого интереса находятся модели для десктопов. Их всего девять, из них четыре относится к числу энергоэффективных моделей. В следующей таблице мы приводим полный перечень Ivy Bridge для настольных систем, которые станут доступны в магазинах, начиная со следующей недели:



Первое, что бросается в глаза при знакомстве с формальными характеристиками новых процессоров, это – снизившееся расчётное тепловыделение старших моделей. Если наиболее быстрые процессоры поколения Sandy Bridge обладали 95-ваттным тепловым пакетом, то аналогичные по позиционированию Ivy Bridge выделяют не более 77 Вт тепла. Повышенная экономичность – результат внедрения нового технологического процесса. Но, к сожалению, частота новинок лежит ниже отметки 3.5 ГГц, а ведь именно такую частоту имеет Core i7-2700K, относящийся к предыдущему поколению. Получается, что быстрее стали разве только экономичные модели, у которых уровень TDP остался тем же, а частоты немного подросли. Обычные же модели предлагают лучшее соотношение производительности на ватт, но не более высокие тактовые частоты. Всё это вновь подводит к мысли о том, что наиболее весомым преимуществом новых процессоров выступает улучшенное графическое ядро, которое, к слову, присутствует в максимальной конфигурации как в любых процессорах Core i7, так и в старшем Core i5.

К счастью, для тех систем, которые комплектуются обычными не энергоэффективными CPU и используют внешние видеокарты, то есть для большинства десктопов, Ivy Bridge может предложить не только пониженное тепловыделение. Чтобы новые процессоры показывали более высокое быстродействие в реальных задачах, инженеры Intel провели в новинках ребаланс технологии Turbo Boost. Хотя интервал изменения частоты в рамках этой технологии и остался примерно тем же, что и раньше, теперь авторазгон процессора происходит агрессивнее. Даже в случае загрузки работой всех вычислительных ядер, тактовая частота может повышаться на 200 МГц выше номинала. Именно этот факт во многих случаях и обуславливает превосходство в тестах новых процессоров над старыми, имеющими аналогичные формальные характеристики.

Как мы тестировали

Для тестирования возможностей процессоров семейства Ivy Bridge компания Intel предоставила нам образец старшего процессора в линейке, Core i7-3770K.


Основным соперником для этой новинки выступил более ранний LGA 1155-процессор аналогичного класса, относящиеся к поколению Sandy Bridge - Core i7-2700K. Кроме того, в тестирование мы включили и представителей платформы LGA 2011 – процессоры семейства Sandy Bridge-E: Core i7-3930K и Сore i7-3820. И вдобавок, скорее следуя традиции, а не реальной необходимости, в испытаниях принял участие и старший процессор, предлагаемый компанией AMD, FX-8150.

Соответственно, состав тестовых систем включал следующие программные и аппаратные компоненты:

Процессоры:

AMD FX-8150 (Zambezi, 8 ядер, 3.6-4.2 ГГц, 8 Мбайт L3);
Intel Core i7-2700K (Sandy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3820 (Sandy Bridge-E, 4 ядра + HT, 3.6-3.9 ГГц, 10 Мбайт L3);
Intel Core i7-3930K (Sandy Bridge-E, 6 ядер + HT, 3.2-3.8 ГГц, 12 Мбайт L3).

Процессорный кулер: NZXT Havik 140;
Материнские платы:

ASUS Crosshair V Formula (Socket AM3+, AMD 990FX + SB950);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77 Express);
ASUS Rampage IV Formula (LGA2011, Intel X79 Express).

Память:

2 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (Kingston KHX1866C9D3K2/8GX);
4 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (2 x Kingston KHX1866C9D3K2/8GX).

Графическая карта: EVGA GeForce GTX 580 Classified 3 GB (03G-P3-1588-AR);
Жёсткий диск: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Tagan TG880-U33II (880 Вт).
Операционная система: Microsoft Windows 7 SP1 Ultimate x64.
Драйверы:

AMD Chipset Driver 12.3;
Intel Chipset Driver 9.3.0.1019;
Intel Management Engine Driver 8.0.0.1399;
Intel Rapid Storage Technology 11.1.0.1006;
NVIDIA GeForce 296.10 Driver.

При тестировании системы, основанной на процессоре AMD FX-8150, патчи операционной системы KB2645594 и KB2646060 были установлены.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера.



Ivy Bridge выглядит как определённый, хотя и небольшой шаг вперёд. Core i7-3770K предлагает на 4-5 процентов более высокую производительность, чем четырёхъядерные Sandy Bridge, относящиеся к семейству Core i7. Его преимущество базируется не только на микроархитектурных улучшениях. Напомним, новинки обладают более агрессивной реализацией технологии Turbo Boost, которая поднимает частоту процессоров при их полной загрузке работой не на 100, а на 200 мегагерц.

Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: ABBYY FineReader Pro 10.0, Adobe Acrobat Pro 9, Adobe Flash Player 10.1, Microsoft Excel 2010, Microsoft Internet Explorer 9, Microsoft Outlook 2010, Microsoft PowerPoint 2010, Microsoft Word 2010 и WinZip Pro 14.5.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты компании Adobe: Photoshop CS5 Extended, Premiere Pro CS5 и After Effects CS5.



Web Development - сценарий, в рамках которого моделируется создание web-сайта. Используются приложения: Adobe Photoshop CS5 Extended, Adobe Premiere Pro CS5, Adobe Dreamweaver CS5, Mozilla Firefox 3.6.8 и Microsoft Internet Explorer 9.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию рыночных тенденций, которые выполняются в Microsoft Excel 2010.



Сценарий 3D Modeling всецело посвящён созданию трёхмерных объектов и рендерингу статичных и динамических сцен с использованием Adobe Photoshop CS5 Extended, Autodesk 3ds Max 2011, Autodesk AutoCAD 2011 и Google SketchUp Pro 8.



В последнем сценарии, System Management, выполняется создание бэкапов и установка программного обеспечения и апдейтов. Здесь задействуются несколько различных версий Mozilla Firefox Installer и WinZip Pro 14.5.



Заметьте, Ivy Bridge хорошо выглядит при любых вариантах нагрузки. Похоже, на фоне Sandy Bridge у него нет явных слабых мест. Да и взяться им, откровенно говоря, неоткуда. Вычислительные ядра новинок, контроллер памяти и кэш-память практически полностью копируют микроархитектуру Sandy Bridge, предлагая лишь незначительные оптимизации, проявление которых мы и видим на диаграммах.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы стараемся проводить испытания так, чтобы по возможности снять нагрузку с видеокарты: выбираются наиболее процессорозависимые игры, а тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. То есть, полученные результаты дают возможность оценить не столько уровень fps, достижимый в системах с современными видеокартами, сколько то, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе. Следовательно, основываясь на приведённых результатах, вполне можно строить догадки о том, как будут вести себя процессоры и в будущем, когда на рынке появятся более быстрые варианты графических ускорителей.


















Честно говоря, флагманские процессоры Intel в большинстве современных игр показывают очень близкие результаты. Дело в том, что их производительности с лихвой хватает для нужд существующих игровых движков, а быстродействие почти всегда упирается в мощность графической подсистемы. Тем не менее, преимущество Ivy Bridge можно заметить и тут, хотя его величина не превышает и 5 процентов.

В дополнение к игровым тестам приведём и результаты синтетического бенчмарка Futuremark 3DMark 11, запущенного с профилем Performance.






Вполне естественно, что наилучшую производительность демонстрирует шестиядерный процессор Core i7-3930K. Если же сопоставлять между собой результаты четырёхъядерников, Core i7-3820, Core i7-3770K и Core i7-2700K, то представитель семейства Ivy Bridge за счёт микроархитектурных улучшений побеждает в физическом тесте. Правда, по общему показателю на первом месте – представитель платформы LGA 2011, которая обладает четырёхканальной памятью.

Тесты в приложениях

Уже к этому моменту можно с уверенностью говорить о том, что чудес быстродействия от Ivy Bridge ожидать не стоит. Эти процессоры могут предложить лишь небольшое ускорение по сравнению со своими предшественниками. По крайней мере, до тех пор, пока мы не касаемся производительности встроенного графического ядра, о котором мы поговорим подробно в одном из наших следующих материалов. Впрочем, давайте посмотрим, каким быстродействием может похвастать Core i7-3770K в различных ресурсоёмких приложениях.

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1.4 Гбайт.



Как и положено новинке, по сравнению с Core i7-2700K она показывает небольшое преимущество в скорости архивации. Однако четырёхъядерный Sandy Bridge-E для платформы LGA 2011 существенно быстрее – ему помогает более вместительный кэш третьего уровня и четырёхканальный контроллер памяти.

При тестировании скорости перекодирования аудио используется утилита Apple iTunes, при помощи которой осуществляется преобразование содержимого CD-диска в AAC-формат. Заметим, что характерной особенностью этой программы является способность использования лишь пары процессорных ядер.



Здесь преимущество Core i7-3770K над Core i7-2700K и Core i7-3820 составляет порядка 7-8 процентов.

Измерение производительности в Adobe Photoshop мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 10-мегапиксельных изображений, сделанных цифровой камерой.



В Photoshop CS5 новая микроархитектура обеспечивает вполне типичный прирост в быстродействии, благодаря чему скорость Core i7-3770K доходит до уровня Core i7-3820.

С выходом восьмой версии популярного пакета для научных вычислений Wolfram Mathematica мы решили вернуть его в число используемых тестов. Для оценки производительности систем в нём используется встроенный в эту систему бенчмарк MathematicaMark8.



Свои стандартные 5 процентов отвоёвывает у четырёхъядерных носителей микроархитектуры Sandy Bridge Core i7-3770K и тут.

Производительность в Adobe Premiere Pro тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Работа в видеоконтентом относится к такому типу нагрузок, который раскрывает потенциал Ivy Bridge наиболее полно. Core i7-3770K опережает Core i7-2700K почти на 8 процентов.

Для измерения скорости перекодирования видео в формат H.264 используется x264 HD Benchmark 4.0, основанный на измерении времени обработки исходного видео в формате MPEG-2, записанного в разрешении 720p с потоком 4 Мбит/сек. Следует отметить, что результаты этого теста имеют огромное практическое значение, так как используемый в нём кодек x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч.






Подобный предыдущему случаю результат можно наблюдать и при выполнении транскодирования кодеком x264. Правда, здесь процессору Ivy Bridge удаётся развить почти 10-процентное преимущество над флагманом предшествующего семейства.

По просьбам наших читателей используемый набор приложений пополнился и ещё одним бенчмарком, показывающим скорость работы с видеоконтентом высокого разрешения, - SVPmark3. Это специализированный тест производительности системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности видео путём добавления в видеоряд новых кадров, содержащих промежуточные положения объектов. Приведённые в диаграмме числа – это результат бенчмарка на реальных FullHD-видеофрагментах без привлечения к расчётам мощностей графической карты.



Ещё один, прекрасно вписывающийся в общую картину, результат. Core i7-3770K оказывается в верхней части диаграммы, уступая лишь шестиядерному процессору для платформы LGA 2011. Иными словами, в лице представителя семейства Ivy Bridge мы имеем один из самых быстрых на сегодняшний день четырёхъядерников.

Вычислительную производительность и скорость рендеринга в Autodesk 3ds max 2011 мы измеряем, прибегая к услугам специализированного теста SPECapc for 3ds Max 2011.






Новинка прекрасно справляется и с нагрузкой, свойственной рабочим станциям. Хотя разница в производительности Core i7-3770K и Core i7-2700K тут немного меньше, чем обычно.

Ещё одним бенчмарком, направленным на измерение скорости финального рендеринга в пакетах трёхмерного моделирования, стало измерение скорости рендеринга тестового изображения в пакете Blender 2.6.



Зато при рендеринге в Blender преимущество Core i7-3770K над Core i7-2700K достигает 9 процентов.

В заключение мы провели небольшой вычислительный тест производительности в Microsoft Excel 2010. Его суть заключалась в обсчёте специально подготовленной таблицы с большим количеством формул.



И вновь - вполне типичный результат. Проведя тестирования представителя семейства Ivy Bridge в более чем десятке различных приложений, мы можем с уверенностью говорить о том, что он всегда работает быстрее, чем Sandy Bridge, имеющий аналогичные формальные характеристики. Уровень этого превосходства составляет около 6 процентов.

Более того, Core i7-3770K часто удаётся обойти и LGA 2011-процессор для платформы более высокого класса, Core i7-3820. Это происходит в том случае, когда приложения не требуют высокой скорости работы с памятью. Иными словами, по вычислительной производительности у Core i7-3770K, похоже, на сегодня нет достойных четырёхъядерных конкурентов.

Энергопотребление

Если небольшое улучшение производительности у процессоров нового поколения было вполне ожидаемо, то ситуация с энергопотреблением не столь однозначная. Понятно, что Ivy Bridge должны серьёзно превосходить по экономичности своих предшественников, но насколько?

Масла в огонь подливают и слухи о том, что Intel увеличила величину расчётного тепловыделения для старших моделей 22-нм процессоров до стандартных 95 Вт, хотя изначально предполагалось уменьшение этой величины до 77 Вт. Однако, как нам пояснили представители Intel, слухи эти с действительностью не имеют ничего общего. Реальный тепловой пакет новинок, включая и старшую модель Core i7-3770K, действительно ограничен величиной 77 Вт. Разночтения же появляются из-за того, что на коробках с новыми процессорами написана другая величина – 95 Вт. Но сделано это по политическим причинам, дабы не ломать стандартную и привычную шкалу 35/65/95 Вт, на которую ориентируются многочисленные партнёры Intel. То есть, приобретая Ivy Bridge, мы в любом случае вправе рассчитывать на примерно 20-процентное снижение энергопотребление по сравнению с 95-ваттными процессорами с предшествующей микроархитектурой.

На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.4-AVX. Кроме того, для правильной оценки энергопотребления в простое мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.



В состоянии простоя системы на базе процессоров Ivy Bridge потребляют примерно столько же, сколько и аналогичные конфигурации, использующие в своей основе CPU поколения Sandy Bridge. Это объясняется тем, что уровень напряжения, устанавливаемый у Ivy Bridge технологией EIST при бездействии, составляет порядка 0.9 В и мало отличается от минимальных напряжений питания процессорных ядер Sandy Bridge. Да и современные процессоры в состоянии покоя требуют настолько мало электроэнергии, что их вклад в общее энергопотребление платформы оказывается минимальным.



При полной загрузке процессора работой прогресс, произошедший при внедрении техпроцесса с 22-нм нормами и трёхмерными транзисторами, сразу же выпячивается на первый план. Система с Core i7-3770K потребляет меньше, чем платформа с Core i7-2700K, на 20 процентов, и по экономичности новинкам, действительно, среди процессоров аналогичного класса, похоже, нет равных. И это пока мы ещё не видели энергоэффективных вариантов Ivy Bridge!



Тестирование энергопотребления при однопоточной нагрузке интересно тем, что в этом случае современные CPU включают турбо-режим, обеспечивая повышение производительности при сохранении тепловыделения и энергопотребления в допустимых пределах. Однако и тут Core i7-3770K оказывается заметно менее требователен по сравнению с Sandy Bridge.

Таким образом, с точки зрения соотношения производительности на ватт процессорам Ivy Bridge нет равных. И это, пожалуй, наиболее весомое их преимущество, особенно если принять во внимание то, что случилось с его разгонным потенциалом. Впрочем, об этом – ниже.

Разгон Ivy Bridge

С внедрением новых технологических процессов энтузиасты обычно связывают и улучшение разгонного потенциала процессоров. К этому есть объективные предпосылки и в случае с Ivy Bridge: даже у старших представителей этого семейства снизилось энергопотребление, а максимальная температура, при которой включается троттлинг, возросла до 105 градусов.

Кроме этого определённые надежды были и на то, что процессорам Ivy Bridge, в отличие от их предшественников, вернётся возможность разгона через изменение опорной частоты. Однако в этом отношении никаких хороших новостей нет: платформа LGA 1155 предполагает использование единого тактового генератора, который формирует частоту процессора вместе с частотами встроенных в чипсет контроллеров периферии и шин PCIe и DMI. Так что даже с использованием самого свежего набора системной логики Intel Z77, отклонение частоты базового тактового генератора, выходящее за пределы 105-107 МГц, приводит к неработоспособности всей системы.



Поэтому также как и ранее, разгон процессоров Ivy Bridge возможен лишь путём изменения коэффициентов умножения, которых у них предусмотрено три:

Основной множитель, задающий частоту вычислительных ядер процессора. Этот множитель полностью разблокирован у процессоров, относящихся к K-серии, у остальных же моделей допускается его увеличение на 4 шага выше номинала.
Множитель частоты графического ядра, позволяющий увеличение частоты процессорной графики с шагом в 50 МГц. Данный множитель доступен для изменения у любых моделей CPU.
Коэффициент, задающий частоту работы памяти. У процессоров Ivy Bridge возможно её изменение как с шагом 200, так и с шагом 266 МГц, что делает возможным огромное разнообразие режимов работы DDR3.

По сравнению с Sandy Bridge улучшений немного, но они есть. Максимально доступный множитель для процессоров K-серии вырос до 63, а, кроме того, появилась возможность гораздо более гибкого разгона оперативной памяти.



Вот, например, как выглядит список доступных режимов DDR3 на типичной LGA 1155 материнской плате с установленным процессором Ivy Bridge:



Надо заметить, что с приходом платформы LGA 1155 процедура разгона существенно упростилась. Кроме увеличения соответствующих множителей энтузиастам лишь требуется варьировать несколько напряжений, которые влияют на оверклокерские возможности.



У процессоров Ivy Bridge, как, впрочем, и у Sandy Bridge, таких напряжений пять:

Основное напряжение питания вычислительных ядер Vcc . Напрямую влияет на разгонный потенциал процессора. Номинальные значения для Ivy Bridge составляют порядка обычно 1.0 В или чуть более.
Напряжение питания графического ядра VCCAXG. Его увеличение помогает при увеличении частоты работы встроенной в процессор графики.
Напряжение VPLL. В большинстве случаев не оказывает влияния на разгон, по крайней мере до тех пор, пока речь не идёт об установлении рекордов с применением экстремальных методов охлаждения.
Напряжение питания системного агента VCCSA. Номинальное значение этого напряжение для Ivy Bridge установлено в 0.925 В. Его увеличение позволяет обеспечивать стабильность работы процессорного контроллера памяти при высоких частотах на памяти.
Напряжение питания памяти VDDQ. Изменение данного напряжения помогает при разгоне памяти, однако во избежание повреждения процессора Intel не рекомендует повышать его свыше 1.65 В.

И, как и ранее, отодвигает предельную частоту процессора, при которой он сохраняет стабильность, главным образом единственная величина – напряжение Vcc. Таким образом, с позиции теории процессоры Ivy Bridge выглядят как достаточно простые объекты для оверклокинга.

К сожалению, на практике выясняются неприятные нюансы. В нашей лаборатории было протестировано два экземпляра процессора семейства Ivy Bridge, но ни от одного из них мы так и не смогли добиться работоспособности на частотах, доступных при разгоне их предшественникам, относящимся к прошлому поколению. С применением входящего в нашу тестовую платформу воздушного кулера NZXT Havik 140 процессор Core i7-3770K мы смогли разогнать только до 4.6 ГГц.



При проведении оверклокерских испытаний напряжение питания CPU повышалось до 1.2 В. Как и с другими процессорами, в случае с Ivy Bridge увеличение этой величины положительно сказывается на раскрытии разгонного потенциала. Однако следует иметь в виду, что чрезмерное завышение напряжения может быть чревато деградацией и выходом процессоров из строя. Поэтому в данный момент, пока энтузиастами не накоплено никакой статистики по процессорам Ivy Bridge, выпускаемым по новому 22-нм техпроцессу, мы не рекомендуем прибегать к установке слишком больших значений Vcc. Учитывая же, что номинальное напряжение новинок лежит в окрестности 1.0 В, долгосрочная эксплуатация даже при 1.2 В может быть чревата неприятными последствиями. Именно поэтому от экспериментов по разгону при более высоких напряжениях мы пока воздержались.

Как бы то ни было, но частотный потенциал Ivy Bridge ожиданий не оправдывает. Мы даже не смогли разогнать процессоры этого семейства до рубежей, типичных для Sandy Bridge. Так что налицо ухудшение оверклокерских возможностей, которое, скорее всего, связано с сокращением геометрических размеров кристалла Ivy Bridge. По сравнению с Sandy Bridge он стал на 25 % меньше по общей площади, а вычислительные ядра так и вовсе сократились почти вдвое. Однако с современными схемами охлаждения процессорного кристалла обеспечить пропорциональное увеличение плотности теплового потока не удаётся, что при разгоне приводит к локальному перегреву участков вычислительных ядер. Косвенно подтверждают существование этой проблемы и высокие температуры ядер CPU во время работы, в то время как процессорный кулер остаётся почти холодным.



Слева – Sandy Bridge, справа – Ivy Bridge


В итоге, похоже, что с выходом Ivy Bridge звание лучшей платформы для энтузиастов по праву достаётся LGA 2011. Процессоры в этом исполнении не только имеют дополнительные возможности, позволяющие разгон увеличением частоты BCLK, но и предлагают лучший оверклокерский потенциал. Если же платформа LGA 2011 представляется вам слишком дорогой, то хорошей альтернативой для Ivy Bridge могут быть и старые процессоры Sandy Bridge. Тем более что при одинаковых тактовых частотах они проигрывают новинкам по вычислительной производительности не слишком заметно.

Выводы

Вне всяких сомнений, Ivy Bridge это – уверенный эволюционный шаг вперёд. Хотя принципиальных отличий от предшественников в части быстродействия никто и не обещал, интеловские разработчики смогли обеспечить достаточно заметный прирост производительности по сравнению с CPU предшествующего поколения в пределах 5-7 процентов. Конечно, достигается он не только микроархитектурными улучшениями, но и увеличением тактовых частот, однако это не столь важно, поскольку новые Core третьего поколения стоят не дороже представителей семейства Sandy Bridge, на смену которым они и приходят.

Более того, Ivy Bridge предлагают существенный прогресс в части электрических и тепловых характеристик. Их экономичность поднялась на принципиально новый уровень и позволяет добиться примерно 20-ваттного снижения потребления современных LGA 1155-систем при полной нагрузке.

Особенно приятно, что получение этих дивидендов не требует обновления платформы – новые процессоры способны работать в старых, купленных более года тому назад, LGA 1155-системах. Так что, в качестве варианта апгрейда новинки подходят очень хорошо. Тем более, что со сменой процессора платформа LGA 1155 приобретает поддержку более скоростного варианта графической шины PCI Express 3.0 и расширенного диапазона частот DDR3.

Думается, всего перечисленного уже вполне достаточно для того, чтобы назвать Ivy Bridge вполне удачным обновлением линейки интеловских процессоров. А, ведь, кроме этого, новинки способны предложить пользователям принципиально новое графическое ядро Intel HD 4000. Которое, в отличие от встроенной интеловской графики из Sandy Bridge, поддерживает DirectX 11, обладает GPGPU-функциональностью и может обеспечить неплохую производительность начального уровня.

Судя по всему, Ivy Bridge должен в первую очередь стать отличным вариантом для мобильных систем, и именно с прицелом на них он и разрабатывался. Поэтому с точки зрения пользователей десктопов большинство его плюсов несколько специфично, но, тем не менее, даже они не смогут высказать в адрес новинки никаких особенных претензий.

Единственная категория людей, которая может быть недовольна возможностями Ivy Bridge – это оверклокеры. Частотный потенциал новых процессоров, производимых по самому современному 22-нм технологическому процессу, неожиданно оказался немного хуже, чем у предшественников. Поэтому для использования в разогнанных системах Core третьего поколения пока подходит не лучшим образом. Однако мы ожидаем постепенного исправления этой ситуации. По мере совершенствования производства и выхода новых степпингов ядра предельные доступные для Ivy Bridge частоты должны отодвинуться и прийти в приемлемое для энтузиастов состояние.

Начиная с конца прошлого года, Ivy Bridge казалась той архитектурой, которую ждали все. Хотя Intel ожидает от нее лишь 10–15% прирост вычислительной производительности, по сравнению с Sandy Bridge.

Тем не менее, большим плюсом Ivy Bridge является улучшенная графика и повышенная энергоэффективность, что стало возможным благодаря использованию 22нм технологического процесса и новым транзисторам Tri-Gate.

Стоит отметить, что уже несколько лет Intel страдает из-за отсутствия должной производительности у ее интегрированных GPU в ее же чипсетах. Разместив GPU на подложке, компания продолжила сталкиваться с той же низкой производительностью графики, и до настоящего момента она находится далеко позади конкурентов.

Но сказать, что ничего к лучшему не менялось тоже нельзя. Возможности и производительность интегрированной графики возросли до проигрывания HD-контента, работы более чем с одним экраном, множествами входов, предложения поддержки беспроводных дисплеев и т.п.

К слову, Intel готовит еще один крупный прирост производительности графики, который должен состояться с выходом в следующем году архитектуры Haswell. Но пока за те же деньги покупателям следует присмотреться к повышенной производительности и улучшенной эффективности архитектуры Ivy Bridge.

Некоторое время считалось, что переход на новый технологический процесс производства на несколько месяцев задержит выпуск новых чипов. Однако, компании Intel удалось свести задержку выпуска до нескольких недель. Более того, планы на выпуск чипсетов под Ivy Bridge не изменились вообще. Новые чипсеты 7-series обратно совместимы с процессорами Sandy Bridge, так что уже сейчас можно приобрести себе материнскую плату на базе Z77 и использовать ее.

И если недавно мы сравнили несколько материнских плат на базе Z77, то сегодня мы собираемся рассмотреть процессор Core i7-3770K.

Линейка Ivy Bridge состоит из нескольких настольных и мобильных процессоров Core i7 и Core i5, которые эффективно заменят большинство текущих предложений под этими же сериями. Чипы Ivy Bridge Core i3 появятся на рынке во второй половине текущего года.

В число новых настольных процессоров Core i7 вошли такие модели, как Core i7-3770K, i7-3770, i7-3770T и i7-3770S – все они, за исключением i7-3770K, продаются за $278. В тоже время чип i7-3770K стоит слегка больше — $313. Если хотите, это несколько похоже на чрезмерное количество изданий Windows Vista/7, но именно так Intel сегодня подходит к своим CPU.

Чипы Core i7-3770K и i7-3770 по большей части идентичны, за некоторыми исключениями. Версия K идет с разлоченным умножителем, таким образом данный чип на 100MHz быстрее. Также, из серии K были убраны технологии Intel vPro/TXT/VT-d/SIPP.

Чипы Core i7-3770S и i7-3770T являются представителями маломощной (low power) серии (вторая диаграмма ниже), а раз так то и TDP у них снижено с 77W до 65W и 45W, соответственно. Определяющим фактором в достижении столь низких TDP является сниженная базовая частота CPU, сокращенная с 3,50GHz до всего лишь 3,10GHz для i7-3770S и до 2,50GHz для i7-3770T.

Все настольные процессоры Ivy Bridge Core i7 имеют 4 ядра с 8 параллельными потоками при использовании Hyper-Threading. Core i7 3770K работает на 3,50GHz, с Turbo Boost частота поднимается до 3,90GHz. В тоже время версия “не-K” имеет ту же частоту Turbo Boost, но базовую частоту в 3,4GHz. Чипы призваны работать с памятью DDR3-1333, и имеют 8MB КЭШа L3.

Есть также новая серия Core i5, которая состоит из процессоров i5-3570K, i5-3550, i5-3470 и i5-3450 ($194 за K-версию, и $174 за остальные). Также есть маломощные модели Core i5-3570T, i5-3550S, i5-3470T, i5-3470S и Core i5-3450S, но давайте сначала поговорим о стандартных процессорах.

Все стандартные процессоры Ivy Bridge Core i5 имеют 77W TDP, четыре ядра и четыре параллельных потока. Единственный процессор, который отличается от этой “конфигурации” – это i5-3470T. Последний имеет пару ядер с Hyper-Threading для четырех потоков.

Работают чипы Core i5 на довольно агрессивных частотах. Так, i5-3570K и i5-3570 работают на 3,40GHz, с Turbo Boost до 3,80GHz. i5-3550 работает на 3,30GHz с Turbo Boost на 3,70GHz, а i5-3470 в базе работает на 3,20GHz, а с Turbo Boost может разгоняться до 3,60GHz.

Наконец, Core i5-3450 в базе работает на 3,10GHz, а с Turbo Boost может достигать 3,50GHz. Все процессоры Core i5 имеют 6MB КЭШа L3. Исключением является лишь i5-3470T, у которого лишь 3MB КЭШа L3.

Все процессоры Core i5 используют графический движок Intel HD Graphics 2500. Исключение опять же составляет i5-3570K, где используется движок HD Graphics 4000.

Набор маломощных Core i5 несколько смущает. Пять выпущенных пока моделей отличаются друг от друга, хотя многих из них стоят одинаково. Чип Core i5 3470T это, по сути, процессор Core i3 с добавленным Turbo Boost. Данный процессор работает на 2,90GHz, а с Turbo Boost на 3,50GHz. Однако подобно процессорам Core i3, i5 3470T имеет лишь пару ядер с поддержкой Hyper-Threading и уменьшенный 3MB КЭШ L3. При этом стоит он, как сообщается, $174.

Далее, существуют чипы Core i5-3570T и i5-3550S (оба стоят $194). i5-3570T имеет 45W TDP и работает на 2,30GHz, а с Turbo Boost может ускоряться до 3,30GHz. В тоже время, чип i5-3550S заметно быстрее. В базе он работает на 3,0GHz, а с Turbo Boost на 3,37GHz. Как вы, наверное, догадываетесь, i5 3550S имеет повышенный TDP, который составляет 65W.

Наконец, у нас есть процессоры Core i5-3470S и i5-3450S (оба по $174), которые характеризуются 65W TDP. В базе Core i5-3470S работает на 2,90GHz, а с Turbo Boost на 3,60GHz, тогда как i5-3450S работает на 2,80GHz, а с Turbo Boost на 3,50GHz.

Первое поколение “кристальной” графики Intel HD, вышедшее с архитектурой Westmere, в действительности не находилось на той же подложке, оно скорее было в том же корпусе. Движок “корпусной” графики был отделен от CPU. Более того, он создавался по 45нм технологическому процессу, тогда как сам CPU создавался уже по 32нм.

Все изменилось с графикой второго поколения (Sandy Bridge), которая включила GPU на подложку, означая, что графический движок также создавался в том же 32нм технологическом процессе, что и CPU. Хотя данная парочка находится не под одной и той же крышей, ведь GPU все еще независим от CPU. Он имеет собственные клок-домен (clock domain), означая, что его можно запустить отдельно, как и остановить его при необходимости.

Такой же подход использован в архитектуре Ivy Bridge. Инженеры Intel просто добавили мощности. Снова существуют две различные версии графики Intel HD, и процессоры Ivy Bridge могут использовать один из графических движков — HD 2500 или более быстрый HD 4000.

Движки могут работать на частотах до 1350MHz и поддерживают разрешение до 2560×1600. Поддержка рендеринга включает DirectX 11, OpenGL 3.1 и Shader Model Support 4.1. Для сравнения, предыдущее поколение поддерживало DirectX 10.1 и OpenGL 3.0.

Шейдеры, ядра и блоки исполнения являются тем, что Intel называет “Execution Unit” или просто EU. У HD Graphics 2500 их шесть, а у более шустрого HD Graphics 4000 – шестнадцать. Интересно, но большинство настольных процессоров Core i5 используют более медленный движок HD Graphics 2500, тогда как все мобильные процессоры получают 4000-ый движок.

Помимо поддержки повышенного разрешения (до 2560×1600 против 1920×1200 ранее), новая графика Intel HD теперь поддерживает три монитора. Процессоры Sandy Bridge ограничивались лишь двумя мониторами. Однако новая графика Ivy Bridge может одновременно поддерживать три монитора, что является приятным апгрейдом.

По заявлению Intel, по сравнению с Sandy Bridge, их графический процессор третьего поколения дает улучшенную 3D-производительность и улучшения API, вроде двукратного прироста производительности в 3Dmark Vantage. Также Intel заявляет, что Ivy Bridge Intel HD 2500 должен примерно на 10-20% работать лучше с трехмерной графикой, чем движок Intel HD 2000 из Sandy Bridge. Но мы сразу же порекомендовали бы вам сосредоточиться более на возможностях и производительности кодирования, чем на играх, что, впрочем, вы еще увидите далее.

Тестовая система & Производительность памяти

Спецификации тестовой системы Intel LGA2011:

  • Intel Core i7-3960X Extreme Edition (3,30GHz)
  • Intel Core i7-3820 (3,60GHz)
  • x4 2GB G.Skill DDR3 PC3-14900 (CAS 8-9-8-24)
  • Gigabyte G1.Assassin2 (Intel X79)
  • OCZ ZX Series 1250w
  • Crucial m4 256GB (SATA 6Gb/s)

Software


— Nvidia Forceware 296.10

Спецификации тестовой системы AMD AM3+:

  • AMD Phenom II X6 1100T (3,30GHz)
  • AMD Phenom II X4 980 (3,70GHz)
  • AMD FX-8150 (3,60GHz)
  • AMD FX-8120 (3,10GHz)
  • AMD FX-6100 (3,30GHz)
  • AMD FX-4170 (4,20GHz)
  • Asrock Fatal1ty 990FX Professional (AMD 990FX)
  • OCZ ZX Series 1250w
  • Crucial m4 256GB (SATA 6Gb/s)
  • Gigabyte GeForce GTX 580 SOC (1536MB)

Software

  • Microsoft Windows 7 Ultimate SP1 64-бит
  • Nvidia Forceware 296.10

Спецификации тестовой системы Intel LGA1366:

  • Intel Core i7-975 Extreme Edition (3,33GHz)
  • Intel Core i7-920 (2,66GHz)
  • x3 2GB G.Skill DDR3 PC3-12800 (CAS 8-8-8-20)
  • Gigabyte G1.Sniper (Intel X58)
  • OCZ ZX Series 1250w
  • Crucial m4 256GB (SATA 6Gb/s)
  • Gigabyte GeForce GTX 580 SOC (1536MB)

Software

  • Microsoft Windows 7 Ultimate SP1 64-бит
  • Nvidia Forceware 296.10

Спецификации тестовой системы Intel LGA1155:

  • Intel Core i7-2600K
  • Intel Core i5-2500K
  • x2 4GB G.Skill DDR3 PC3-14900 (CAS 8-9-8-24)
  • Asrock Z77 Extreme6 (Intel Z77)
  • OCZ ZX Series 1250w
  • Crucial m4 256GB (SATA 6Gb/s)
  • Gigabyte GeForce GTX 580 SOC (1536MB)

Software

  • Microsoft Windows 7 Ultimate SP1 64-бит
  • Nvidia Forceware 296.10

Спецификации тестовой системы Intel LGA1156:

  • Intel Core i5-750
  • x2 4GB G.Skill DDR3 PC3-12800 (CAS 8-8-8-20)
  • Gigabyte P55A-UD7 (Intel P55)
  • OCZ ZX Series 1250w
  • Crucial m4 256GB (SATA 6Gb/s)
  • Gigabyte GeForce GTX 580 SOC (1536MB)

Software

  • Microsoft Windows 7 Ultimate SP1 64-бит
  • Nvidia Forceware 296.10

Производительность Core i7-3770K при работе с памятью схожа с i7-2600K. В действительности, небольшой прирост производительности можно легко списать на 100MHz разницу в частоте.

И хотя особой разницы в производительности работы с памятью между Core i7-3770K и i7-2600K нет, в плане КЭШа L2 она есть. В частности, на записи Core i7-3770K был гораздо быстрее.

Производительность синтетики

В тесте SolidWorks, новый Core i7-3770K заметно шустрее, чем i7-2600K. Разница в производительности составила 18%. В тоже время, Core i7-3770K выдавал такую же производительность, что и чип AMD FX.

Если результаты теста SolidWorks нас удивили, то в тесте Maya новый Core i7-3770K нас просто поразил. Здесь он со своими 15,58fps был на 56% быстрее, чем Core i7-2600K. В действительности, Core i7-3770K в этом тесте был лидером. В тоже время мы не совсем понимаем, почему Core i7-3770K в этом тесте работает так хорошо, и как ему удалось побить Core i7-3960X.

Тест CINEBENCH R11.5 CPU показал 17% преимущество Core i7-3770K над i7-2600K. В данном тесте Core i7-3770K был быстрее, чем i7-3820 и FX-8150.

Во встроенном тесте WinRAR новый Core i7-3770K был ощутимо быстрее, чем i7-2600K. Результат Core i7-3770K составил 3992KB/s против 3640KB/s у i7-2600K.

Производительность приложений

В Excel 2010, новый Core i7-3770K обеспечил примерно ту же производительность, что и i7-2600K. Это означает, что он был на 9% быстрее, чем Core i7-3820, но на 24% медленнее, чем i7-3960X.

В WinRAR, Core i7-3770K был лишь на 3% быстрее, чем i7-2600K в тесте сжатия 700MB. В тоже время в тесте сжатия 400MB разница между процессорами составила уже 5%.

И снова мы видим незначительную разницу в производительности между процессорами Core i7-3770K и i7-2600K.

Тест Fritz Chess 13 стал первой большой победой Core i7-3770K. Здесь этот чип был примерно на 10% быстрее, чем i7-2600K, и слегка быстрее, чем i7-3820.

Производительность кодирования

В тесте HandBrake, Core i7-3770K показал 16% преимущество в производительности над i7-2600K. Кроме того, Core i7-3770K был быстрее, чем чипы i7-3820 и FX-8150, хотя примерно на 13% медленнее, чем могучий i7-3960X.

С тестом x264 HD Benchmark новый Core i7-3770K справился хорошо, показав 17% преимущество над i7-2600K и 27% над FX-8150. Более того, по производительности здесь он сравнялся с i7-3960X.

С тестом TMPGEnc 4.0 XPress новый процессор Core i7-3770K справился на 35 секунд раньше, чем i7-2600K, что сделало его на 9% быстрее. Это также поместило Core i7-3770K между i7-3820 и i7-3960X. Впечатляющий результат.

Производительность с дискретным GPU

В Dirt 3, Core i7-3770K был чуточку быстрее, чем i7-2600K. Более того, это был самый быстрый процессор в этой игре при использовании одной и той же видеокарты (GeForce GTX 580).

Core i7-3770K снова оказался самым быстрым протестированным процессором, на этот раз в Just Cause 2. Данный процессор был чуточку быстрее, чем Phenom II X4 980 и Core i7-2600K.

Последней игрой, на которую мы взглянули, исследуя производительность процессоров с дискретным GPU, стала The Witcher 2. Как видно, здесь Core i7-3770K выдал почти ту же производительность, что и i7-2600K. Хотя Core i7-3770K все-таки был чуточку быстрее.

Производительность интегрированного GPU

Несмотря на различные улучшения, интегрированный графический движок Intel HD 4000 все-таки совсем не подходит для игровых целей. Процессор Core i7-2600K нельзя было использовать для прямого сравнения производительностей в 3Dmark 11, т.к. это требует наличия поддержки DirectX 11. Набрав 1486pts, наш Core i7-3770K был почти на 20% медленнее, чем AMD A8-3850 и на 23% медленнее, чем видеокарта GeForce GT 430 (в настоящее время стоит $50).

В Splinter Cell Conviction на разрешении 1280×800 наш Core i7-3770K был на 77% быстрее, чем i7-2600K. Впечатляющий прирост производительности. Хотя, с другой стороны, Core i7-3770K все-таки был почти на 40% медленнее, чем AMD A8-3850.

В тесте Crysis Warhead, Core i7-3770K был на 133% быстрее, чем i7-2600K, хотя и на 22% медленнее, чем AMD A8-3850.

В Just Cause 2, Core i7-3770K был на 3fps быстрее, чем Core i7-2600K. В тоже время, чип AMD A8-3850 был примерно на 48% быстрее, чем Core i7-3770K.

В Civilization V, Core i7-3770K обеспечил 64% преимущество в производительности над i7-2600K со средними 23fps. Хотя, AMD A8-3850 со своими 36fps был на 36% быстрее, чем Core i7-3770K.

Оверклокинг

Используя довольно высокое напряжение в 1,520V, мы смогли разогнать Core i7-3770K до 4,92GHz, что совсем не плохо. Это на 100MHz больше, чем мы смогли выжать из Core i7-2600K.

Оверклокинг процессора Core i7-3770K до 4,90GHz позволил нам получить 21% дополнительной производительности в первом тесте и 26% во втором. Это сделало Core i7-3770K значительно быстрее, чем i7-3960X.

В тесте CINEBENCH R11.5 от разогнанного Core i7-3770K мы получили на 27% больше производительности, чего, однако, не хватило, чтобы обойти i7-3960X.

Энергопотребление

Энергопотребление системы с Ivy Bridge впечатляет. Core i7-3770K потреблял на 11% меньше энергии, чем i7-2600K, хотя и работал при этом на более высокой частоте и выдавал более высокую, в целом, производительность. Результаты потребления в режиме отдыха во многом остались схожими – система с Core i7-3770K потребляла 75W, а с i7-2600K уже 76W. Глядя же на чипы предыдущего поколения сразу же заметны их недостатки – 98W у Core i7-3820 и 100W у FX-8150.

Под нагрузкой система Core i7-3770K потребляла на 14% меньше энергии, чем i7-3820, на 37% меньше, чем Phenom II X6 1100T и на 42% меньше, чем FX-8150.

Заключительные мысли

Проведя тестирование, мы пришли к выводу, что архитектура Ivy Bridge не очень-то отличается от Sandy Bridge, хотя это было ожидаемо. Многие из наших реальных тестов приложений, вроде Excel 2010, WinRAR и Photoshop CS5, показали лишь небольшую разницу в производительности между новым Core i7-3770K и более старым i7-2600K.

Были случаи, когда Core i7-3770K был примерно на 10% быстрее (вроде Fritz Chess 13), и затем мы увидели крупнейшую разницу в производительности в наших оценках кодирования. Там Core i7 3770K был на 10-17% быстрее, чем i7-2600K.

В играх с дискретной видеокартой, вроде GeForce GTX 580, мы увидели небольшое преимущество в производительности Core i7-3770K над i7-2600K, но похвастаться тут нечем. Более впечатляющие результаты дало измерение энергопотребления, где Core i7-3770K потреблял на 11% меньше энергии, хотя и работал в среднем на 17% быстрее.

И снова мы разочаровались в производительности интегрированного GPU. Без всякого сомнения, новая графика Intel HD 4000 принесет значительный прирост в производительности на мобильный рынок, вроде ультрабуков, разработчикам которых должны понравиться добавленная производительность и меньшее энергопотребление.

Но в настольном мире, новая интегрированная графика от Intel все еще медленнее, чем AMD A8-series Llano APU. Более того, большинство более доступных процессоров Ivy Bridge будут снабжены более медленной графикой HD 2500, которая, как мы подозреваем, будет сравнимой с HD 3000 из i7-2600K. Подобно предшественникам, графика HD 4000 не подходит для игр. К слову, в тестах мы использовали не низкие, а средние настройки качества и разрешение 1280×800. Но и в этом случае результаты HD 4000 были на фоне конкурентов все-таки весьма посредственными.

И хотя маркетологи Intel считают по другому, интегрированную графику компании не стоит ориентировать на геймеров. Для профессионалов и обычных пользователей, Intel HD 4000, скорее всего, подойдет. Ivy Bridge добавляет поддержку третьего выхода монитора и повышенного разрешения (2560×1600), а на мобильной стороне мы рады увидеть расширение использования WiDi (беспроводной экран).

Для покупателей, пришествие на рынок чипов Ivy Bridge может рассматриваться лишь как хорошая новость. Отлично, если вы приобрели себе платформу LGA1155, ведь воспользоваться преимуществами новых 22нм процессоров можно будет и на существующих материнских платах. Новичкам же архитектура Ivy Bridge приносит обновленную платформу, дающую большую производительность, улучшенную эффективность и несколько новых возможностей за те же деньги, что и Sandy Bridge.

Итак, в итоге:

Плюсы: Intel продолжает поставлять лучший настольный процессор, который можно купить за деньги. Отличная эффективность и возможности. Оверклокинг хорошо поддерживается процессором с буквой “K”. Обратная совместимость является большим плюсом для покупателей.

Минусы: Интегрированная графика выполняет большинство задач, но для игр не годится. Работает хуже, чем AMD A8 APU.

Технологические этапы развития процессоров Intel подвластны маятниковой системе «тик-так», которую компания разработала сама для себя. Следуя данному принципу совершенствования CPU, производитель с периодичностью в один год переводит производство кристаллов на более совершенные технологические нормы («тик») или же представляет принципиально новую архитектуру («так»). Такой невероятный темп позволяет Intel оставаться на гребне it-волны или даже ее создавать.

Инновации не терпят отлагательств. В столь конкурентной среде четкое планирование дает ощутимые преимущества. Особенно в том случае, если компании удается следовать ранее намеченным планам. Intel может себе это позволить, контролируя всю технологическую цепочку – от появления идеи, проектирования и разработки, до упаковки готовой продукции.

Согласно устоявшемуся летоисчислению, 2012 год – время для очередного «тика», т.е. перехода на новый техпроцесс изготовления. Первыми примерили на себя 22-нанометровые кристаллы процессоры для платформы LGA1155, получившие название Ivy Bridge. Однако в этот раз, помимо усовершенствования технологических норм производства, Intel также внедряет новую структуру полупроводников, вместо традиционной планарной используя трехмерную компоновку транзисторов.

С каждым последующим уменьшением размеров транзисторов, производители сталкиваются с необходимостью сокращать длину затвора и перехода исток/сток, что приводит к ухудшению эксплуатационных характеристик полупроводников. Модель Tri-Gate предполагает трехмерную конструкцию с несколькими затворами, размещенными на гранях миниатюрной кремниевой пластины, устанавливаемой перпендикулярно подложке.

Несмотря на значительные ресурсы, от начала разработки до практического использования технологии Tri-Gate, компании понабилось порядка 11 лет. Одно дело, когда речь идет о единичных лабораторных экспериментах и исследованиях, и совершенно иная ситуация в случае с массовым производством, где тиражи изготавливаемых устройств исчисляются миллионами.

Успешное внедрение подобной технологии – большой успех для разработчиков Intel. Применение трехмерных транзисторов позволит компании укрепить технологическое лидерство, получив весомое преимущество над конкурентами. Использование Tri-Gate позволяет Intel уже сейчас переводить в практическую плоскость эксперименты с чипами, выполненными по нормам 14 нм и даже 10 нм. Закон Мура остается в силе, а значит, кремниевые полупроводники еще повоюют.

Ivy Bridge

Так как процессоры Intel Core третьего поколения стали логичным продолжением чипов предыдущей линейки, то неудивительно, что они не претерпели серьезных структурных изменений.

Сравнивая топологию кристаллов Sandy Bridge и его преемника, нельзя не отметить значительно увеличившуюся область, отведенную для графического процессора. Если в 32-нанометровом чипе она занимала менее четверти кристалла, то теперь ей отведена практически третья часть кремниевой пластинки. В остальном визуально CPU довольно схожи, если учесть масштабирование. А вот технологические количественные показатели заметно отличаются. Так, чип Sandy Bridge содержит без малого 1 млрд. транзисторов, тогда как в Ivy Bridge их уже 1,4 млрд. Благодаря использованию технологии Tri-Gate производителю удалось существенно увеличить плотность размещения полупроводников. Но, несмотря на то, что их количество возросло на 40%, площадь нового кристалла, наоборот, уменьшилась с 216 до 160 мм2 (26%).

По части функционального оснащения изменения невелики. Процессор имеет четыре вычислительных блока, графическое ядро, интегрированные контроллеры памяти и шины PCI Express. Емкий общий кеш третьего уровня для своих нужд могут использовать все ядра, в том числе и графическое. Блоки между собой связывает скоростная кольцевая шина, а с чипсетом CPU общается по DMI 2.0.

Несмотря на то, что при выпуске Ivy Bridge основной задачей был успешный переход на новый техпроцесс, Intel, безусловно, внесла некоторые изменения и в функциональную часть процессора. От вычислительных блоков можно ожидать некоторого ускорения на операциях деления чисел и преобразования данных.

Двухканальный контроллер памяти официально получил поддержку DDR3-1600 (для Sandy Bridge – DDR3-1066/1333), а также модулей DDR3L со сниженным напряжением питания. Некоторый прирост производительности может принести чуть улучшенная латентность.

Ivy Bridge получил также достаточно производительный цифровой генератор случайных чисел (Digital Random Number Generator), возможности которого могут задействоваться в задачах шифрования данных. Данный блок используется для работы Intel Secure Key. В свою очередь технология Intel OS Guard позволит защитить данные при попытке несанкционированного использования привилегированного режима в операционной системе.

22-нанометровым процессорам достался контроллер PCI Express 3.0. Вдвое увеличенная пропускная способность может сослужить хорошую службу при создании конфигурации с несколькими видеокартами. Процессор имеет 16 линий PCI-E 3.0 и позволяет делить их на три устройства (х8+х4+х4). Впрочем, для того, чтобы интерфейсный круг замкнулся, нужно чтобы скоростную версию интерфейса, помимо процессора, поддерживала материнская плата и видеокарта.

Графическое ядро Intel HD Graphics 4000/2500

Одним из наиболее важных функциональных нововведений Ivy Bridge является усовершенствованное графическое ядро. Возможностям интегрированного GPU разработчик уделил максимум внимания, фактические потратив на его доработку и улучшение большую часть дополнительных транзисторов, которые получили 22-нанометровые чипы.

Новое графическое ядро получило две модификации – Intel HD Graphics 4000 и 2500. В старшей количество основных исполнительных блоков увеличено с 12 до 16, что уже сулит определенную прибавку производительности. Вариант попроще имеет всего 6 блоков, как и у предшественника (HD 2000).

GPU имеет полноценную поддержку DX11, OpenGL 3.1 и OpenCL 1.1, к тому же графическое ядро получило улучшенную версию инструмента для кодирования видео – Intel Quick Sync 2.0.


Отметим, что более скоростную версию ядра HD 4000 получат процессоры Core i7 и топовый Core i5, тогда как остальные модели будут довольствоваться HD 2500. На расширенную функциональность это никак не повлияет, но вот производительность, судя по всему, будет не слишком отличаться от таковой для HD 2000.

В тандеме с платой на чипсете 7-ой серии, процессоры Ivy Bridge могут выводить изображение на три независимых монитора, тогда как Sandy Bridge позволяет подключить только два дисплея.

Штатная частота графического ядра составляет 650 МГц, однако под нагрузкой она может динамически увеличиваться вплоть до 1100–1150 МГц, в зависимости от модели CPU.

Инструменты для разгона

Для любителей тюнинга системы, Intel приготовила некоторые полезные «плюшки». Так, у чипов с индексом «К» максимальный процессорный множитель увеличен до 63, тогда как у аналогичных моделей на Sandy Bridge он ограничен 59. Впрочем, подобные значения скорее интересны лишь для пользователей, владеющих искусством беспрерывного доливания жидкого азота в испарительный стакан. Для более щадящих условий разгона такие значения точно не пригодятся.

В ручном режиме ускорять можно и графический чип. Множитель для GPU также увеличен с 57 до 60. Более полезной на практике выглядит возможность увеличивать частоту памяти до 2666 МГц и выше, при этом шаг теперь может составлять 200 и 266 МГц (ранее только 266 МГц). Также отметим поддержку модулей с профилями XMP версии 1.3.

Что же касается возможности повышать частоту системной шины, то тут, увы, без изменений. BCLK без ущерба для стабильности системы можно варьировать в пределах +/- 7%. Никаких дополнительных множителей, аналогичных имеющимся на LGA2011, не появилось.

Совместимость

Процессоры Ivy Bridge без проблем будут работать на подавляющем большинстве плат с чипсетами 6-ой серии (H61/H67/P67/Z68). По крайней мере, технологических трудностей здесь никаких нет. Многое зависит от производителя материнской платы, который должен своевременно обеспечить прошивкой, позволяющей распознать 22-нанометровые CPU.

Конечно, в комплекте с Ivy Bridge рекомендует использовать на новых чипсетах , предлагая для такой связки ряд дополнительных функций. Наиболее весомая из них – родная поддержка USB 3.0. Опция, бесспорно, приятная, но, если вам удастся найти модель на чипсете 6-ой серии схожей функциональности, которая обойдется заметно дешевле, то это неплохая возможность сэкономить. Разве что в поисках самых выгодных вариантов стоит оставлять без внимания модели на Q65, Q67 и B65. Бывалый «корпоратив» в этот раз остался без поддержки прогрессивных CPU.

Модельный ряд

Традиционно, процессоры нового поколения будут появляться на рынке поэтапно. На момент анонса, производитель сразу представил девять четырехъядерных моделей, предназначенных для настольных систем.

Отличить чипы второго и третьего поколений довольно просто по нумерации модели. Core i5/i7 серии 2000 являются носителями архитектуры Sandy Bridge, а процессоры линейки 3000 являются представителями новой волны – устройства, выполненные по 22-нанометровой технологии и получившие кодовое имя Ivy Bridge. Как и прежде, важным отличием Core i7 от чипов Core i5 является поддержка технологии Hyper-Threading, а также больший объем кеш-памяти третьего уровня (8 МБ vs. 6 МБ).

Модель Базовая частота Режим Turbo Ядра/потоки Графика Частота GPU Кеш L3 TDP Цена
Core i7-3770K 3,5 ГГц до 3,9 ГГц 4/8 HD 4000 650/1150 МГц 8 МБ 77 Вт $313
Core i7-3770 3,4 ГГц до 3,9 ГГц 4/8 HD 4000 650/1150 МГц 8 МБ 77 Вт $278
Core i5-3570K 3,4 ГГц до 3,8 ГГц 4/4 HD 4000 650/1150 МГц 6 МБ 77 Вт $212
Core i5-3550 3,3 ГГц до 3,7 ГГц 4/4 HD 2500 650/1150 МГц 6 МБ 77 Вт $194
Core i5-3450 3,1 ГГц до 3,5 ГГц 4/4 HD 2500 650/1100 МГц 6 МБ 77 Вт $174
Core i7-3770S 3,1 ГГц до 3,9 ГГц 4/8 HD 4000 650/1150 МГц 8 МБ 65 Вт $278
Core i7-3770T 2,5 ГГц до 3,7 ГГц 4/8 HD 4000 650/1150 МГц 8 МБ 45 Вт $278
Core i5-3550S 3,0 ГГц до 3,7 ГГц 4/4 HD 2500 650/1150 МГц 6 МБ 65 Вт $194
Core i5-3450S 2,8 ГГц до 3,5 ГГц 4/4 HD 2500 650/1100 МГц 6 МБ 65 Вт $174

Взглянув на основные технические характеристики, сразу можно отметить, что принципиальных изменений в отношении количества вычислительных ядер, объемов кеш-памяти и даже рабочих частот, фактически нет. Топовый четырехъядерник Core i7-3770K имеет номинальные 3,5 ГГц и даже при максимальном автоматическом разгоне не выходит за пределы 3,9 ГГц. В аналогичных частотных рамках работал и его предшественник – Core i7-2700K.

Что же сразу обращает на себя внимание в перечне основных ТТХ – изменившиеся значения TDP. Ранее для классических четырехъядерных чипов Core i5/i7 заявленный уровень энергопотребления укладывался в 95 Вт, теперь же это значение составляет всего 77 Вт. Разница составляет практически 20%.

Производительность CPU

Возможности Ivy Bridge мы изучали на примере Core i7-3770K , использовав для сравнения сопоставимый по цене Core i7-2600K . Частотная формула новинки – 3,5/3,9 ГГц, тогда как у модели на Sandy Bridge – 3,4/3,8 ГГц. К тому же у i7-3770K более активно работает Turbo Boost. Даже при максимальной нагрузке частота его вычислительных блоков повышается на 200 МГц от номинальной (до 3,7 ГГц), тогда как i7-2600К в таком же режиме ускоряется только на 100 МГц – до 3,5 ГГц. Фактически, условия заведомо неравноценны, но ведь это схожие по цене процессоры. Спустя год соотношение цена/производительность должна улучшаться – это нормально, это правильно. Впрочем, чтобы восстановить справедливость и, конечно же, удовлетворить собственное любопытство, мы также проверили возможности обоих процессоров, стабильно работающих на 4 ГГц, повысив множитель до 40 и отключив все технологии сохранения энергии. Результаты представлены на диаграммах.

Вычислительные тесты регистрируют преимущество i7-3770К над i7-2600К на уровне 6–12% при работе этих процессоров в штатных режимах и порядка 3–5,5% во время функционирования на одинаковой частоте и прочих равных условиях.

В тестовых играх лишь Hard Reset чутко отреагировал на более агрессивную работу i7-3770К, продемонстрировав почти 10% разницу в производительности, в остальных случаях преимущество Ivy Bridge были минимальным – 1,5–2%. К тому же в режимах с максимальным качеством графики, привычным для владельцев топовых видеокарт, разница и вовсе будет исчезающе малой.

Энергопотребление

Существенно сниженный TDP в новых процессорах, признаться, заинтриговал. 77 Вт для четырехъядерного процессора, обрабатывающего одновременно восемь потоков – достаточно смелая заявка на фоне 95 Вт для предшественника с фактически такими же тактовыми частотами, но выполненного по 32-нанометровой технологии.

Практические замеры расставляют все по своим местам. В режиме покоя энергопотребление систем с чипами разных поколений находится примерно на одном уровне. В этом случае фактически нечего уже улучшать – благодаря работе средств CPU работают на 1,6 ГГц и напряжения питания менее 1 В оба процессора по части энергоэффективности очень схожи. А вот под серьезной нагрузкой Core i7-3770К оказывается на 21–22 ватта экономичнее Core i7-2600К, причем, как в штатном режиме, в котором последний работает с меньшей тактовой частотой, так и после разгона обоих процессоров.

Разгон

Переход на более тонкий техпроцесс изготовления кристаллов, как правило, позволял расширить частотные горизонты процессоров. Помня об очень хорошем потенциале Sandy Bridge, наверняка многие искатели предельных мегагерц рассчитывали на беспроблемную работу Ivy Bridge на 5–5,5 ГГц. Однако, в случае с новыми 22-нанометровыми чипами ситуация с разгоном не столь однозначна.

Во время тестирования новинки, максимум, чего удалось достичь от рассматриваемого экземпляра Core i7-3770К – 4,8 ГГц. При этом, чтобы добиться стабильной работы CPU, напряжение питания понадобилось поднять с 1 В до 1,3 В. Для Ivy Bridge это скорее экспериментальный режим, слабо пригодный для использования в режиме 24/7. Дело в том, что новые CPU весьма чувствительны к повышению вольтажа, реагируя на это быстрым нагревом вычислительных ядер. При этом может возникать, на первый взгляд, парадоксальная ситуация, когда радиатор кулера еще едва теплый, а температура ядер уже повысилась до 80–90 градусов или даже выше. Использование качественной термопасты в данном случае не решает вопрос. Очевидно, сказываются уменьшенные физические размеры кристалла и быстро распределить и отвести тепло довольно сложно.

Однако еще раз сделаем акцент на то, что подобные вопросы возникают после значительного (25–30%) повышения напряжения питания. Например, уже при 1,2 В хороший воздушный кулер без проблем справляется с отводом тепла, однако в этом режиме процессор работал «лишь» на 4,6 ГГц. Чипы Sandy Bridge, как правило, на воздухе позволяют добиться немного лучших результатов (~4,8–4,9 ГГц).

А вот для экстремальных оверклокеров анонс Ivy Bridge – прекрасный повод наполнить сосуды Дьюара жидким азотом и вписать свои имена в мировые рейтинги. В условиях тотальной заморозки, когда рабочая температура кристалла ощутимо ниже нуля, 22-нанометровые чипы демонстрируют частотные чудеса. Самым удачливым и квалифицированным оверклокерам покоряются значения 6,5– 7 ГГц. Сейчас пошла волна обновления рекордов в классических тестовых приложениях, и Ivy Bridge являются обязательными компонентами самых производительных систем.

Вот, такая получается неоднозначная ситуация с разгоном новых CPU. С одной стороны – мировые рекорды с азотом, с другой – несколько худшие показатели, чем у Sandy Bridge с воздушными СО. Intel только начал использовать 22-нанометровый техпроцесс, и, вполне вероятно, что с новыми степпингами ядра улучшится и частотный потенциал процессоров в условиях охлаждения привычными кулерами.

Производительность GPU

Очевидно, что чем выше производительность и функциональность интегрированного GPU, тем шире круг потенциальных пользователей, для которых возможностей встроенного ядра будет вполне достаточно для работы и развлечений. Intel серьезно потратилась в плане количества транзисторов, пущенных на то, чтобы подтянуть быстродействие и функциональность своего решения. Посмотрим, не прошли ли даром труды разработчиков.

Реальные игры подтверждают убедительное превосходство HD Graphics 4000 над предшественником – HD Graphics 3000. Если даже опустить предельно позитивную реакцию синтетического теста, который на HD 4000 ускорился едва ли не вдвое, прирост производительности 45–65% в реальных играх можно считать очень достойным результатом, который виден даже невооруженным взглядом.

При этом отметим, что новое графическое ядро имеет не просто большую производительность, чем у HD 3000. В ряде случаев оно позволяет с достаточным уровнем комфорта играть в тех режимах, где предыдущий GPU уже явно не справлялся. Например, разница в ощущениях от игры со средними 27 и 40 кадрами/c принципиальна. В первом случае проседания производительности при сложных сценах наверняка будут ощутимы, а во втором такие ситуации если и возникнут, то лишь эпизодически.

Итоги

Очевидно, что при разработке процессоров Ivy Bridge , приоритетной задачей для Intel было дальнейшее улучшение энергоэффективности чипов. Переход на 22-нанометровый техпроцесс и трехмерную структуру транзисторов позволило добиться очень хороших результатов. Что касается вычислительной производительности, то по этому параметру вряд ли можно было предъявить претензии даже к предшественнику, однако компании, пусть и не столь значительно, но все же удалось улучшить свои чипы и по этому показателю (+5–10%).

Кроме того Intel серьезно увеличила быстродействие интегрированного видеоядра, при этом не только улучшив скоростные показатели, но и расширив их функциональность. В целом, Intel еще есть к чему стремиться на пути к совершенствованию своего GPU, но прогресс здесь очевиден. Конечно, речь о том, что подобные решения готовы стать частью серьезной игровой системы, еще не идет, но AMD и NVIDIA пора начинать волноваться о судьбе своих доступных дискретных видеокарт для ноутбуков.

Тех, кого возможности интегрированного видео не слишком волнуют, в случае с Ivy Bridge получат несколько более производительные и экономичные чипы по цене предшественников. Это тоже довольно убедительный аргумент в пользу 22-нанометровых чипов. К тому же новинки могут работать с платами на чипсетах 6-ой серии, не требуя модернизации платформы.

По заявлению производителя, распространение чипов Ivy Bridge будет заметно более интенсивным, чем это было в случае с Sandy Bridge. Конечно, здесь многое будет зависеть от рыночной ситуации, но Intel не заинтересована в том, чтобы затягивать с анонсом новых моделей, и намерена в максимально сжатые сроки расширить ассортимент 22-нанометровых CPU.

Владельцы старших моделей Core i5/i7 с архитектурой Sandy Bridge могут спокойно перевести дух. Эти процессоры еще более, чем актуальны, и менять их на новые особого резона нет. Для тех же, кто планировал обновить собственную систему, переходя с платформ предыдущих поколений, 22-нанометровые чипы Ivy Bridge станут отличным решением.

Если выбор стоит между процессорами Ivy Bridge и Sandy Bridge с разблокированными множителями, то здесь нужно определиться со своими приоритетами. На одной чаше весов – сниженный уровень TDP, поддержка PCI Express 3.0, возможность использовать очень быструю память и ряд мелких полезных улучшений, на другой – дополнительные 100–200 МГц тактовой частоты при максимальном разгоне с воздушным кулером. Каким бы ни было решение, оно будет вполне оправданным для каждого отдельно взятого случая.

Если же говорить о процессорах с заблокированным множителем, то здесь все достаточно прозрачно. По сравнению с Sandy Bridge чипы Core третьего поколения имеют расширенную функциональность, чуть большую производительность и будут гарантированно экономичнее предшественников. При равной стоимости моделей со схожими тактовыми частотами, выбор кажется достаточно очевидным.