Для чего нужна реактивная мощность. Разбираемся с понятиями активной и реактивной нагрузки

Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

Активная мощность – это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

Реактивная энергия , производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

Q=I*sin⁡φ; P=I*cosφ

Полную мощность можно найти по теореме Пифагора:

S=√(P^2+Q^2);

При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.


В настоящее время взаимоотношения энергоснабжающих организаций и потребителей электроэнергии рассматриваются широким кругом лиц неэнергетического образования (коммерческие менеджеры, юристы и другие специалисты). Использование понятия реактивная мощность (реактивная энергия) в практике денежных расчетов между поставщиками и потребителями электроэнергии и наличие отдельных счетчиков активной и реактивной энергии вызывает у многих представление о поставке потребителям двух видов продукции. Это не так. По электрической сети не передаются электроны разного цвета - красные активной энергии и голубые реактивной. Так что же такое реактивная мощность и реактивная энергия?

Рассмотрим в самом простом виде свойства переменного тока. Переменный ток называют так не в том смысле, что его значение изменяется в процессе потребления энергии. Оно может оставаться и постоянным. Под переменным током в узком смысле понимают периодический ток, мгновенные значения которого в течение каждого небольшого периода (для переменного тока частоты 50 Гц это 1/50 доля секунды) проходят цикл изменения от минимального до максимального значения, и наоборот. Графически этот цикл отображается синусоидой. Переменным в этом смысле является и напряжение. В целом же для цепей, в которых и напряжение, и ток циклически изменяются, используется термин «цепи переменного тока».

В цепях переменного тока существует много элементов, которые разделены воздушными промежутками - обмотки высокого и низкого напряжения трансформаторов или статор и ротор вращающейся машины (двигателя и генератора) не имеют электрической связи между собой. Тем не менее электрическая энергия передается через это воздушное пространство, являющееся фактически непроводящим ток диэлектриком. Это происходит в связи с возникновением под действием переменного тока переменного магнитного поля в индуктивности, а под действием переменного напряжения - переменного электрического поля в емкости (в комбинации — электромагнитного поля). Полям, как известно, воздух не преграда. Переменное магнитное поле, образуемое одной из разделенных обмоток, постоянно пересекает своими магнитными линиями витки другой обмотки, наводя в ней электродвижущую силу. Ее величина такова, что вся мощность первичной обмотки переходит на вторичную обмотку. В конденсаторе те же самые функции осуществляет электрическое поле.

Магнитное и электрическое поля существуют вокруг любого проводника, который находится под напряжением и по которому идет ток. Теоретически можно передать мощность по воздуху с одной из параллельно проложенных линий на другую. Правда, чтобы передать существенную мощность, линии должны быть длиной в сотни тысяч километров. Для переброски через воздушные промежутки большой мощности в устройстве приемлемого размера нужно сильное магнитное поле, сконцентрированное в небольшом пространстве. Это достигается обматыванием вокруг металлического сердечника (ярма) многочисленных витков, расположенных близко друг к другу, и применением для изготовления сердечников специальной стали, обеспечивающей большую взаимоиндукцию.

Электромагнитная энергия непосредственно преобразуется в тепловую, механическую, химическую и другие виды полезной работы в элементах, обладающих активным сопротивлением, обозначаемым R. В элементах, представляющих собой индуктивность L и емкость С, электромагнитная энергия на половине периода запасается, а на второй половине периода возвращается в источник. При этом синусоида тока, создающего магнитное поле, всегда на четверть периода (90 эл. градусов) отстает от синусоиды напряжения, а синусоида тока, создающего электрическое поле, опережает.

Сопротивления таких элементов связаны с индуктивностью и емкостью и частотой f соотношениями: X L = 2πfL и X С = 1/2πfС. Из этих соотношений видно, что эти сопротивления существуют только в цепях переменного тока, а в цепях постоянного тока (f = 0) X L превращается в 0 (короткое замыкание), а X С — в бесконечность (разрыв цепи). В связи с возвратным характером их действия эти сопротивления называют реактивными, а ток, обусловленный обменной электромагнитной энергией, — реактивным током. Так как реактивный ток сдвинут относительно активного на 90°, то естественно, что полный ток определяется как корень квадратный из суммы квадратов активного и реактивного тока.

Прохождение через сеть «сдвинутого» тока можно сравнить с продвижением людей через проход, пропускная способность которого составляет, например, 10 человек одновременно. При этом в восьми рядах люди все время идут в одном направлении, а в двух рядах одни и те же люди то идут, то возвращаются. В результате число людей, перешедших на другую сторону, следует считать исходя из пропускной способности восемь человек, а проход все время загружен десятью рядами. Аналогична ситуация и с пропускной способностью электрической сети. Разница лишь в том, что активная и реактивная составляющие тока складываются не арифметически, а в квадрате, поэтому реактивная составляющая в меньшей степени занимает сечение. Для полноты сравнения можно считать, что два ряда людей ходят боком и потому занимают меньше места.

Полупериоды запасания и возврата электромагнитной энергии индуктивностью и емкостью сдвинуты на 180° (у первой ток сдвинут на -90°, а у второй на +90°), то есть они находятся в противофазе. Поэтому при наличии рядом сопротивлений X L = X С обменная часть электромагнитной энергии не возвращается в источник, а эти элементы постоянно обмениваются ею между собой. Уже должна возникнуть мысль, а не поставить ли у потребителя электроэнергии, в сетях которого полно индуктивностей, емкость? И пусть они обмениваются между собой этой частью электромагнитной энергии, разгрузив от нее сеть и предоставив ей возможность передавать только ту часть электромагнитной энергии, которая преобразуется в полезную работу? Эта операция и называется компенсацией реактивной мощности (КРМ).

Реактивная энергия не выполняет никакой работы в том смысле, что она не может, как активная энергия, превращаться в тепловую или механическую энергию. Так как в физике понятия энергии и работы тождественны, то, строго говоря, словосочетание «реактивная энергия» физически бессмысленно. Тем не менее, применение на практике этого условного понятия удобно. Раз уж возникает дополнительный ток, названный реактивным, то его произведение на напряжение вроде бы по-другому как мощностью не назовешь, а интегрирование мощности по времени формально называется энергией. Более того, сдвинув на 90° обмотку электрического счетчика, можно заставить его считать произведение на напряжение только тока, сдвинутого на 90°, - появляется наглядное подтверждение существования реактивной энергии (счетчик ведь показывает!).

Реактивный ток не только отнимает у активного тока часть пропускной способности сети, но и на его прохождение по проводам затрачивается определенная часть активной энергии , так как потери мощности ΔР = 3I²R, где I - полный ток. Счетчик активной энергии (по большому счету только ее и можно назвать энергией, поэтому он называется просто счетчик электроэнергии) покажет одно и то же значение и при наличии, и при отсутствии реактивной составляющей тока. Поэтому только по его показаниям нельзя правильно оценить режимы линий передачи электроэнергии (в приведенном выше примере счетчик будет показывать движение восьми рядов, полностью игнорируя два двигающихся туда и обратно). Для оценки же режима сети необходимо знать обе составляющие. Активная и реактивная составляющие полного тока по-разному влияют на напряжение в точках потребления энергии. Потери напряжения от передачи активной составляющей тока в подавляющей степени определяются сопротивлением R, а реактивной — сопротивлением X L . В элементах линий электропередачи обычно X L >> R, поэтому прохождение по сети реактивного тока приводит к гораздо большему снижению напряжения, чем активного тока той же величины.

Итак, в сети переменного тока нет ничего, кроме циклически изменяющихся мгновенных значений тока и напряжения, циклы которых сдвинуты относительно друг друга на некоторую часть периода. При графическом изображении их в виде векторов говорят, что они сдвинуты на некоторый угол φ. Поэтому анекдотический ответ студента на экзамене, что три провода нужны потому, что по первому передается напряжение, по второму ток, а по третьему cos φ, можно считать более близким к истине, чем представление о поставке потребителям двух видов продукции.

Увидела в интернете энергосберегающие устройства, которые, как я поняла прсто включаются в ближайшую к счетчику розетку. Может кто пользовался? Действительно экономят энергию? И еще пишут, что они повышают качество электроэнергии и таким образом предотвращают порчу электроприборов. Хотелось бы услышать отзывы.

При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки. Активная мощность всегда измеряется и указывается в ваттах (Вт), а полная мощность приводится обычно в вольт-амперах (ВА). Различные приборы - потребители электрической энергии могут работать в цепях, имеющих как активную, так и реактивную составляющую электрического тока.

Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.). Отдельные электроприборы работают в основном на этой составляющей мощности. Это - лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п.
При указанном в паспорте прибора значении активной потребляемой мощности в 1 кВт он будет потреблять от сети полную мощность в 1кВА.

Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее - её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. - для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.

По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:

1. Активный тип нагрузки поглощает всю получаемую от источника энергию и превращает её в полезную работу (свет от лампы, например), причём форма тока в нагрузке в точности повторяет форму напряжения на ней (сдвиг фаз отсутствует).

2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю (а не перекачивание её туда и обратно) - реактивная составляющая мощности обычно считается вредной характеристикой цепи.

Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю.
Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности (cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности.
Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением - угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие собой вспомогательные генераторы опережающего (емкостного) тока.
Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые в качестве синхронных компенсаторов.

Реактивная мощность – часть электрической энергии, возращенная нагрузкой источнику. Явление возникновения ситуации считается вредным.

Возникновение реактивная мощность

Допустим, цепь содержит источник питания постоянного тока и идеальную индуктивность. Включение цепи порождает переходный процесс. Напряжение стремится достичь номинального значения, росту активно мешает собственное потокосцепление индуктивности. Каждый виток провода согнут круговой траекторией. Образуемое магнитное поле будет пересекать соседствующий сегмент. Если витки расположены один за другим, характер взаимодействия усилится. Рассмотренное называется собственным потокосцеплением.

Характер процесса таков: наводимая ЭДС препятствует изменениям поля. Ток пытается стремительно вырасти, потокосцепление тянет обратно. Вместо ступеньки видим сглаженный выступ. Энергия магнитного поля потрачена, чтобы воспрепятствовать процессу создавшему. Случай возникновения реактивной мощности. Фазой отличается от полезной, вредит. Идеально: направление вектора перпендикулярно активной составляющей. Подразумевается, сопротивление провода нулевое (фантастический расклад).

При выключении цепи процесс повторится обратным порядком. Ток стремится мгновенно упасть до нуля, в магнитном поле запасена энергия. Пропади индуктивность, переход пройдет внезапно, потокосцепление придает процессу иную окраску:

  1. Уменьшение тока вызывает снижение напряженности магнитного поля.
  2. Произведенный эффект наводит противо-ЭДС витков.
  3. В результате после отключения источника питания ток продолжает существовать, понемногу затухая.

Графики напряжения, тока, мощности

Реактивная мощность некое звено инерции, постоянно запаздывающее, мешающее. Первый вопрос: зачем тогда нужны индуктивности? О, у них хватает полезных качеств. Польза заставляет мириться с реактивной мощностью. Распространенным положительным эффектом назовем работу электрических двигателей. Передача энергии идет через магнитный поток. Меж витками одной катушки, как было показано выше. Взаимодействию подвержены постоянный магнит, дроссель, все, способное захватить вектором индукции.

Случаи нельзя назвать в смысле описательном всеобъемлющими. Иногда применяется поток сцепления в виде, показанном для примера. Принцип используют пускорегулирующие аппараты газоразрядных ламп. Дроссель снабжен несметным количеством витков: отключение напряжения вызывает не плавное снижение тока, но выброс большой амплитуды противоположной полярности. Индуктивность велика: отклик поистине потрясающий. Превышает исходные 230 вольт на порядок. Достаточно, чтобы возникла искра, лампочка зажглась.

Реактивная мощность и конденсаторы

Реактивная мощность запасается энергией магнитного поля индуктивностями. А конденсатор? Выступает источником возникновения реактивной составляющей. Дополним обзор теорией сложения векторов. Поймет рядовой читатель. В физике электрических сетей часто используются колебательные процессы. Всем известные 220 вольт (теперь принятые 230) в розетке частотой 50 Гц. Синусоида, амплитуда которой равна 315 вольт. Анализируя цепи, удобно представить вращающимся по часовой стрелке вектором.

Анализ цепей графическим методом

Упрощается расчет, можно пояснить инженерное представление реактивной мощности. Угол фазы тока считают равным нулю, откладывается вправо по оси абсцисс (см. рис.). Реактивная энергия индуктивности совпадает фазой с напряжением UL, опережает на 90 градусов ток. Идеальный случай. Практикам приходится учитывать сопротивление обмотки. Реактивной на индуктивности будет часть мощности (см. рис.). Угол меж проекциями важен. Величина называется коэффициентом мощности. Что означает на практике? Перед ответом на вопрос рассмотрим понятие треугольника сопротивлений.

Треугольник сопротивлений и коэффициент мощности

Чтобы проще вести анализ электрических цепей, физики предлагают использовать треугольник сопротивлений. Активная часть откладывается, как ток, – вправо оси абсцисс. Договорились, индуктивность направлять вверх, емкость – вниз. Вычисляя полное сопротивление цепи, значения вычитаем. Исключено комбинированный случай. Доступно два варианта: реактивное сопротивление положительное, либо отрицательное.

Получая емкостное/индуктивное сопротивление, параметры элементов цепи домножают коэффициентом, обозначаемым греческой буквой «омега». Круговая частота – произведение частоты сети на удвоенное число Пи (3.14). Еще одно замечание по поводу нахождения реактивных сопротивлений укажем. Если индуктивность просто домножается указанным коэффициентом, для емкостей берутся величины обратные произведению. Понятно из рисунка, где приведены указанные соотношения, помогающие вычислять напряжения. После домножения берем алгебраическую сумму индуктивного, емкостного сопротивлений. Первые рассматриваются положительными величинами, вторые – отрицательными.

Формулы реактивных составляющих

Две составляющие сопротивления – активная и мнимая – являются проекциями вектора полного сопротивления на оси абсцисс и ординат. Углы сохраняются при переносе абстракций на мощности. Активная откладывается по оси абсцисс, реактивная — вдоль сои ординат. Емкости и индуктивности являются основополагающей причиной возникновения в сети негативных эффектов. Было показано выше: без реактивных элементов становится невозможным построение электротехнических устройств.

Коэффициентом мощности принято называть косинус угла меж полным вектором сопротивления и горизонтальной осью. Столь важное значение параметру приписывают, поскольку полезная часть энергии источника является долей полных трат. Доля высчитывается умножением полной мощности на коэффициент. Если векторы напряжения и тока совпадают, косинус угла равен единице. Мощность теряется нагрузкой, улетучиваясь теплом.

Сказанному верить! Средняя мощность периода при подключении к источнику чисто реактивного сопротивления равна нулю. Половину времени индуктивность принимает энергию, вторую отдает. Обмотка двигателя обозначается на схемах прибавлением источника ЭДС, описывающего передачу энергии валу.

Практическое истолкование коэффициента мощности

Многие замечают неувязку в случае практического рассмотрения реактивной мощности. Для снижения коэффициента рекомендуют параллельно обмоткам двигателя включать конденсаторы большого размера. Индуктивное сопротивление уравновешивает емкостное, ток вновь совпадает с напряжением фазой. Сложно понять вот по какой причине:

  1. Допустим, к источнику переменного напряжения подключили первичную обмотку трансформатора.
  2. В идеале активное сопротивление равно нулю. Мощность должна быть реактивной. Но это плохо: угол между напряжением и током стремятся сделать нулевым!

Но! Колебательный процесс безучастен работе двигателей, трансформаторов. Теория реактивной мощности предполагает: колебания совершает вся энергия. До последней капли. В трансформаторе, двигателе из поля происходит активная «утечка» энергии на совершение работы, наведение тока вторичной обмотки. Энергия циркулировать между источником и потребителем не может.

Реальная цепь процесс согласования отдельных участков затрудняет. Для перестраховки поставщики требуют установить параллельно обмотке двигателя конденсаторы, чтобы энергия циркулировала в локальном сегменте, не выходила наружу, нагревая соединительные провода. Важно избежать перекомпенсации. Если емкость конденсаторов будет слишком велика, батарея станет причиной увеличения коэффициента мощности.

Что касается сдвига фаз, возникает на вторичной обмотке трансформатора подстанции. Роль играет не это. Двигатель работает, часть энергии не преобразована в полезную работу, отражается назад. В результате возникает коэффициент мощности. Участвующая составляющая индуктивности – технологический, конструкционный дефект. Часть, не приносящая пользы. Скомпенсируем, добавляя конденсаторные блоки.

Проверка правильности согласования ведется по факту отсутствия сдвига фаз между напряжением и током работающего электродвигателя. Лишняя энергия циркулирует меж избыточной индуктивностью обмоток, установленным конденсаторным блоком. Достигнута цель мероприятия – избежать нагрева проводников питающей устройство сети.

Что предлагают под видом экономии электроэнергии

В сети предлагают купить устройства экономии электроэнергии. Компенсаторы реактивной мощности. Важно не перегнуть палку. Допустим, компенсатор будет уместно смотреться рядом с включенным компрессором холодильника, коллекторным двигателем пылесоса, обременять квартиру мерами при работающих лампочках накала – предприятие сомнительное. До установки потрудитесь узнать сдвиг фаз меж напряжением и током, согласно информации, правильно рассчитайте объем блока конденсаторов. Иначе попытки сэкономить таким образом потерпят неудачу, разве случайно удастся навести палец в небо, попасть в точку.

Вторым аспектом компенсации реактивной мощности является учет. Делается для крупных предприятий, где стоят мощные двигатели, создающие большие углы сдвига фаз. Внедряют специальные счетчики учета реактивной мощности, оплачиваемой согласно тарифу. Для расчетов коэффициента оплаты применяется оценка тепловых потерь проводов, ухудшение режима эксплуатации кабельной сети, некоторые другие факторы.

Перспективы дальнейшего изучения реактивной энергии, как явления

Реактивная мощность выступает явлением отражения энергии. Идеальные цепи явления лишены. Реактивная мощность проявляется выделенным теплом на активном сопротивлении кабельных линий, искажает синусоидальную форму сигнала. Отдельная тема разговора. При отклонениях от нормы двигатели работают не столь гладко, трансформаторам – помеха.

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей. О том, что такое активная и реактивная электроэнергия и как проверить сумму начисленных оплат, попытаемся рассказать в этой статье.

Полная мощность

По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения - полная мощность измеряется в вольт-амперах (ВА), а полезная - в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств - электроплиты, лампы накаливания, электропечи, обогреватели, утюги и и прочее.

Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии

Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия - это часть полной поступаемой мощности, которая не расходуется на полезную работу.

В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ».

При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной - ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации.

Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии

Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент.

Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7.

Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом. Баланс активной и реактивной мощности в цепи может быть наглядно представлен в виде этого забавного рисунка:

Значение коэффициента при учете потерь

Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии - а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов

Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется - в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются.

Учет реактивной электроэнергии для предприятий

Другое дело - предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты.
Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии

Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности

Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию.

В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Понимание сущности активной и реактивной энергии дает возможность грамотно рассчитать экономический эффект от установки различных компенсационных устройств, снижающих потери от реактивной нагрузки. Согласно статистике, такие устройства позволяют поднимать значение cos φ от 0.6 до 0.97. Тем самым автоматические компенсаторные устройства помогают сэкономить до трети предоставляемой потребителю электроэнергии. Значительное уменьшение тепловых потерь увеличивает срок эксплуатации приборов и механизмов на производственных участках и снижает себестоимость готовой продукции.