Цветомузыка на светодиодах своими руками схемы. Схема цветомузыки своими руками

Пошаговая сборка несложной конструкции светодиодной цветомузыки, с попутным изучением радиолюбительских программ

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Собираем светодиодную светомузыку (цветомузыку).
Часть 1.

На сегодняшнем занятии в Школе начинающего радиолюбителя мы начнем собирать светодиодную светомузыку . В ходе этого занятия мы не только соберем светомузыку, но и изучим очередную радиолюбительскую программу “Cadsoft Eagle” – несложное, но в тоже время мощное комплексное средство для разработки печатных плат и научимся изготавливать печатные платы с использованием пленочного фоторезиста. Сегодня мы выберем схему, рассмотрим как она работает, подберем детали.

Светомузыкальные (цветомузыкальные) устройства были очень популярны во времена Советского Союза. Были они, в основном, трехцветными (красный, зеленый или желтый и синий) и собирались чаще всего по простейшим схемам на более-менее доступных тиристорах КУ202Н (которые, если мне не изменяет память, в магазинах стоили более 2 рублей, т.е. были довольно дорогими) и простейших входных фильтрах звуковой частоты на катушках намотанных на отрезках ферритовых стержней от радиоприемников. Выполнялись они в основном в двух вариантах – в виде трехцветных прожекторов на лампочках освещения 220 вольт, или делался специальный корпус в виде коробки, где внутри располагалось по некоторому количеству лампочек каждого цвета, а спереди ящик закрывался матовым стеклом, что позволяло получать на таком экране причудливое световое сопровождение музыки. Так-же, для экрана применяли обычное стекло, а сверху на него наклеивали для лучшего рассеивания света мелкие осколки автомобильных стекол. Вот такое было трудное детство. Зато сегодня, в век развития непонятного капитализма в нашей стране, есть возможность собрать светомузыкальное устройство на любой вкус, чем мы и займемся.

За основу мы возьмем схему светодиодной светомузыки опубликованной на сайте:

К этой схеме мы добавим еще два элемента:

1. . Так как у нас на входе будет стереосигнал, и чтобы не терять звук с какого-то канала, или не соединять два канала напрямую между собой, мы применим вот такой входной узел (взят с другой схемы светомузыки):

2. Блок питания устройства . Схему светомузыки мы дополним блоком питания собранным на микросхемном стабилизаторе КР142ЕН8:

Вот приблизительно такой комплект деталей мы должны собрать:

Светодиоды для этого устройства можно использовать любого типа, но обязательно сверхяркие и разного цвета свечения. Я буду использовать сверхяркие узконаправленные светодиоды, свет от которых будет направлен на потолок. Вы, естественно, можете применить другой вариант светового отображения звукового сигнала и использовать другой тип светодиодов:

Как работает данная схема . Стереосигнал с источника звука поступает на входной узел, который суммирует сигналы с левого и правого канала и подает его на переменные сопротивления R6, R7, R8 которыми регулируется уровень сигнала для каждого канала. Далее сигнал поступает на три активных фильтра, собранных по идентичной схеме на транзисторах VT1-VT3, которые отличаются только номиналами конденсаторов. Смысл работы этих фильтров заключается в том, что они пропускают через себя только строго определенную полосу звукового сигнала, отсекая сверху и снизу ненужный диапазон частот звукового сигнала. Верхний (по схеме) фильтр пропускает полосу 100-800 Гц, средний – 500-2000 Гц и нижний – 1500-5000 Гц. С помощью подстроечных резисторов R5, R12 и R16 можно сдвигать в любую сторону пропускаемую полосу. Если вы хотите получить другие полосы пропускания сигнала фильтров, то можно поэкспериментировать с номиналами конденсаторов, входящих в фильтры. Далее сигналы с фильтров поступают на микросхемы А1-А3 – LM3915. Что это за микросхемы.

Микросхемы LM3914, LM3915 и LM3916 фирмы National Semiconductors позволяют строить светодиодные индикаторы с различными характеристиками - линейной, растянутой линейной, логарифмической, специальной для контроля аудиосигнала. При этом LM3914 – для линейной шкалы, LM3915 – для логарифмической шкалы, а LM3916 – для специальной шкалы. Мы используем микросхемы LM3915 – с логарифмической шкалой контроля аудиосигнала.

Начальная страница даташита микросхемы:

(327.0 KiB, 3,977 hits)

Вообще, я вам советую, сталкиваясь с новым, неизвестным радиокомпонентом, ищите на просторах интернета его даташит и изучайте его, тем более, что встречаются и переведенные на русский язык даташиты.

К примеру, что мы можем подчерпнуть с первого листа даташита LM3915 (даже с минимальным знанием английского языка, а в крайнем случае с использованием словаря):
- эта микросхема – индикатор уровня аналогового сигнала с логарифмической шкалой отображения и шагом 3 dB;
– можно подключать как светодиоды, так и LCD индикаторы;
– индикацию можно осуществлять в двух режимах: “точка” и “столбик”;
– максимальный выходной ток на каждый светодиод – 30 мА;
– и так далее…

Кстати, чем отличается “точка” от “столбика”. В режиме “точка”, при включении следующего светодиода, предыдущий гаснет, а в режиме”столбик” гашение предыдущих светодиодов не происходит. Для переключения в режим “точка” достаточно отсоединить вывод 9 микросхемы от “+” источника питания, или подключить его к “земле”. Кстати, на этих микросхемах можно собирать очень полезные и интересные схемы.

Продолжим. Так как на входы микросхем подается переменное напряжение, то светящийся столбик из светодиодов будет с неравномерной яркостью, т.е. с увеличением уровня входного сигнала будут не просто зажигаться очередные светодиоды, но и меняться яркость их свечения. Ниже привожу таблицу порогового включения каждого светодиода для разных микросхем в вольтах и децибелах:

Характеристики и цоколевка транзистора КТ315:

На этом первую часть занятия по сборке светодиодной светомузыки заканчиваем и начинаем собирать детали. В следующей части занятия мы изучим программу для разработки печатных плат “Cadsoft Eagle” и изготовим печатную плату для нашего устройства с использованием пленочного фоторезиста.

Такая светодиодная цветомузыка подойдет для тех, кто слушает музыку на компьютере. Ее можно разместить внутри корпуса и он будет подсвечиваться в такт музыки.

Схема цветомузыки очень простая и не представляет никаких сложностей.


Необходимые компоненты:
1. 4 светодиода (любого цвета) 3мм
2. Р2 вилка
3. 2-позиционный переключатель
4. Биполярный транзистор TIP31
5. Коробка (если нужна), можно разместить и непосредственно в корпусе компьютера
6. Паяльник
7. Кабель

Подключаем 4 светодиода к +12 В компьютера, анод подключаем к 2-х позиционному выключателю, который в свою очередь соединяется с биполярным транзистором TIP31. Два незадействованных конца транзистора подключаем непосредственно к выводам штеккера для наушников или колонок Р2.

Все собранные компоненты устанавливаем в коробку (ящик), или непосредственно в корпус компьютера - это каждому на свое усмотрение. Мы сделали отверстия под светодиоды, переключатель и штеккер.

Монтаж светодиодной цветомузыки в коробку

Соедиянем светодиоды, транзистор и переключатель

1 of 2


Соединяем светодиоды


Общий собранный вид с транзисторами

Дальше - самое интересное. Необходимо спаять светодиоды между собой, транзистором и выключателем. По фотографиям это понятно без слов. Единственное, нам пришлось подбирать длину проводников так, чтобы они помещались в коробку.

Общий минус от светодиодов подключаем к среднему контакту переключателя. От переключателя одно из положений присоединяется к среднему пину транзистора, второе положение соедините согласно схемы цветомузыки, которую мы представили выше.

Монтаж проводов к штеккеру Р2

Заключительная стадия

1 of 2


Монтаж схемы диодной цветомузыки


Спаянный штеккер

Если разобрать штеккер от наушников, то внутри мы можем увидеть три разъема - левый и правый канал, земля. Один из каналов соединяем с левым пином транзистора Tip31. Если подключение Р2 будет через левый канал и он не будет "биться"с выходом компьютера, то наша схема не будет работать. Поэтому сразу правильно определяйтесь или экспериментируйте. Земля (обычно длинный разъем) должна присоединяться к правому пину транзистора.

Один из пинов переключателя должен соединяться с землей от транзистора. При таком соединении светодиоды начнут мигать, если на выходе будет какой-либо сигнал. Если с разъема Р2 не идет никакого сигнала, если сигнал будет с другой стороны, то они будут светиться постоянно.

Монтируем все в коробку, подключаем и проверяем работоспособность.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия - прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности - это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу - цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум - одного, а максимум - группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой - либо заданной программе, то цветомузыкальная установка считается - автоматической.
Именно такого рода "цветомузыки" обычно собирают своими руками начинающие конструкторы - радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема "цветомузыки" на тиристорах КУ202Н.


Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую "светомузыку". Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний - зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое - звенящее и пищащее.

Недостаток один - необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти "на полную" врубать свою "Электронику" для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот - низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема "цветомузыки" на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте - на три канала. По первому каналу идет самая низкочастотная составляющая сигнала - фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны - 1 мкФ, но как показала практика - их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту - примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны - 0,015 мкФ, но их емкость следует увеличить, до 0,33 - 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны - 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) - от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае - это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы - до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум - 2А. Если количество ламп на каждый канал увеличить - соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум - 250 мА(а лучше - больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, - собирают активный фильтр. Далее - проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем - реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после "чистовой" сборки на монтажной плате, если работа проведена без ошибок и с применением "испытанных" деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом - поможет избавиться от навесных проводов-перемычек.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Пик популярности цветомузыкальных установок приходится на 80-е годы прошлого века. Сейчас о них как-то почти позабыли. И все же, время не стоит на месте, и есть новые технологии, способные оживить «цветомузыку» в новом виде. Вот, например, трехцветные светодиодные RGB-ленты или гирлянды, они могут быть значительной длины и работать даже как осветительный прибор. Только, управляются они обычно по программе, как ёлочные гирлянды или реклама, ну или можно менять с их помощью цвет освещения в помещении. А если все это будет завязано на музыку? Представьте, экран ЦМУ размером с потолок! Но для этого нужно соответствующее устройство управления.

На рисунке показана экспериментальная схема ЦМУ, работающая с RGB-свето-диодной лентой или гирляндой. Все как у «типовой» ЦМУ, - три частотных канала, три выходных ключа, к которым соответственно подключены три цвета RGB-светодиодной ленты (или гирлянды).
Схема полосовых фильтров выполнена на микросхемах LM567.
Микросхемы LM567 являются тональными декодерами с ФАПЧ, они предназначены для работы в системах управления с частотным кодирование и представляют собой активные фильтры с очень узкой полосой захвата ФАПЧ. В данном случае, чтобы перекрыть весь звуковой диапазон хотя бы от 50 Гц до 12000 Гц на три полосы нужно расширить полосы захвата ФАПЧ микросхем. Полоса захвата ФАПЧ ИМС LM567 зависит от конденсатора на выводе 2, чем его емкость больше, тем уже полоса. Обычно там несколько мкФ, но здесь емкости этих конденсаторов уменьшены до 0,047 мкФ, в результате полоса захвата очень расширилась, и стала достаточной для использования микросхем LM567 в качестве фильтров в цветомузыкальной установке.
Диапазон входного напряжения ЗЧ на входе ИМС LM567 - 20-200 мВ, при частоте, соответствующей полосе настройки фильтра происходит захват. Если частота входного сигнала лежит в пределах полосы на выходе ИМС LM567 открывается ключ, между выводом 8 и общим минусом питания.
Входной сигнал поступает на разъем Х1, номинальная величина входного напряжения ЗЧ должна быть в районе 100-300 мВ. Это напряжение поступает на три регулятора на переменных резисторах R1, R6, R11. Этими переменными резисторами в процессе работы устройства устанавливаются оптимальные уровни ЗЧ сигналов по частотным каналам, конкретно для каждого случая воспроизведения, так чтобы получить желаемый эффект.
Значения средних частот полос устанавливаются RC-цепями, подключенными между выводами 5 и 6 микросхем LM567. Подсчитать их можно по формуле:

F = 1/ (1,1*R*C)


F - частота в кГц, R - сопротивление в кОм, С - емкость в мкФ.
Соответственно, центральные частоты выбраны 150 Гц, 900 Гц, и 9000 Гц. При желании, пользуясь вышеуказанной формулой можно выбрать другие центральные частоты полос. При этом можно подбирать не только конденсаторы, но и резисторы (включенные между выводами 5 и 6 ИМС LM567).
Рассмотрим работу на примере низкочастотного канала на А1. Пока сигнала частотой в полосе частот фильтра нет, либо его уровень мал, на выходе, на выводе 8 А1 будет напряжение логической единицы (выходной ключ закрыт, выход подтянут к плюсу питания через резистор R2). На элементах D1.1-D1.2 выполнен триггер Шмитта, его выходом является выход элемента D1.1, поэтому когда на выходе А1 единица, на выходе D1.1 имеется логический ноль. Ключ на полевом мощном транзисторе VT1 закрыт и питание на R-часть светодиодной RGB-ленты не поступает.
Если на входе А1 есть напряжение ЗЧ с частотой в полосе частот фильтра, и его уровень достаточен для захвата, на выходе, на выводе 8 А1 будет напряжение логического нуля (выходной ключ открыт). На выходе D1.1 при этом - логическая единица. Транзистор VT1 открывается и включает питание R-части светодиодной RGB-ленты.
Аналогично работают и два других канала, среднечастотный на А2 и высокочастотный на А3, разница только в частоте входного напряжения ЗЧ.
В принципе, затворы полевых ключевых транзисторов можно и непосредственно подключить к выходам LM567, но, во-первых, схема будет работать наоброт, то есть, когда сигнала нет светодиодная лента будет гореть, а когда есть, - гаснуть. И во-вторых, транзисторы будут перегреваться, потому что будет затянут во времени процесс их открывания, и существенное время они будут находиться в среднем состоянии, когда на канале падает значительное напряжение, и мощность. Триггер Шмитта устраняет эти проблемы.
Монтаж выполнен на макетной плате.

Чтобы своими руками сделать цветомузыку на светодиодах нужно иметь хотя бы элементарные понятия об электронике, знать, как обращаться с паяльником и правильно разбирать чертежи.

Принцип работы

В основе подобного устройства используют метод частного преобразования звука и его передачи определенным каналам с целью контролировать источник света. В итоге выходит, что в зависимости от музыкальных параметров, работа цепи будет полностью ей отвечать. Именно на данных принципах базируется схема, по которой происходит сбор.

Обычно, чтобы создать цветовые эффекты, применяют от трех и более различных цветов. Чаще применяют красный, синий и зеленый. Благодаря смешению в определенные комбинации с четкой продолжительностью, они создают настоящий праздник.

Разделение частот на высокие, средние, а также низкие происходит за счет RC и LC фильтров, которые монтируются и настраиваются в систему, в которой используют светодиоды.

Фильтры настраиваются по таким параметрам:

  • Для низкочастотных деталей отводится до 300 герц, и он, чаще обычного, красный;
  • Средние – 250 – 2500Гц, зеленый;
  • Все, что больше отметки в 2000 герц преобразуют высокочастотные фильтры и именно от этого элемента зависит то, как будет работать светодиод с синим оттенком.

Чтобы во время работы получались разнообразные цветовые оттенки, деление на частоты должно осуществляться с незначительным перекрытием. В рассматриваемой схеме выбор цвета не столь важен, потому что при желании можно воспользоваться различными светодиодами, переставлять их местоположение и экспериментировать, здесь все зависит от желания мастера. Необычная цветовая программа вкупе с колебаниями могут оказать значительное влияние на итоговый результат. Для осуществления настройки есть и такие показатели как частота или число каналов.

Исходя из данной информации, можно понять, что в цветомузыке может быть задействовано значительное количество различных оттенков, а также непосредственное программирование каждого.

Что нужно, чтобы изготовить цветомузыку

Для создания подобной установки можно пользоваться только постоянными резисторами, мощность которых 0.25-0.125. Чтобы узнать величину сопротивления смотрим на полоски, расположенные на основании.

В цепь также включены R3 резисторы и подстроченные R. Главное условие, возможность установить их на плату, на которой производится установка. Если говорить о конденсаторах, то при работе берутся изделия, рабочее напряжение которых не меньше 16 вольт (при этом вид подойдет любой). Если найти конденсаторы С7 проблематично, то разрешено параллельное соединение пары меньших по емкости, тогда вы получите необходимые значения. Используемые в изучаемом варианте конденсаторы С6, а также С1, должны запускаться на 10 вольтах, а остальные при 25. В случае, когда устаревшие советские детали требуется заменить импортными, то необходимо понимать, что все они обозначаются по-разному. Поэтому заранее позаботьтесь об определении полярности элементов, которые будут монтироваться. В противном случае, схема может выйти из строя.

Также, чтобы создать цветомузыку своими руками, вам понадобится диодной мост, рабочий ток которого составляет 200 миллиампер, а напряжение – 50В. В ситуации, когда установка готового моста невозможна, его можно создать с помощью выпрямительных диодов. Для комфорта они могут быть удалены с платы и вмонтированы отдельно, с использованием рабочего пространства меньших размеров.

Для создания одного канала потребуется 6 штук светодиодов всех цветов. Если говорить о транзисторах, то вполне подойдут VT2 и VT1, здесь индекс не играет особой роли.