Что представляет собой стек. Структуры данных: общее понятие, реализация. Простейшие структуры данных: очередь, стек. Использование стека и обратная польская запись

Стек - это феномен программирования и естественное решение. Стек сразу пришел в компьютерное дело и стал таким «родным», как будто именно с него все начиналось.

Без стека не работает процессор, нет рекурсии и эффективные вызовы функций организовать невозможно. Любой алгоритм может обойтись без очереди, списка, коллекции, массива или системы организованных объектов, но без памяти и стека не работает ничего, в том числе все перечисленное.

На заре начала: процессор, память и стек

Идеальная память обеспечивает адресацию прямо к значению - это уровни машины и языка высокой степени. В первом случае процессор последовательно перебирает адреса памяти и выполняет команды. Во втором случае программист манипулирует массивами. В обоих эпизодах есть:

  • адрес = значение;
  • индекс = значение.

Адрес может быть абсолютным и относительным, индекс может быть цифровым и ассоциативным. По адресу и индексу может находиться другой адрес, а не значение, но это детали косвенной адресации. Без памяти процессор работать не может, а без стека команд и данных - он, как лодка без весел.

Стопка тарелок - традиционная новелла о сути стека: понятие stack и перевод в общебытовом сознании. Нельзя взять тарелку снизу, можно брать только сверху, и тогда все тарелки будут целы.

Все, что последним приходит в стек, уходит первым. Идеальное решение. По сути, stack, как перевод одного действия в другое, трансформирует представления об алгоритме как последовательности операций.

Суть и понятие стека

Процессор и память - основные конструктивные элементы компьютера. Процессор исполняет команды, манипулирует адресами памяти, извлекает и изменяет значения по этим адресам. На языке программирования все это трансформируется в переменные и их значения. Суть стека и понятие last in first out (LIFO) остается неизменным.

Аббревиатура LIFO уже не используется так часто, как раньше. Вероятно потому, что списки трансформировались в объекты, а очереди first in first out (FIFO) применяются по мере необходимости. Динамика типов данных потеряла свою актуальность в контексте описания переменных, но приобрела свою значимость на момент исполнения выражений: тип данного определяется в момент его использования, а до этого момента можно описывать что угодно и как угодно.

Так, стек - что это такое? Теперь вы знаете, что это вопрос неуместный. Ведь без стека нет современного программирования. Любой вызов функции - это передача параметров и адреса возврата. Функция может вызвать другую функцию - это опять передача параметров и адреса возврата. Наладить механизм вызова значений без стека - это лишняя работа, хотя достижимое решение, безусловно, возможное.

Многие спрашивают: "Стек - что это такое?". В контексте вызова функции он состоит из трех действий:

  • сохранения адреса возврата;
  • сохранения всех передаваемых переменных или адреса на них;
  • вызова функции.

Как только вызванная функция исполнит свою миссию, она просто вернет управление по адресу возврата. Функция может вызывать любое количество других функций, так как ограничение накладывается только размером стека.

Свойства стека

Стек - это не абстрактный тип данных, а реальный механизм. На уровне процессора - это «движок», который уточняет и дополняет работу основного цикла процессора. Как битовая арифметика, стек фиксирует простые и очевидные правила работы. Это надежно и безопасно.

Характерные свойства стека - это его размер и длина элементов. На уровне процессора все определяется разрядностью, адресацией памяти и физикой доступа к ней. Интересная особенность и традиция: стек растет вниз, то есть в сторону уменьшения адресов памяти, а память программ и данных - вверх. Это обычно, но не обязательно. Здесь важен смысл - пришел последним, а ушел первым. Это удивительно простое правило позволяет строить интересные алгоритмы работы прежде всего на языках высокого уровня. Теперь вы не будете спрашивать, стек - что это такое.

Безукоризненная работа аппаратного обеспечения уже очень давно является нормой, но на передовом крае информационных технологий идея стека обретает новые и перспективные применения.

По сути не важно, что такое стек на уровне процессора. Это естественная составляющая архитектуры компьютера. Но в программировании стек зависит от конкретного применения и способностей программиста.

Массивы, коллекции, списки, очереди... Стек!

Часто люди задают вопрос: "Стек - что это такое?". "Программирование" и "систематизация" - интересные понятия: они не синонимы, но так тесно связаны. Программирование прошло очень быстро такой длительный путь, что достигнутые вершины кажутся идеальными. Скорее всего, это не так. Но очевидно другое.

Идея стека стала привычной не только на уровне различных языков программирования, но и на уровне их конструкций и возможностей по созданию типов данных. Любой массив имеет push и pop, а понятия "первый и последний элементы массива" стали традиционными. Раньше были просто элементы массива, а сегодня есть:

  • элементы массива;
  • первый элемент массива;
  • последний элемент массива.

Операция помещения элемента в массив сдвигает указатель, а извлечение элемента с начала массива или с его конца имеет значение. По сути это тот же стек, но в применении к другим типам данных.

Особенно примечательно, что популярные языки программирования не имеют конструкции stack. Но они предоставляют его идею разработчику в полном объеме.

Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях - я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.

Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.

Стек

Стек - это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.

Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека - это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.

В итоге стек позволяет управлять памятью наиболее эффективным образом - но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.

Куча

Куча - это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.

Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями - это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.

В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности - если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.

– Игорь (Администратор)

В рамках данной статьи, я расскажу вам что такое стек , а так же для чего он нужен и где применяется.

Большое количество задач, связанных с информацией, поддаются типизированному решению. Поэтому нет ничего удивительного в том, что для многих из них уже давно придуманы методы, термины и описания. Например, нередко можно услышать такие слово, как стек. Звучит весьма сложно, однако все существенно проще.

Стек (stack) - это метод представления однотипных данных (можно просто называть типом) в порядке LIFO (Last In - First Out, что означает "первый вошел - последний вышел"). Стоит упомянуть, что в русской технике его так же называют "магазином". И речь тут не о продуктовом магазине, а о рожке с патронами для оружия, так как принцип весьма схож - первый вставленный патрон будет использован последним.

Примечание : Стоит знать, что у этого слова могут быть и другие значения. Поэтому если речь не касается компьютеров, то имеет смысл уточнить.

Чтобы лучше понять, приведу жизненный пример. Допустим у вас есть стопка листов. Каждый исписанный лист вы кладете рядом, а каждый следующий поверх остальных. Чтобы достать к примеру, самый первый лист из полученной стопки, вам необходимо вытащить все остальные листы. Вот по этому же самому принципу и устроен stack. То есть, каждый последний добавленный элемент становится верхним и чтобы достать, к примеру, самый первый элемент необходимо вытащить все остальные.

Для чего нужен стек? Основное предназначение это решение типовых задач, где необходимо поддерживать последовательность состояний чего-либо или где нужно инверсионное представление данных (то есть в обратную сторону).

В компьютерной сфере стек используется в аппаратных устройствах (например, процессоре), в операционной системе и многих программах. Если рассматривать пример, с которым знаком практически каждый, кто занимался программированием, то без стека не была бы возможна рекурсия, ведь при каждом повторном входе в функцию нужно сохранять текущее состояние на вершине, а при каждом выходе из функции быстро восстанавливать это состояния (то есть, как раз последовательность LIFO). А если копнуть еще глубже, то в принципе весь подход к запуску и выполнению программ устроен на принципе стека, где прежде чем следующая программа, запущенная из основной, будет выполняться, состояние предыдущей заносится в стек, чтобы когда запущенное приложение или подпрограмма закончила выполняться, предыдущая программа нормально продолжила выполняться с места остановки.

Какие операции у stack? Основных операций всего две:

1. Добавление элемента в вершину стека называется push

2. Извлечения верхнего элемента называется pop

Но, так же периодически можно встретить реализацию операции чтения верхнего элемента без его извлечения - называется peek .

Как организуется стек? Обычно стек реализуется двумя вариантами:

1. С помощью массива и переменной, которая указывает на ячейку с вершиной стека

2. С помощью связанных списков

У каждого из этих 2-х вариантов есть свои плюсы и минусы. Например, связанные списки более безопасны в плане применения, так как каждый добавляемый элемент помещается в динамически созданную структуру (нет проблем с количеством элементов - нет дырок безопасности, позволяющих свободно перемещаться в памяти программы). Однако, в плане хранения и быстроты использования они менее эффективны (требуют дополнительное место для хранения указателей; разбросаны в памяти, а не расположены друг за другом, как в массивах).

Теперь, вы знаете что такое стек, а так же зачем он нужен и для чего применяется.

Память, которую используют программы, состоит из нескольких частей — сегментов :

сегмент кода (или «текстовый сегмент»), где находится скомпилированная программа. Сегмент кода обычно доступен только для чтения;

сегмент bss (или «неинициализированный сегмент данных»), где хранятся глобальные и , инициализированные нулем;

сегмент данных (или «сегмент инициализированных данных»), где хранятся инициализированные глобальные и статические переменные;

к уча (heap), откуда выделяются динамические переменные;

стек вызовов , где хранятся , локальные переменные и другая информация, связанная с функциями.

В этом уроке мы рассмотрим только кучу и стек, поскольку всё самое интересное происходит именно там.

Куча

Сегмент кучи (или просто «куча ») отслеживает память, используемую для динамического выделения. Мы уже немного поговорили о куче в .

В C++, при использовании оператора new для выделения динамической памяти, эта память выделяется в сегменте кучи самого приложения.

int *ptr = new int; // ptr выделяется 4 байта из кучи int *array = new int; // array выделяется 40 байтов из кучи

Адрес выделяемой памяти передается обратно оператором new и затем он может быть сохранен в . О механизме хранения и выделения свободной памяти нам сейчас беспокоиться не за чем. Однако стоит знать, что последовательные запросы памяти не всегда приводят к выделению последовательных адресов памяти!

int *ptr1 = new int; int *ptr2 = new int; // ptr1 и ptr2 могут не иметь последовательных адресов

При удалении динамически выделенной переменной, память возвращается обратно в кучу и затем может быть переназначена (исходя из последующих запросов). Помните, что удаление указателя не удаляет переменную, это просто приводит к возврату памяти по этому адресу обратно в операционную систему.

Куча имеет свои преимущества и недостатки:

Выделение памяти в куче сравнительно медленное.

Выделенная память остается выделенной до тех пор, пока не будет освобождена (остерегайтесь утечек памяти) или пока приложение не завершит своё выполнение (в этот момент ОС должна вернуть память обратно).

Доступ к динамически выделенной памяти осуществляется только через указатель. Разыменование указателя происходит медленнее, чем доступ к переменной напрямую.

Поскольку куча представляет собой большой резервуар памяти, то именно она используется для выделения больших , или классов.

Стек вызовов

Стек вызовов (или просто «стек ») имеет гораздо более интересную роль. Стек вызовов отслеживает все активные функции (те, которые были вызваны, но еще не завершены) от начала программы и до текущей точки выполнения, и обрабатывает выделение всех параметров функции и локальных переменных.

Стек вызовов реализуется как структура данных «Стек». Поэтому, прежде чем мы поговорим о том, как работает стек вызовов, нам нужно понять, что такое «Стек» как структура данных.

Структура данных «Стек»

Структура данных - это механизм в программировании для организации данных, чтобы они могли эффективно использоваться. Вы уже видели несколько типов структур данных, таких как массивы и структуры. Они обеспечивают механизмы для эффективного хранения данных и доступа к ним. Существует еще много дополнительных структур данных, которые обычно используются в программировании, некоторые из которых реализованы в стандартной библиотеке C++, и «Стек» является одним из таких.

Рассмотрим стопку (стек) тарелок на столе. Поскольку каждая тарелка тяжелая и они сложены (друг на друге), то вы можете сделать только одну из следующих трех вещей:

Посмотреть на поверхность верхней тарелки.

Взять верхнюю тарелку из стопки (открывая таким образом следующую, которая находится снизу – если она вообще есть).

Положить новую тарелку поверх стопки (спрятав под ней самую верхнюю тарелку — если она была).

В компьютерном программировании стек представляет собой контейнер, как структуру данных, который содержит несколько переменных (подобно массиву). Однако, в то время как массив позволяет получить доступ и изменять элементы в любом порядке (так называемый «произвольный доступ »), то стек более ограничен. Операции, которые могут выполняться в стеке, соответствуют трем перечисленным выше. В стеке вы можете :

Посмотреть на верхний элемент в стеке (используется функция top () или peek () ).

Вытянуть верхний элемент стека (используется функция pop () ).

Добавить новый элемент на вершину стека (используется функция push () ).

Стек – это структура типа LIFO (Last In, First Out – последним пришёл, первым ушёл). Последний элемент, помещенный на вершину стека, будет первым, который и выйдет из стека. Если вы положите новую тарелку поверх стопки других тарелок, то она будет первой, которую вы потом возьмете. По мере того, как элементы помещаются в стек — стек растет, по мере того, как элементы удаляются со стека – стек уменьшается.

Например, рассмотрим короткую последовательность, показывающую, как работает добавление и удаление в стеке:

Stack: empty
Push 1
Stack: 1
Push 2
Stack: 1 2
Push 3
Stack: 1 2 3
Push 4
Stack: 1 2 3 4
Pop
Stack: 1 2 3
Pop
Stack: 1 2
Pop
Stack: 1

Стопка тарелок – довольно-таки хорошая аналогия работы стека, но есть аналогия и получше. Например, рассмотрим несколько почтовых ящиков, которые расположены друг на друге. Каждый почтовый ящик может содержать только один элемент, и все почтовые ящики изначально пустые. Кроме того, каждый почтовый ящик прибивается гвоздем к почтовому ящику снизу, поэтому количество почтовых ящиков не может быть изменено. Если мы не можем изменить количество почтовых ящиков, то как мы получим поведение, подобное стеку?

Во-первых, мы используем наклейку для обозначения того, где находится самый нижний пустой почтовый ящик. В начале это будет первый почтовый ящик, который находится на полу. Когда мы добавим элемент в наш стек почтовых ящиков, то мы поместим этот элемент в почтовый ящик, на котором будет наклейка (т.е. в самый первый пустой почтовый ящик на полу), и затем переместим наклейку на один почтовый ящик выше. Когда мы вытаскиваем элемент из стека, то мы перемещаем наклейку на один почтовый ящик ниже и удаляем элемент из почтового ящика. Всё, что находится ниже маркера — находится в стеке. Всё, что находится в ящике с наклейкой и выше – не находится в стеке.

Сегмент стека вызовов

Сегмент стека вызовов содержит память, используемую для стека вызовов. При запуске приложения, функция main() помещается в стек вызовов операционной системой. Затем программа начинает своё выполнение.

Когда программа встречает вызов функции, то эта функция помещается в стек вызовов. При завершении выполнения функции, она удаляется из стека вызовов. Таким образом, просматривая функции, добавленные в стек, мы можем видеть все функции, которые были вызваны до текущей точки выполнения.

Наша аналогия с почтовыми ящиками – это действительно то, как работает стек вызовов. Стек вызовов имеет фиксированное количество адресов памяти (фиксированный размер). Почтовые ящики являются адресами памяти, а «элементы», которые мы добавляем и вытягиваем в стеке, называются фреймами (или еще «кадрами ») стека. Кадр стека отслеживает все данные, связанные с одним вызовом функции. «Наклейка» — это регистр (небольшая часть памяти в ЦП), который является указателем стека . Указатель стека отслеживает, где находится вершина стека вызовов.

Единственное отличие фактического стека вызовов от нашего гипотетического стека почтовых ящиков заключается в том, что, когда мы вытягиваем элемент из стека вызовов, то нам не нужно очищать память (т.е. вынимать всё содержимое из почтового ящика). Мы можем просто оставить эту память для следующего элемента, который и перезапишет её. Поскольку указатель стека будет ниже этого адреса памяти, то, как мы уже знаем, эта ячейка памяти не будет находится в стеке.

Стек вызовов на практике

Давайте рассмотрим более подробно, как работает стек вызовов. Ниже приведена последовательность шагов, выполняемых при вызове функции :

Программа сталкивается с вызовом функции.

Фрейм стека создается и помещается в стек, он состоит из:

Адреса инструкции, который находится за вызовом функции (так называемый «обратный адрес »). Так процессор запоминает, куда возвращаться после выполнения функции.

Аргументов функции.

Памяти для локальных переменных.

Сохраненных копий всех регистров, модифицированных функцией, которые необходимо будет восстановить после того, как функция завершит своё выполнение.

Процессор переходит к точке начала выполнения функции.

Инструкции внутри функции начинают выполняться.

После завершения функции, выполняются следующие шаги :

Регистры восстанавливаются из стека вызовов.

Фрейм стека вытягивается из стека. Освобождается память всех локальных переменных и аргументов.

Обрабатывается возвращаемое значение.

ЦП возобновляет выполнение кода (исходя из обратного адреса).

Возвращаемые значения могут обрабатываться разными способами, в зависимости от архитектуры компьютера. Некоторые архитектуры считают возвращаемое значение частью фрейма стека. Другие используют регистры процессора.

Знать все детали работы стека вызовов не так уж и важно. Однако понимание того, что функции при вызове добавляются в стек, а при завершении выполнения – удаляются из стека, даёт основы, необходимые для понимания рекурсии, а также некоторых других концепций, которые полезны при .

Пример стека вызовов

Рассмотрим следующий фрагмент кода:

Стек вызовов этой программы выглядит следующим образом:

boo() (включая параметр b)
main()

Переполнение стека

Стек имеет ограниченный размер и, следовательно, может содержать только ограниченный объем информации. В Windows размер стека по умолчанию составляет 1 МБ. На некоторых других Unix-системах этот размер может достигать и 8 МБ. Если программа пытается поместить слишком много информации в стек, то это приведет к переполнению стека. Переполнение стека (stack overflow) происходит при запросе на память, в то время, когда вся память стека уже выделена — в этом случае все запросы на выделения начнут переливаться (переполняться) в другие разделы памяти.

Переполнение стека является результатом добавления слишком большого числа переменных в стек и/или создания слишком большого количества вложенных вызовов функций (например, где функция A вызывает функцию B, которая в свою очередь вызывает функцию C, а та вызывает функцию D и т.д. и т.п.). Переполнение стека обычно приводит к сбою в программе.

Например:

int main() { int stack; return 0; }

int main ()

int stack [ 100000000 ] ;

return 0 ;

Эта программа пытается добавить огромный массив в стек вызовов. Поскольку размера стека недостаточно для обработки такого массива, то его добавление переходит и на другие части памяти, которые программа использовать не может. Следовательно, получаем сбой.

Вот еще одна программа, которая вызовет переполнение стека, но уже по другой причине:

void boo() { boo(); } int main() { boo(); return 0; }

Стек

Стек - самая популярная и, пожалуй, самая важная структура данных в программировании. Стек представляет собой запоминающее устройство, из которого элементы извлекаются в порядке, обратном их добавлению. Это как бы неправильная очередь, в которой первым обслуживают того, кто встал в нее последним. В программистской литературе общепринятыми являются аббревиатуры, обозначающие дисциплину работы очереди и стека. Дисциплина работы очереди обозначается FIFO, что означает первым пришел - первым уйдешь (First In First Out). Дисциплина работы стека обозначается LIFO, последним пришел - первым уйдешь (Last In First Out).

Стек можно представить в виде трубки с подпружиненым дном, расположеной вертикально. Верхний конец трубки открыт, в него можно добавлять, или, как говорят, заталкивать элементы. Общепринятые английские термины в этом плане очень красочны, операция добавления элемента в стек обозначается push, в переводе "затолкнуть, запихнуть". Новый добавляемый элемент проталкивает элементы, помещеные в стек ранее, на одну позицию вниз. При извлечении элементов из стека они как бы выталкиваются вверх, по-английски pop ("выстреливают").

Примером стека может служить стог сена, стопка бумаг на столе, стопка тарелок и т.п. Отсюда произошло название стека, что по-английски означает стопка. Тарелки снимаются со стопки в порядке, обратном их добавлению. Доступна только верхняя тарелка, т.е. тарелка на вершине стека . Хорошим примером будет также служить железнодорожный тупик, в который можно составлять вагоны.

Стек применяется довольно часто, причем в самых разных ситуациях. Объединяет их следующая цель: нужно сохранить некоторую работу, которая еще не выполнена до конца, при необходимости переключения на другую задачу. Стек используется для временного сохранения состояния не выполненного до конца задания. После сохранения состояния компьютер переключается на другую задачу. По окончании ее выполнения состояние отложенного задания восстанавливается из стека, и компьютер продолжает прерванную работу.

Почему именно стек используется для сохранения состояния прерванного задания? Предположим, что компьютер выполняет задачу A. В процессе ее выполнения возникает необходимость выполнить задачу B. Состояние задачи A запоминается, и компьютер переходит к выполнению задачи B. Но ведь и при выполнении задачи B компьютер может переключиться на другую задачу C, и нужно будет сохранить состояние задачи B, прежде чем перейти к C. Позже, по окончании C будет сперва восстановлено состояние задачи B, затем, по окончании B, - состояние задачи A. Таким образом, восстановление происходит в порядке, обратном сохранению, что соответствует дисциплине работы стека.



Стек позволяет организовать рекурсию, т.е. обращение подпрограммы к самой себе либо непосредственно, либо через цепочку других вызовов. Пусть, например, подпрограмма A выполняет алгоритм, зависящий от входного параметра X и, возможно, от состояния глобальных данных. Для самых простых значений X алгоритм реализуется непосредственно. В случае более сложных значений X алгоритм реализуется как сведение к применению того же алгоритма для более простых значений X. При этом подпрограмма A обращается сама к себе, передавая в качестве параметра более простое значение X. При таком обращении предыдущее значение параметра X, а также все локальные переменные подпрограммы A сохраняются в стеке. Далее создается новый набор локальных переменных и переменная, содержащая новое (более простое) значение параметра X. Вызванная подпрограмма A работает с новым набором переменных, не разрушая предыдущего набора. По окончании вызова старый набор локальных переменных и старое состояние входного параметра X восстанавливаются из стека, и подпрограмма продолжает работу с того места, где она была прервана.

На самом деле даже не приходится специальным образом сохранять значения локальных переменных подпрограммы в стеке. Дело в том, что локальные переменные подпрограммы (т.е. ее внутренние, рабочие переменные, которые создаются в начале ее выполнения и уничтожаются в конце) размещаются в стеке, реализованном аппаратно на базе обычной оперативной памяти. В самом начале работы подпрограмма захватывает место в стеке под свои локальные переменные, этот участок памяти в аппаратном стеке называют обычно блок локальных переменных или по-английски frame ("кадр "). В момент окончания работы подпрограмма освобождает память, удаляя из стека блок своих локальных переменных.

Кроме локальных переменных, в аппаратном стеке сохраняются адреса возврата при вызовах подпрограмм. Пусть в некоторой точке программы A вызывается подпрограмма B . Перед вызовом подпрограммы B адрес инструкции, следующей за инструкцией вызова B, сохраняется в стеке. Это так называемый адрес возврата в программу A. По окончании работы подпрограмма B извлекает из стека адрес возврата в программу A и возвращает управление по этому адресу. Таким образом, компьютер продолжает выполнение программы A, начиная с инструкции, следующей за инструкцией вызова. В большинстве процессоров имеются специальные команды, поддерживающие вызов подпрограммы с предварительным помещением адреса возврата в стек и возврат из подпрограммы по адресу, извлекаемому из стека. Обычно команда вызова назывется call, команда возврата - return.

В стек помещаются также параметры подпрограммы или функции перед ее вызовом. Порядок их помещения в стек зависит от соглашений, принятых в языках высокого уровня. Так, в языке Си или C++ на вершине стека лежит первый аргумент функции, под ним второй и так далее. В Паскале все наоборот, на вершине стека лежит последний аргумент функции. (Поэтому, кстати, в Си возможны функции с переменным числом аргументов, такие, как printf, а в Паскале нет.)

В Фортране-4, одном из самых старых и самых удачных языков программирования, аргументы передаются через специальную область памяти, которая может располагаться не в стеке, поскольку до конца 70-х годов XX века еще существовали компьютеры вроде IBM 360 или ЕС ЭВМ без аппаратной реализации стека. Адреса возврата также сохранялись не в стеке, а в фиксированных для каждой подпрограммы ячейках памяти. Программисты называют такую память статической в том смысле, что статические переменные занимают всегда одно и то же место в памяти в любой момент работы программы. При использовании только статической памяти рекурсия невозможна, поскольку при новом вызове предыдущие значения локальных переменных разрушаются. В эталонном Фортране-4 использовались только статические переменные, а рекурсия была запрещена. До сих пор язык Фортран широко используется в научных и инженерных расчетах, однако, современный стандарт Фортрана-90 уже вводит стековую память, устраняя недостатки ранних версий языка.