Блок данных формируемых протоколом tcp. Отправка данных по TCP. Методы обеспечения надежного информационного взаимодействия в TCP

Протокол TCP/IP впервые был создан в начале 1970-х годов и использовался для создания сети ARPANET. Технология разрабатывалась в рамках исследовательского проекта, который был нацелен на изучение потенциальной возможности объединения компьютеров в рамках одной локальной или виртуальной сети internetwork.

Установка соединения в TCP осуществляется при помощи специальной программы-клиента, например браузера, почтовой программы или клиента для обмена сообщениями.

Структура TCP

Структура TCP/IP позволяет формировать доступ к удаленным компьютерам, а также объединять отдельные устройства для создания локальных сетей, работающих отдельно от общих. TCP является надежным протоколом передачи данных. Таким образом, вся информация, которая будет отправлена в сети, гарантировано будет получена адресатом, т.е. пользователем, которому данные предоставлялись.

Альтернативой для TCP является UDP. Важными отличиями между данными сетями является то, что TCP необходимо предварительно установить доверительное соединение между отправителем и получателем информации. После установки соединения проходит передача данных, а затем начинается процедура завершения соединения. UDP сразу же устанавливает передачу нужных пакетов информации пользователю без предварительного создания канала.

Отправка данных по TCP

После установки соединения TCP отправляет данные по созданным маршрутам в соответствии с IP-адресами отправителя и получателя информации. IP-адрес является уникальным идентификатором каждого сетевого устройства в интернете, а потому отправленный по созданному туннелю пакет не может быть потерян или ошибочно послан другому пользователю.

На физическом уровне передачи данных информация имеет вид частот, амплитуд и других форм сигнала, которые уже обрабатываются сетевой картой адресата.

За обработку информации компьютером и ее передачу другим составляющим отвечают канальные протоколы, среди которых можно упомянуть Ethernet, ATM, SLIP, IEEE 802.11. Данные каналы обеспечивают не только передачу данных, но и форму доставки адресату. Так, в сетях IEEE 802.11 передача информации осуществляется при помощи беспроводного радиосигнала. При этом сигнал подается с сетевой карты компьютера, также имеющей собственный код MAC. В случае с Ethernet вся передача данных осуществляется при помощи кабельного соединения.

Видео по теме

В современных условиях деятельность общества и цивилизации невозможна без применения средств быстрого обмена информацией. Данную проблему призваны решать глобальные компьютерные сети.

Глобальная сеть (ГКС) - это сеть, которая состоит из компьютеров, охватывающих огромные территории при неограниченном количестве включенных в данную сеть компьютерных систем. Главным условием функционирования подобных сетей является моментальная передача информации по сети независимо от удаленности передающего и принимающего компьютера.

Глобальная сеть отличается от локальной, во-первых, более низкими скоростями передачи данных. Работают глобальные сети через протоколы TCP/IP, MPLS, ATM и некоторые других. Наиболее известным из указанных является протокол TCP/IP, который включает в себя подпротоколы разных уровней: прикладной, транспортный, сетевой, физический и канальный.

На прикладном уровне работает большинство программ, обладающих собственными протоколами, которые широко известны обычным пользователям ПК (HTTP, WWW, FTP и т.д.). Данные протоколы обеспечивают визуализацию и отображение необходимой пользователю информации.

Транспортный протокол ответственен за доставку данных именно тому приложению, которое способно их обработать. Он носит название TCP.

Сетевой уровень является, фактически, принимающим при передаче информации и отправляющей запросы на более низкие уровни для получения всей информации. Носит название протокола IP.

Физический и канальный уровни ответственны за определение условий и методов передачи информации.

Наиболее известной глобальной сетью является WWW (World Wide Web), которая представляет из себя совокупность серверов, где хранится необходимая для пользователей информация, и компьютеров, которые могут как принимать с серверов информацию, так и загружать ее на них. WWW отличается удобством и простотой использования, а также низкими требованиями к скорости передачи данных. Это позволило развиться данной сети за период чуть больший, чем десятилетие.

Видео по теме

Принято именовать символьное обозначение, заменяющее числовую адресацию, основанную на IP-адресах, в сети интернет. Числовая адресация, применяемая при обработке таблиц маршрутов, идеально подходит для компьютерного использования, но представляет значительные трудности при запоминании пользователем. На помощь приходят мнемонически осмысленные доменные имена.

Установка соединений в сети интернет происходит по числовым группам в 4 значения, разделенных символом «.» и именуемым IP-адресами. Символьные имена комплекса доменных имен представляют собой службу, призванную облегчить нахождение необходимого IP-адреса в сети.Техническим показателем доменного имени выступает символ «.» в электронном адресе пользователя. Так, в адресе google.com доменным именем будет com.Само доменное имя не способно предоставить доступ к требуемому интернет-ресурсу. Процедура использования мнемонического имени состоит из двух этапов:- IP-адреса по имени в файле hosts, содержащем таблицы соответствия IP-адреса и имени компьютера;- установка соединения с удаленным веб-ресурсом по определенному IP-адресу.Главной задачей сервиса DNS является получение IP-адреса для установки соединения, что делает эту службу вспомогательной по отношению к протоколу TCP/IP.Символ "." является разделителем составляющих доменного имени, хотя для практических целей обычно принимается в качестве обозначения корневого домена, не имеющего собственного обозначения. Корень - все множество хостов интернета - подразделяется на:- первого уровня - gov, edu, com,net;- национальные домены - uk, jp, ch и т.д.;- региональные домены - msk;- корпоративные домены - домены организаций.Сохранение привычной древовидной структуры доменных имен обусловило использование устоявшейся терминологии - корень, узлы дерева, лист. Термин «хост» в данной иерархии присвоен листу, не имеющему под собой ни одного узла. Полным именем хоста становится последовательное перечисление всех промежуточных узлов между корнем и листом, разделяемых символом "." слева направо:ivan.net.abcd.ru, где ru - корень дерева, abcd - название организации, ivan - лист дерева (хост).

Видео по теме

Источники:

  • Система доменных имен Internet в 2018

Взаимодействие между компьютерами в интернете осуществляется посредством сетевых протоколов, представляющих собой согласованный набор определенных правил, в соответствии с которыми разные устройства передачи данных обмениваются информацией. Существуют протоколы для форматов для контроля ошибок и другие виды протоколов. В глобальном межсетевом взаимодействии чаще всего используется протокол TCP-IP.

Что же это за технология? Название TCP-IP произошло от двух сетевых протоколов: TCP и IP. Конечно, этими двумя протоколами построение сетей не ограничивается, но они являются базовыми в том, что касается именно организации передачи данных. Фактически, TCP-IP есть набор протоколов, позволяющих индивидуальным сетям объединяться для образования

Протокол TCP-IP, описание которого невозможно обозначить только определениями IP и TCP, включает в себя также протоколы UDP, SMTP, ICMP, FTP, telnet, и не только. Эти и другие протоколы TCP-IP обеспечивают наиболее полноценную работу сети Интернет.

Ниже приведем развернутую характеристику каждому протоколу, входящему в общее понятие TCP-IP.

. Интернет-протокол (IP) отвечает за непосредственную передачу информации в сети. Информация делится на части (другими словами, пакеты) и передается получателю от отправителя. Для точной адресации нужно задать точный адрес или координаты получателя. Такие адреса состоят из четырех байт, которые отделены друг от друга точками. Адрес каждого компьютера уникален.

Однако использования одного лишь IP-протокола может быть недостаточно для корректной передачи данных, так как объем большей части пересылаемой информации более 1500 символов, что уже не вписывается в один пакет, а некоторые пакеты могут быть потеряны в процессе передачи или присланы не в том порядке, что требуется.

. Протокол управления передачей (TCP) используется на более высоком уровне, чем предыдущий. Основываясь на способности IP-протокола переносить информацию от одного узла другому, TCP-протокол позволяет пересылать большие объемы информации. TCP отвечает также за разделение передаваемой информации на отдельные части - пакеты - и правильное восстановление данных из пакетов, полученных после передачи. При этом данный протокол автоматически повторяет передачу пакетов, которые содержат ошибки.

Управление организацией передачи данных в больших объемах может осуществляться с помощью ряда протоколов, имеющих специальное функциональное назначение. В частности, существуют следующие виды TCP-протоколов.

1. FTP (File Transfer Protocol) организует перенос файлов и используется для передачи информации между двумя узлами Internet с использованием TCP-соединений в виде бинарного или же простого текстового файла, как поименованной области в памяти компьютера. При этом не имеет никакого значения, где данные узлы расположены и как соединяются между собой.

2. Протокол пользовательских дейтаграмм , или User Datagram Protocol, не зависит от подключений, он передает данные пакетами, которые называют UDP-дейтаграммами. Однако этот протокол не так надежен, как TCP, потому что отравитель не получает данных о том, был ли принят пакет в действительности.

3. ICMP (Internet Control Message Protocol) существует для того, чтобы передавать сообщения об ошибках, возникающих в процессе обмена данными в сети Internet. Однако при этом ICMP-протокол только лишь сообщает об ошибках, но не устраняет причины, которые привели к возникновению этих ошибок.

4. Telnet - который используется для реализации текстового интерфейса в сети с помощью транспорта TCP.

5. SMTP (Simple Mail Transfer Protocol) - это специальный электронными сообщениями, определяющий формат сообщений, которые пересылаются с одного компьютера, называемого SMTP-клиентом, на другой компьютер, на котором запущен SMTP-сервер. При этом данная пересылка может быть отложена на некоторое время до тех пор, пока не активируется работа как клиента, так и сервера.

Схема передачи данных по протоколу TCP-IP

1. Протокол TCP разбивает весь объем данных на пакеты и нумерует их, упаковывая в TCP-конверты, что позволяет восстановить порядок получения частей информации. При помещении данных в такой конверт происходит вычисление контрольной суммы, которая записывается потом в TCP-заголовок.

3. Затем с помощью протокола TCP происходит проверка того, все ли пакеты получены. Если во время приема вычисленная заново не совпадает с указанной на конверте, это свидетельствует о том, что часть информации была утеряна или искажена при передаче, протокол TCP-IP заново запрашивает пересылку этого пакета. Также требуется подтверждение прихода данных от получателя.

4. После подтверждения получения всех пакетов протокол TCP упорядочивает их соответствующим образом и собирает заново в единое целое.

Протоколом TCP используются повторные передачи данных, периоды ожидания (или таймауты), что обеспечивает надежность доставки информации. Пакеты могут передаваться в двух направлениях одновременно.

Тем самым протокол TCP-IP снимает необходимость использования повторных передач и ожиданий для прикладных процессов (таких, как Telnet и FTP).

Транспортные протоколы TCP и UDP стека протоколов TCP/IP обеспечивают передачу данных между любой парой прикладных процессов , выполняющихся в сети, и предоставляют интерфейс для протокола IP путем демультиплексирования нескольких процессов, использующих в качестве адресов транспортного уровня порты. Для каждого прикладного процесса (ПП) (приложения), выполняемого в компьютере, может быть сформировано несколько точек входа , выступающих в качестве транспортных адресов , называемых портами (рис.4.60).

Существуют два способа присвоения порта приложению:

· централизованный (присвоенные или назначенные номера от 0 до 1023), использующий стандартные номера, присвоенные общедоступным службам (приложениям), например: FTP – 21, telnet – 23, SMTP – 25, DNS – 53, HTTP – 80.

· локальный (динамические номера от 1024 до 65535), предоставляющий произвольный номер из списка свободных номеров при поступлении запроса от приложения пользователя.

Динамические номера портов приложений являются уникальными в пределах каждого компьютера, но могут совпадать с номерами портов в других компьютерах. Различие между ними определяется только различием интерфейсов каждого из компьютеров, задаваемых IP-адресами.

Таким образом, пара «IP-адрес; номер порта », называемая сокетом (socket), однозначно определяет прикладной процесс в сети.

Номера UDP- и TCP-портов в пределах одного и того же компьютера могут совпадать, хотя и идентифицируют разные приложения. Поэтому при записи номера порта обязательно указывается тип протокола транспортного уровня, например 2345/TCP и 2345/UDP. В некоторых случаях, когда приложение может обращаться по выбору к протоколу UDP или TCP, ему могут быть назначены одинаковые номера UDP- и TCP-портов, например DNS-приложению назначен номер 53 – 53/UDP и 53/TCP.

Транспортный протокол UDP

UDP – транспортный протокол, обеспечивающий передачу данных в виде дейтаграмм между любой парой прикладных процессов , выполняющихся в сети, без установления соединения . Сегменты состоят из 8-байтового заголовка, за которым следует поле данных. Заголовок UDP-сегмента показан на рис.4.61.

Наиболее широко UDP используется при выполнении клиент-серверных приложений (типа запрос-ответ).

При этом UDP не выполняет:

· контроль потока,

· контроль ошибок,

· повторной передачи после получения испорченного сегмента.

Примерами приложений, использующих протокол UDP для передачи данных, являются DHCP, DNS, SNMP.

В некоторых случаях на одном конечном узле может выполняться несколько копий одного и того же приложения. Возникает вопрос: каким образом различаются эти приложения?

Для этого рассмотрим на простом примере процесс формирования запроса и процедуру обращения DNS-клиента к DNS-серверу, когда на одном компьютере запущены два DNS-сервера, причём оба используют для передачи своих данных транспортный протокол UDP (рис.4.62). Для того чтобы различать DNS-серверы, им присваиваются разные IP-адреса – IP1 и IP2, которые вместе с номером порта образуют два разных сокета: «UDP-порт 53, IP1» и «UDP-порт 53, IP2».

Рис.4.62,а) иллюстрирует процесс формирования DNS-клиентом запроса к DNS-серверу.

DNS-запрос транспортном уровне стека протоколов TCP/IP передаётся протоколу UDP, который вкладывает этот запрос в UDP-дейтаграмму и указывает в заголовке порт назначения 53/UDP. Затем UDP-дейтаграмма передаётся на межсетевой уровень, где она вкладывается в IP-пакет, заголовок которого содержит «IP-адрес: IP2». IP-пакет, в свою очередь, передаётся на уровень «межсетевой интерфейс», где он помещается в кадр канального уровня с соответствующим заголовком канального уровня (ЗКУ). Этот кадр передаётся по сети к компьютеру, содержащему два DNS-сервера (рис.4.62,б).

В этом компьютере протокол канального уровня (ПКУ) снимает заголовок ЗКУ и передаёт содержимое кадра на межсетевой уровень протоколу IP, который, в свою очередь, извлекает содержимое (UDP-дейтаграмму) из IP-пакета. Дальнейшие манипуляции с передаваемыми данными отличаются от принципов, заложенных в многоуровневую модель иерархии протоколов. Вместо того чтобы просто передать UDP-дейтаграмму, находящуюся в поле данных IP-пакета, транспортному уровню, IP-протокол присоединяет к UDP-дейтаграмме так называемый псевдозаголовк , содержащий среди прочего IP-адреса отправителя и получателя. Таким образом, протокол UDP, имея IP-адрес и порт назначения, однозначно определяет, что содержимое поля данных (то есть DNS-запрос), должно быть передано приложению «DNS-сервер 2».

Транспортный протокол TCP

Протокол TCP обеспечивает надежную передачу данных между прикладными процессами за счет установления логических соединений между взаимодействующими процессами.

Логическое соединение между двумя прикладными процессами идентифицируется парой сокетов (IP-адрес, номер порта), каждый из которых описывает один из взаимодействующих процессов.

Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байтов и заносится в буфер. Для передачи на сетевой уровень из буфера вырезается сегмент , не превосходящий 64 Кбайт (максимального размера IP-пакета). На практике обычно длина сегмента ограничивается значением 1460 байтами, что позволяет поместить его в кадр Ethernet с заголовками TCP и IP.

Соединение TCP ориентировано на полнодуплексную передачу .

Управление потоком данных в протоколе ТСР осуществляется с использованием механизма скользящего окна переменного размера . При передаче сегмента узел-отправитель включает таймер и ожидает подтверждения. Отрицательные квитанции не посылаются, а используется механизм тайм-аута . Узел назначения, получивший сегмент формирует и посылает обратно сегмент (с данными, если они есть, или без данных) с номером подтверждения, равным следующему порядковому номеру ожидаемого байта . В отличие от многих других протоколов, протокол TCP подтверждает получение не пакетов, а байтов потока. Если время ожидания подтверждения истекает, отправитель посылает сегмент еще раз.

Несмотря на кажущуюся простоту протокола, в нем имеется ряд нюансов, которые могут привести к некоторым проблемам.

Во-первых, поскольку сегменты при передаче по сети могут фрагментироваться, возможна ситуация, при которой часть переданного сегмента будет принята, а остальная часть окажется потерянной.

Во-вторых, сегменты могут прибывать в узел назначения в произвольном порядке, что может привести к ситуации, при которой байты с 2345 по 3456 уже прибыли, но подтверждение для них не может быть выслано, так как байты с 1234 по 2344 еще не получены.

В-третьих, сегменты могут задержаться в сети так долго, что у отправителя истечёт интервал ожидания, и он передаст их снова. Переданный повторно сегмент может пройти по другому маршруту и может быть иначе фрагментирован, или же сегмент может по дороге случайно попасть в перегруженную сеть. В результате для восстановления исходного сегмента потребуется достаточно сложная обработка На рис.4.63 представлен формат заголовка TCP-сегмента. Первые 20-байт заголовка имеют строго фиксированный формат, за которым могут находиться дополнительные поля. После дополнительных полей заголовка размещается поле данных, содержащее не более 65 495 байт, которое вместе с TCP- и IP-заголовками размером по 20 байт даст максимально допустимый размер IP-пакета в 65 535 байт.

Не вдаваясь в детали, рассмотрим кратко назначение фиксированных полей заголовка ТСР-сегмента.

Поля «Порт отправителя» (2 байта) и «Порт получателя» (2 байта) идентифицируют процессы , между которыми установлено логическое соединение.

Поле «Порядковый номер» (4 байта) содержит номер первого байта данных в сегменте, который определяет смещение сегмента относительно потока передаваемых данных

Поле «Номер подтверждения» (4 байта) содержит номер следующего ожидаемого байта , который используется в качестве квитанции, подтверждающей правильный приёма всех предыдущих байтов.

Поле «Длина TCP-заголовка» (4 бита) задаёт длину заголовка ТСР-сегмента, измеренную в 32-битовых словах.

Поле «Резерв» длиной 6 бит зарезервировано на будущее.

Однобитовые флаги несут служебную информацию о типе сегмента и интерпретируются следующим образом:

· URG=1 указывает на наличие срочных данных , что означает использование поля «Указатель на срочные данные» ;

· ACK=1 означает, что сегмент является квитанцией на принятый сегмент и поле «Номер подтверждения» содержит осмысленные данные. В противном случае данный сегмент не содержит подтверждения и поле «Номер подтверждения» просто игнорируется.

· PSH=1 (PUSH-флаг) означает запрос на отправку данных без ожидания заполнения буфера;

· RST=1 используется для сброса состояния соединения при обнаружении проблем, а также для отказа от неверного сегмента или от попытки создать соединение;

· SYN=1 используется для установки соединения , при этом если АСК=0, то это означает, что поле подтверждения не используется;

· FIN=1 используется для разрыва соединения .

Поле «Размер окна» (2 байта) определяет, сколько байт может быть послано после байта, получившего подтверждение.

Поле «Контрольная сумма» (2 байта) содержит контрольную сумму, которая охватывает заголовок, данные и псевдозаголовок .

Алгоритм вычисления контрольной суммы выглядит следующим образом.

Перед началом вычисления контрольной суммы значение этого поля устанавливается равным нулю. Если поле данных содержит нечётное число байтов, то оно дополняется нулевым байтом, который используется при подсчёте контрольной суммы, но не вставляется в сегмент для передачи в сети. Необходимость такого добавления обусловлена тем, что ТСР-сегмент, включающий заголовок, данные и псевдозаголовок, рассматривается как совокупность 16-разрядных двоичных чисел, которые складываются в дополнительном коде, а затем вычисляется дополнение для полученной суммы, которое заносится в поле «Контрольная сумма».

Получатель сегмента аналогичным образом подсчитывает контрольную сумму для всего сегмента, включая поле «Контрольная сумма». Очевидно, что полученный таким образом результат должен быть равен 0. Отметим, что дополнительный нулевой байт Поле «Указатель на срочные данные» (2 байта) содержит смещение в байтах от текущего порядкового номера байта до места расположения срочных данных, которые необходимо срочно принять, несмотря на переполнение буфера. Таким образом, в протоколе TCP реализуются прерывающие сообщения. Содержимым срочных данных занимается прикладной уровень. Протокол TCP лишь обеспечивает их доставку и не интересуется причиной прерывания.

Поле «Параметры» имеет переменную длину и может отсутствовать.

Примерами приложений, использующих протокол TCP для передачи данных, являются FTP, TFTP, DNS, POP3, IMAP, TELNET.

Всем привет сегодня расскажу чем отличается протокол TCP от UDP. Протоколы транспортного уровня, следующие в иерархии за IP, используются для передачи данных между прикладными процессами, реализующимися в сетевых узлах. Пакет данных, поступивший от одного компьютера другому через Интернет, должен быть передан процессу-обработчику, и именно по конкретному назначению. Транспортный уровень принимает на себя ответственность за это. На этом уровне два основных протокола – TCP и UDP.

Что означают TCP и UDP

TCP – транспортный протокол передачи данных в сетях TCP/IP, предварительно устанавливающий соединение с сетью.

UDP – транспортный протокол, передающий сообщения-датаграммы без необходимости установки соединения в IP-сети.

Напоминаю, что оба протокола работают на транспортном уровне модели OSI или TCP/IP, и понимание того чем они отличаются очень важно.

Разница между протоколами TCP и UDP

Разница между протоколами TCP и UDP – в так называемой “гарантии доставки”. TCP требует отклика от клиента, которому доставлен пакет данных, подтверждения доставки, и для этого ему необходимо установленное заранее соединение. Также протокол TCP считается надежным, тогда как UDP получил даже именование “протокол ненадежных датаграмм. TCP исключает потери данных, дублирование и перемешивание пакетов, задержки. UDP все это допускает, и соединение для работы ему не требуется. Процессы, которым данные передаются по UDP, должны обходиться полученным, даже и с потерями. TCP контролирует загруженность соединения, UDP не контролирует ничего, кроме целостности полученных датаграмм.

С другой стороны, благодаря такой не избирательности и бесконтрольности, UDP доставляет пакеты данных (датаграммы) гораздо быстрее, потому для приложений, которые рассчитаны на широкую пропускную способность и быстрый обмен, UDP можно считать оптимальным протоколом. К таковым относятся сетевые и браузерные игры, а также программы просмотра потокового видео и приложения для видеосвязи (или голосовой): от потери пакета, полной или частичной, ничего не меняется, повторять запрос не обязательно, зато загрузка происходит намного быстрее. Протокол TCP, как более надежный, с успехом применяется даже в почтовых программах, позволяя контролировать не только трафик, но и длину сообщения и скорость обмена трафиком.

Давайте рассмотрим основные отличия tcp от udp.

  1. TCP гарантирует доставку пакетов данных в неизменных виде, последовательности и без потерь, UDP ничего не гарантирует.
  2. TCP нумерует пакеты при передаче, а UDP нет
  3. TCP работает в дуплексном режиме, в одном пакете можно отправлять информацию и подтверждать получение предыдущего пакета.
  4. TCP требует заранее установленного соединения, UDP соединения не требует, у него это просто поток данных.
  5. UDP обеспечивает более высокую скорость передачи данных.
  6. TCP надежнее и осуществляет контроль над процессом обмена данными.
  7. UDP предпочтительнее для программ, воспроизводящих потоковое видео, видеофонии и телефонии, сетевых игр.
  8. UPD не содержит функций восстановления данных

Примерами UDP приложений, например можно привести, передачу DNS зон, в Active Directory, там не требуется надежность. Очень часто такие вопросы любят спрашивать на собеседованиях, так, что очень важно знать tcp и udp отличия.

Заголовки TCP и UDP

Давайте рассмотрим как выглядят заголовки двух транспортных протоколов, так как и тут отличия кардинальные.

Заголовок UDP

  • 16 битный порт источника > Указание порта источника для UDP необязательно. Если это поле используется, получатель может отправить ответ этому порту.
  • 16 битный порт назначения > Номер порта назначения
  • 16 битная длина UDP > Длина сообщения, включая заголовок и данные.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных для проверки

Заголовок TCP

  • 16 битный порт источника > Номер порта источника
  • 16 битный порт назначения > Номер порта назначения
  • 32 битный последовательный номер > Последовательный номер генерируется источником и используется назначением, чтобы переупорядочить пакеты для создания исходного сообщения и отправить подтверждение источнику.
  • 32 битный номер подтверждения > Если установлен бит АСК поля "Управление", в данном поле содержит следующий ожидаемый последовательный номер.
  • 4 бита длина заголовка > Информация о начале пакета данных.
  • резерв > Резервируются для будущего использования.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных; по ней определяется, был ли искажен пакет.
  • 16 битный указатель срочности > В этом поле целевое устройство получает информацию о срочности данных.
  • Параметры > Необязательные значения, которые указываются при необходимости.

Размер окна позволяет экономить трафик, рассмотрим когда его значение равно 1, тут на каждый отправленный ответ, отправитель ждет подтверждения, не совсем рационально.

При размере окна 3, отправитель отправляет уже по 3 кадра, и ждет от 4, который подразумевает, что все три кадра у него есть, +1.

Надеюсь у вас теперь есть представления об отличиях tcp udp протоколов.

Протокол TCP (TransmissionControlProtocol, протокол управления передачей) представляет собой надежный протокол с установлением соединения, являющийся альтернативой UDP, и отвечающий за большинство передач пользовательских данных по сетям TCP/IP, и даже внесший свой вклад в название всего набора протоколов. Протокол TCP, как определено в документе RFC 793, обеспечивает приложения всем диапазоном транспортных услуг, включая подтверждение получения пакетов, отслеживание ошибок и их исправление, а также управление потоком.

Протокол TCP предназначен для передачи относительно больших объемов информации, которая заведомо не сможет быть упакована в один пакет. Информация обычно принимает форму целых файлов, которые должны быть разделены на множественные дейтаграммы для передачи. Информация, поставляемая Транспортному уровню, в терминологии протокола TCP рассматривается как последовательность (sequence), которую протокол разбивает на сегменты (segment) для передачи по сети. Как и в случае протокола UDP, сегменты затем упаковываются в IP-дейтаграммы, которые могут преодолевать маршрут до места назначения различными способами. Поэтому, протокол TCP снабжает каждый из сегментов порядковым номером для того, чтобы система-получатель смогла собрать их воедино в правильном порядке.

Перед началом любой передачи пользовательских данных с применением протокола TCP две системы обмениваются сообщениями с целью установления соединения. Это позволяет убедиться, что система-получатель функционирует и в состоянии принять данные. Как только соединение установлено и начинается процесс передачи данных, система-получатель периодически посылает сообщения, подтверждающие прием пакетов. Эти сообщения оповещают систему-отправителя о потерянных пакетах, а также обеспечивают ее информацией, используемой при контроле скорости потока передачи.

Формат TCP –сообщения

Функции полей TCP-заголовка описаны ниже.

Порт источника (SourcePort), 2 байта. Идентифицирует номер порта передающей системы, используемый процессом, который создал информацию, переносимую TCP-сегментами. В некоторых случаях это может быть фиктивный номер порта, выделенный клиентом специально для данной транзакции.

Порт назначения (DestinationPort), 2 байта. Указывает номер порта системы назначения, на который должна быть передана информация ТСР-сегментов. Номера портов перечислены в документе "AssignedNumbers", а также в файле SERVICES каждой ТСР/1Р-системы.

Порядковый номер (SequenceNumber), 4 байта. Определяет положение конкретного сегмента по отношению ко всей последовательности данных.

Подтвержденный номер (AcknowledgmentNumber), 4 байта. Задает максимальный номер байта в сегменте, увеличенный на единицу, который подтверждающая система ожидает получить от отправителя. Используется совместно с битом управления АСК.


Смещение данных (DataOffset), 4 бита. Задает длину в 4-байтных словах, TCP-заголовка (который может содержать опции, увеличивающие его размер вплоть до 60 байт).

Зарезервировано (Reserved), 6 битов. Выделено для последующих применений.

Биты управления (ControlBits), 6 битов. Содержит шесть 1-битных флагов, выполняющих перечисленные ниже функции:

URG - показывает, что последовательность содержит срочные данные (urgentdata) и активирует поле указателя срочности;

АСК - отмечает, что сообщение является подтверждением ранее полученных данных и активирует поле номера подтверждения;

PSH - предписывает системе-получателю передать всю информацию текущей последовательности, полученную на данный момент, приложению, идентифицированному полем порта назначения, не дожидаясь поступления остальных фрагментов;

RST - инструктирует систему-получателя отбросить все сегменты текущей последовательности, полученные к настоящему моменту, и начать установление TCP-соединение заново;

SYN - используется во время процедуры установления соединения для синхронизирования нумераторов переданных данных между взаимодействующими системами;

FIN - извещает другую систему, что передача данных закончена и соединение должно быть завершено.

Окно (Window), 2 байта. Реализует механизм управления потоком протокола TCP (скользящее окно) путем объявления количества байтов, которое система-получатель может принять от системы-источника.

Контрольная сумма (Checksum), 2 байта. Содержит результат вычисления контрольной суммы с учетом TCP-заголовка, данных, а также псевдозаголовок, составленный из полей IP-адреса источника, протокола, IP-адреса назначения из IP-заголовка плюс длина всего ТСР-сообщения.

Указатель срочности (UrgentPointer), 2 байта. Задействуется совместно с битом URG, определяет данные последовательности, которые должны рассматриваться получателем как срочные.

Опции (Options), переменный размер. Может содержать дополнительные конфигурационные параметры для TCP-соединения вместе с битами выравнивания, требуемыми для того, чтобы привести размер поля до ближайшего значения, кратного 4 байтам. Возможные опции перечислены ниже.

Максимальный размер сегмента (MaximumSegmentSize). Задает размер максимального сегмента, который текущая система может получить от другой системы, соединенной с ней.

Фактормасштабаокна (Window Scale Factor). Используется для увеличения размера поля окна с 2 до 4 байтов.

Временная отметка (Timestamp). Используется для хранения временных отметок пакетов данных, которые система-получатель возвращает отправителю с целью подтверждения. Это позволяет отправителю измерять время путешествия данных в оба конца.

Данные (Data), переменный размер. Может включать в себя сегменты данных, поступившие с вершины протокольного стека, от протоколов Прикладного уровня. В пакетах SYN, АСК и FIN это поле оставляется пустым.

IPX/SPX: Для обеспечения транспортных услуг для операционной системы NovellNetWare, фирмой Novell был создан свой собственный стек протоколов, получивший общее название по наименованию протокола Сетевого уровня - IPX (InternetworkPacketExchange, межсетевой обмен пакетами). По аналогии с TCP/IP этот стек иногда также называют IPX/SPX. Вторая часть этого обозначения соотносится с SPX (SequencedPacketeXchange, последовательный обмен пакетами), протоколом, работающим на Транспортном уровне. Однако, в отличие от комбинации TCP и IP, которая повсеместно встречается в TCP/IP- сетях и предназначена в основном для доставки большого количества трафика, комплекс IPX/SPX в сетях NetWare можно встретить относительно редко.

Протоколы IPX в нескольких аспектах похожи на TCP/IP. Оба стека протоколов задействуют на Сетевом уровне ненадежные протоколы без установления соединения (IPX и IP соответственно) для переноса дейтаграмм, содержащих данные множества протоколов верхних уровней, что обеспечивает широкий спектр услуг для различных применений. Подобно IP, IPX отвечает за адресацию дейтаграмм и маршрутизацию их к месту назначения в другой сети.

Однако в отличие от TCP/IP протоколы IPX были разработаны для применения в локальных сетях, и не поддерживают той почти неограниченной масштабируемости, свойственной протоколам Интернета. IPX не обладает такой самостоятельной адресной системой, какая имеется у протокола IP. Системы в сети NetWare идентифицируют другие системы посредством аппаратных адресов, "зашитых" в платы сетевых адаптеров в сочетании с адресом сети, назначенным администратором (или ОС) во время инсталляции операционной системы.

Дейтаграммы IPX переносятся внутри стандартных кадров протокола Канального уровня точно так же, как дейтаграммы IP. Протоколы IPX не имеют собственных протоколов Канального уровня. Тем не менее, в большинстве сетей данные IPX инкапсулируются кадрами Ethernet или TokenRing.

Протокол IPX

IPX базируется на протоколе IDP (InternetworkDatagramPacket, межсетевой обмен дейтаграммами), разработанном для сетевых служб Xerox (XNS, XeroxNetworkServices). IPX обеспечивает базовые транспортные услуги без установления соединения между системами интерсети при широковещательной и однонаправленной передаче. Большая часть обычного трафика между серверами NetWare или между клиентами и серверами переносится посредством дейтаграмм IPX.

Заголовок дейтаграммы IPX имеет длину 30 байтов (для сравнения: размер заголовка IP равен 20 байтам). Назначение полей заголовка перечислено ниже.

Контрольная сумма (Checksum), 2 байта. В оригинальном заголовке IDP это поле содержит значение CRC для дейтаграммы. Так как протоколы Канального уровня сами выполняют проверку контрольных сумм, то данная функция при обработке дейтаграмм IPX не задействована и поле всегда содержит шестнадцатеричное значение ffff.

Длина (Length), 2 байта. Задает размер дейтаграммы в байтах, включая заголовок IPX и поле данных.

Управление доставкой (TransportControl), 1 байт. Это поле также известно как счетчик транзитов (hopcount). Оно фиксирует количество маршрутизаторов, через которые прошла дейтаграмма на пути к месту назначения. Передающая система сбрасывает его в 0, а каждый из маршрутизаторов при обработке дейтаграммы увеличивает значение счетчика на 1. Как только количество транзитных маршрутизаторов достигает 16, последний из них отбрасывает дейтаграмму.

Тип пакета (Packet Туре), 1 байт. Идентифицирует сервис или протокол верхнего уровня, который создал данные, переносимые дейтаграммой. Используются следующие значения:

0 - не определен;

1 - RoutingInformationProtocol (RIP, протокол информации маршрутизации);

4 - ServiceAdvertisingProtocol (SAP, протокол извещения об услугах);

5 - SequencedPacketExchange (SPX, последовательный обмен пакетами);

17 - NetWare Core Protocol (NCP, основнойпротокол NetWare).

Адрессетиназначения (Destination Network Address), 4 байта. Указывает сеть, в которой расположена система-получатель, содержит значение, выделенное администратором или операционной системой во время инсталляции NetWare.

Адрес узла назначения (DestinationNodeAddress), 6 байтов. Определяет сетевой интерфейс компьютера, которому должны быть доставлены данные, представляет собой аппаратный адрес протокола Канального уровня. Широковещательные сообщения передаются с шестнадцатеричным адресом ffffffffffff.

Сокет назначения (DestinationSocket), 2 байта. Отвечает за идентификацию процесса, выполняющегося на системе-получателе, для которого, собственно, и предназначены данные внутри дейтаграммы. Используетсяодноизследующихзначений:

0451 - NetWare Core Protocol;

0452 - Service Advertising Protocol;

0453 - Routing Information Protocol;

0455 - NetBIOS;

0456 - диагностический пакет;

0457 - пакет присваивания номера (serializationpacket);

4000-6000 - сокеты, отведенные процессам сервера;

9000 - NetWareLinkServicesProtocol;

9004 - IPXWAN Protocol.

Адрес сети источника (SourceNetworkAddress), 4 байта. Идентифицирует сеть, в которой находится система, пославшая дейтаграмму. Используется значение, выделенное администратором или операционной системой во время инсталляции NetWare.

Адрес узла источника (SourceNodeAddress), 6 байтов. Содержит аппаратный адрес протокола Канального уровня для сетевого интерфейса компьютера, который отправил дейтаграмму.

Сокет источника (SourceSocket), 2 байта. Определяет процесс, выполняющийся на локальной системе, сформировавший данные пакета. Применяются те же значения, что и для поля сокета назначения.

Данные (Data), переменной длины. Информация, сгенерированная протоколом вышележащего уровня.

Поскольку IPX является протоколом без установления соединения, для подтверждения правильности доставленных данных он полагается на протоколы верхних уровней. Тем не менее, клиенты NetWare активируют системные часы таймаута запроса, по истечении которого таймер вынуждает их повторно отправить дейтаграмму IPX, если ответ не был получен в течение заданного периода времени.