Автономный свет в умном доме с помощью ветряной электростанции. Крупнейшие ветряные электростанции мира

Использовать силу ветра в своих интересах человечество научилось давно. Если на заре прогресса люди не имели представления о массовом перемещении воздуха по земной поверхности, то использовать силу ветра в качестве тягловой силы научились сразу же с появлением первых кораблей. Логичным продолжением дела использования ветра на благо человека стали ветряные мельницы.

Следующий виток заинтересованности в контроле над воздушными массами и приспособлении их к служению человеку произошел на стыке XIX и XX веков. Тогда появился инструмент, преобразующий силу ветра в энергию, то есть ветряная электростанция. Как и во все времена, поводом к ее созданию послужило стремление экономить. В данном случае традиционные топливные ресурсы, которые, оставаясь популярными, постоянно росли в цене.

С расцветом промышленности ветряные мельницы постоянно модифицировались и к XXI веку приобрели тот узнаваемый вид, который безошибочно отличит от прочих агрегатов даже ребенок.

Но узнать что-либо по внешнему виду – это одно, а понять, как это работает, – совсем другое. Восполним этот пробел.

Принцип действия ветряной электростанции

Ветряная , или инвертор, имеет принцип действия, идентичный с другими ветровыми установками: сила ветра вращает лопасти ветряного колеса, которое передает крутящий момент на вал генератора посредством системы передач. В зависимости от конструкции энергия ветра передается также на электрогенератор или водяной насос.

Знакомый с основами физики человек без труда сообразит, что количество вырабатываемой энергии прямо пропорционально величине диаметра ветрового колеса и размеру его лопастей. Чем больше ветра одновременно будет воздействовать на лопасть, тем сильнее происходит отдача в виде электроэнергии.

Одними размерами решение вопроса получения максимальной отдачи не ограничивается. Воздушные потоки на разной высоте ведут себя неодинаково. Вблизи земли их сила снижается, и скорость замедляется из-за с ландшафта, тормозящего перемещение ветра. Чем выше находится ветряное колесо, тем мощнее поток воздуха, попадающий на него.

Конструкция ветровых электростанций

Ошибочно было бы полагать, что внешне инвертор выглядит исключительно как ветряная мельница на менее обширном основании. В настоящее время различают три основных типа конструкции ВЭС:

  1. пропеллерные. Вращающийся вал в данном случае расположен горизонтально относительно направления ветра. Лопасть-стабилизатор с обратной стороны ветрового колеса позволяет всей конструкции перемещать его по направлению ветра. Самый экономичный из всех разновидностей ВЭС. Скорость вращения таких агрегатов обратно пропорциональна количеству лопастей, поэтому оптимальное их число – три штуки. Имеют самый высокий КПД (0,48) энергии ветра;
  2. барабанные;
  3. карусельные.

В обоих случаях вал, вращающий лопасти, расположен вертикально. Данный тип инверторов монтируется в местах, где направление ветра не имеет большого значения (например, в горах).

У таких электростанций вращающий момент существенно выше пропеллерных. КПД колеблется в диапазоне от 0,10 до 0,15.

Массовое применение инверторов в настоящее время является панацеей сразу от нескольких современных болезней цивилизации (о них чуть ниже). В то же время работа ветряных электростанций зависит от множества факторов, на которые человек повлиять не в состоянии.

Проблемы, связанные с работой ветровых электростанций

Главная проблема – нерегулярность работы поставщика энергии, то есть самого ветра . Ветряные электростанции напрямую зависят от этого фактора, и работа узлов, получающих электроэнергию подобным способом, не может быть непрерывной. Положение усугубляется еще и тем, что сила ветра может служить как на пользу, так и во вред – нарастание силы ветра способно вывести инверторы из строя.

Вывод можно сделать только один: за достижение колоссального экономического эффекта от использования воздушных потоков человечество платит зависимостью от их капризов, труднопрогнозируемых и совершенно непредсказуемых по времени. Напрашивается вопрос о целесообразности их использования и монтажа вообще. Зачем людям такой недобросовестный и непунктуальный помощник, к тому же еще и дикий? Ответ заключен в истории цивилизации, которая уже давно просчитала все.

Выгоды и недостатки ветряных электростанций

Достоинства ВЭС

  • Простота конструкции.
    Несложный по строению агрегат способен эксплуатироваться людьми без специального образования. Принцип действия понятен всем освоившим курс физики на уровне школы. Вопросов по работе не возникнет.
  • Возобновляемость (неиссякаемость) источника энергии.
    Получение электроэнергии посредством использования био- или синтетического топлива зависит от наличия этого самого топлива. Малейшие перебои с поставками делают все ТЭЦ бесполезными. Ветер же повсеместно и постоянно напоминает о своем присутствии. Он исчезнет только вместе с воздухом.
  • Экономичность.
    Получение электроэнергии подобным способом является наглядным пособием мечты каждого бизнесмена – получение максимальной прибыли с минимальными вложениями. Мощность одной ВЭС колеблется в диапазоне от 10 до 1000 Вт и эти параметры зависят только от делового чутья ее собственника.
  • Безальтернативность в особенных случаях.
    Районов, не освоенных человеком, на планете практически не осталось, чего нельзя сказать о снабжении этих мест всем необходимым (в первую очередь – энергией). Труднопроходимые горные участки, тайга, Заполярье или пустыня – всюду доставка электроэнергии обычными способами растянется на месяцы, если не годы. Наличие ветряных электростанций решает эту проблему раз и навсегда.
  • Экологичность.
    Любое производство, основанное на переработке топлива в энергию, выбрасывает в атмосферу огромные объемы вредных здоровью примесей. Бичом нашей планеты на протяжении многих лет является возникновение парниковых зон, уничтожающих все живое. Инверторы же не ухудшают экологию и способствуют поддержанию климата и здоровья человека.
  • Доступность.
    Ветер дует везде. Он может иметь разные величины значения относительно уровня моря или иных параметров. Но одно остается неизменным – он есть.
  • Компактность.
    Инверторы имеют небольшой вес. Их легко транспортировать и монтировать как вдали от цивилизации, так и буквально среди урбанистических центров крупнейших мегаполисов, где идет яростная борьба за каждый свободный квадратный метр площади.
  • Независимость внешняя и внутренняя.
    Как бы смешно ни звучало на первый взгляд, наличие развитой сети ветряных электростанций служит снижению зависимости небольших государств от монополистов нефтегазового рынка. Если спроецировать ситуацию на меньший масштаб, то при эксплуатации ВЭС для собственных бытовых нужд хозяин такой ветроустановки менее подвержен риску изменения своего бюджета из-за роста цен на топливо.

Недостатки ВЭС

Недостатки ветровых электростанций носят больше субъективный, нежели объективный характер, тем не менее их нужно учитывать в каждом конкретном случае монтажа установок.

  • Зависимость от ветра.
    Ветер иногда может отсутствовать, или его сила будет недостаточна. Это приведет к полной остановке подачи электричества и к связанным с этим проблемам.
  • Стартовая стоимость.
    Оборудование ВЭС стоит денег, и одномоментная перестройка хозяйства под получение электричества из воздуха затратна. Помимо самих станций, требуются накопители энергии – аккумуляторы, которые имеют ограниченный срок эксплуатации.
  • Шум вблизи жилых объектов.
    Шум присутствует вблизи домов, но он создает дискомфорт только в случае одновременной работы большого количества ВЭС. В основном шумят мощные электростанции.
  • Изменение природного ландшафта.
    С точки зрения эстетики, конечно, обилие мачт с вращающимися лопастями не добавляет красоты окружающей природе. Вопрос в том, что внешне уродует природу сильнее.
  • Радио- и телепомехи.
    Случаи препятствий работе теле- и радиоприемников зафиксированы, их статистика постоянно изучается.
  • Большие площади.
    Если установка компактных ВЭС выгодна в городе, полностью заменить биотопливо в сельской местности возможно лишь в случае массового использования инверторов. Для этого необходима их установка в больших количествах, что приводит к использованию больших площадей.

Как видно из предоставленной информации, существенных достоинств ветровые электростанции имеют гораздо больше, чем недостатков. Взвесив все, произведя все необходимые расчеты и убедившись в необходимости использования ВЭС, задаешься вопросом, где же взять эти самые ветроустановки.

Производители ветряных электростанций

Основные игроки на этом рынке из Европы. Это Германия (Repower, Siemens, Nordex, Enercon – эта компания занимает второе место в мире), Дания (Vestas – мировой лидер рынка), Испания (Ecotechnia, Gamesa).

В число мировых лидеров также входят США (GeneralElectric) Япония (Mitsubishi), Индия (Suzlon).

Все эти компании производят оборудование, имеющее мощность от 0,5 до 6 000 кВт.

В России одними из крупных частных производителей ВЭС являются ООО «Ветро Свет», ООО «Сапсан-Энергия», «ЛМВ Ветроэнергетика», ООО «СКБ Искра», ООО «ЭнерджиВинд» и др. Также их производство ведется и на промышленных мощностях предприятий ВПК.

Вы хотите знать ?

Если вы любите самые современные решения в интерьере, в том числе и в освещении, то эта вам понравится.

Вам необходимо полностью осмыслить проблему экологии на нашей планете? Полезный материал по ссылке.

География применения ветряных электростанций

Как и среди производителей, лидер по строительству ВЭС – Германия. Европа вообще переживает бум строительства ветроустановок, их число растет в скандинавских странах и Греции.

В Азии наибольший практический интерес испытывается со стороны Китая. Программа строительства предусматривает обязательный монтаж таких установок при возведении новых зданий.

Северная и Южная Америка повсеместно использует энергию ветра на протяжении десятилетий и в сфере фермерского хозяйства активно вытесняет традиционные виды получения электричества. В США сосредоточена пятая часть всей энергии мира, получаемой из ветра.

В последние годы Россия активно включилась в процесс сооружения ВЭС, и на сегодняшний момент можно говорить о запуске таких заслуживающих внимания объектов, как:

  • Тюлкильды (Башкортостан).
  • Калмыцкая ВЭС (Калмыкия).
  • Зеленоградская ВЭУ (Калининградская область).
  • Крым. На Крымском полуострове находятся 5 (3 из них – крупнейшие в стране) ВЭС.
  • Достойны упоминания ВЭС, установленные в Мурманске и Республике Саха.

Выводы, полученные на основании обработки данных, позволяют прогнозировать активный рост использования ВЭС в нашей стране.

Тенденция последних лет по наращиванию мощностей ВЭС неопровержимо наводит на следующие выводы: энергия ветра будет востребована в еще большем объеме, и к этому нужно быть готовым заранее.

Именно поэтому страны мира тратят все больше бюджетных средств. Вложение денег в эту отрасль – гарантия того, что в мире не остановится производство, когда иссякнут природные ресурсы. При использовании ВЕУ отсутствует продуктами распада, что очень важно.

К этому надо быть готовым сейчас. Что и поняло человечество.



Добавить свою цену в базу

Комментарий

Ветро-электрические установки (ВЭУ) преобразовывают энергию перемещения атмосферных масс, которая в той или иной мере имеется в наличии в любой точке земного шара, непосредственно в электричество. Именно на этом основывается положительный экономический и экологический эффект от использования ветровых турбин.

Преимущества ветровой энергетики

Современные технологические решения позволяют производить ветровые генераторы мощностью от нескольких КВт до сотен МВт . То есть ВЭУ могут обеспечивать электроэнергией, как целые промышленные районы, так и отдельные жилые коттеджи. Кроме чисто экономических преимуществ ветряная энергетика имеет еще одно неоспоримое преимущество – она оказывает значительно более низкое давление на экологию и биосферу Земли. Поэтому на авторитетном сайте «Альтернативная энергетика» (http://altenergiya.ru/) справедливо подтверждается глубокие мысли Вернадского В. В., высказанные еще в средине ХХ века:

…продажи ветряных электростанций небольшой мощности, которые способны использовать энергию ветра практически в любых регионах (даже там, где недостаточно силы ветра для промышленного использования), постоянно возрастают. Прогнозируется, что подобные альтернативные источники энергии будут применяться все шире, как в государственном, так и частном порядке, пока окончательно не вытеснят традиционную энергетику, основанную на органическом топливе

К экономическим плюсам бытовой ветряной энергетики (установки, мощностью 3 – 15 КВт) можно отнести следующие факторы:

  • Неисчерпаемость источника энергии;
  • Экологическая чистота энергии;
  • Быстрота возведения ветряной установки;
  • Короткий срок окупаемости капитальных вложений;
  • Не требуется специальных площадок для монтажа оборудования.

Недостатком небольших ВЭУ является практически один фактор — прямая зависимость вырабатываемой мощности от напора воздушного потока, который в большинстве регионов Земли не отличаются стабильностью. Поэтому для стабильного и качественного энергоснабжения бытовой техники требуется такое дополнительное оборудование, как аккумуляторы и полупроводниковые выпрямительные установки .

Изучение энергетического потенциала территории

Заглядывая в будущее ХХI столетие, безальтернативность пути развития ветровой энергетики очевидна. Потому в передовых странах проводятся исследования потенциала территорий на предмет использования их для возведения крупных ВЭУ.

Станции альтернативной энергетики обычно занимают большие площади. Соответственно в первую очередь обращается внимание на такие местности, которые даже в далекой перспективе не могут быть вовлечены в другую экономическую деятельность:

  • Пустыни;
  • Горные возвышенности;
  • Шельфовые зоны;
  • Прибрежные зоны морей и океанов, и другие.

В частности, на популярном интернет ресурсе windypower.blogspot.com/p/blog-page_8642.html дается такая информация:

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного-двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты потенциальным инвесторам оценить скорость окупаемости проекта

Мощности промышленных ветровых электростанций

Промышленные ВЭУ бывают самой разной мощности в зависимости от энергетического потенциала конкретной территории. Современные технологии позволяют массово производить даже не стандартизированное генераторное оборудование со сроком окупаемости 3 – 5 лет .

На сегодня самая крупная наземная ВЭС расположена на перевале Техачапи, что в Калифорнии. Ее полная мощность, соизмеримая с мощностью крупных тепловых электростанций, уже ныне составляет 1550 МВт . В дальнейшем планируется довести установленную мощность ВЭС АЛЬТА до 3000 МВТ. На ней используются ветровые турбины 1.5 и 3.0 МВт.

Державы, которые владеют большими шельфовыми зонами, активно развивают шельфовою ветроэнергетику. В этой области лидируют Дания и Великобритания. Такие ВЭУ устанавливаются в 10 – 50 км от берега в море с небольшими глубинами и отличаются большой эффективность, потому что там дуют постоянные морские ветра. Самой большой ВЭС среди эксплуатируемых в шельфовых зонах мира является великобританская станция London Array с рабочей мощность в 630 МВт.

Развиваются также такие экзотические типы ВЭС, как плавающие и парящие. Пока что это установки с одним или не большой группой генераторов мощностью по 40 – 100 КВт каждый. Но со временем планируется довести мощность агрегатов на плавающих электростанциях до 6.3 МВт. В частности к таким мощностям уже вплотную подошли датские и итальянские фирмы.

ВЭС для обеспечения электричеством коттеджей и объектов малого бизнеса и цены на них.

Для того, чтобы полностью покрыть нужды загородного дома, не большой фермы, ресторана или маркета, достаточно иметь установку мощностью в 20 или даже меньше КВт. Для жилого дома, например, номинальная мощность генератора выбирается с расчета 1КВт на 12 м2 площади, если зимняя температура не опускается ниже 18С при среднесуточной скорости ветра 6.3 м/с и более.

Стоимость электростанции для бытовых нужд и малого бизнеса зависит от номинальной мощности электрогенератора и составляет около 50 тыс. рублей на 1 КВт для ВЭС до 3 КВт, 40 тыс. рублей/КВт – для ВЭС до 10 КВт и около 30 тыс. рублей/КВт – для ВЭС свыше 10 КВт.

Окупаемость автономной электростанции составляет в пределах 5 – 7 лет, так 1 КВт установленной номинальной мощности генератора за год может выработать столько энергии, которая эквивалентна сжиганию 2 тонн высококачественного угля . В частности ВЭУ «ЭСО-0020» номинальной электрической мощностью 20 кВт, представленная на сайте «Учебные материалы ВГУЭС (http://abc.vvsu.ru/) имеет следующие параметры:

  • Себестоимость электроэнергии – 0.02 долл. / КВтч;
  • Годовая выработка эл. энергии — более 70000 КВтч;
  • Срок окупаемости – до 7 лет;
  • Срок службы – 20 лет.

Видео

Ветряная электростанция (ВЭС) — альтернативный экологичный источник энергии. ВЭС представляет собой несколько распределённых или сосредоточенных ветроэлектрических установок (ветрогенераторов или ВЭУ), соединённых в общую сеть (каскады). Крупнейшие ВЭС могут состоять из сотни и более ветрогенераторов, работающих как на собственные, так и на один общий энергоблок. Для ВЭС наиболее эффективны регионы со средней скоростью ветра более 4,5 м/с.

Россия располагает крупными ветроэнергитическими ресурсами, в сумме ветропотенциал страны оценивается приблизительно в 14000 ТВт час/год. Крупнейшая ветровая станция России — Зеленоградская ВЭУ (5,1 МВт), также отметим Анадырскую ВЭС, Заполярную и ВЭС Тюпкильды. Общая мощность работающих ВЭС России более 16,5 МВт. Кроме электрической, ветровая энергия используется в получении тепловой и механической энергий.

"Зеленоградская ВЭУ расположенна в районе посёлка Куликово Зеленоградского района Калининградской области.

ВЭУ преобразует кинетическую энергию воздушных потоков в механическую, которая используется для вращения ротора генератора электротока. Промышленные ВЭУ используются в построении ветряных электростанций. Их мощность может достигать 7,5 МВт, она зависит от конструкции ветряка, силы воздушного потока, плотности воздуха и площади обдуваемой поверхности. Промышленная ВЭУ обычно состоит из фундамента, силового шкафа управления, башни, лестницы, поворотного механизма, гондолы, электрогенератора, механизма слежения за параметрами ветра, тормозной системы, трансмиссии, лопастей, обтекателя, коммуникаций и системы защиты от молний. Ветротурбины бывают с вертикальной осью вращения (карусельные лопастные и т.д.) и горизонтально-осевые — кругового вращения, наиболее распространённые из-за простоты и высокого КПД.

Устройство ветрогенератора включает в себя ветротурбину (раскручиваемую лопастями или ротором) и электрогенератор. Полученное с генератора электричество обычно поступает на устройство управления аккумуляторами, после чего накапливается в аккумуляторах, и с помощью инвертора, подключённого в электросеть, преобразуется в переменный ток необходимой силы, частоты и напряжения (например: 50 Гц/220 В). ВЭУ на выходе электрорегулятора имеет 24, 48 или 96 вольт постоянного тока. Батареи аккумулятора накапливают энергию для использования в безветрие. Принципиальную электросхему взаимодействия ВЭУ с устройствами можно как угодно модифицировать и улучшать.

Типы ветровых электростанций.

Наземная — самый распространённый вид. Ветрогенераторы здесь размещены на возвышенностях (горы, холмы). Самой крупной ВЭС считается калифорнийская «Альта» в США с мощностью 1,5 ГВт. Ветрогенераторы на высоте более 500 м над уровнем моря - это горная разновидность наземных станций.

Шельфовая строится в море, в 10-60 км от берега. Даёт преимущество в отсутствии выделенных сухопутных территорий и высокую эффективность в силу постоянства морских ветров. В сравнении с наземной обладает большей дороговизной.

Крупнейшая станция «London Array» в Великобритании производит 630 МВт электроэнергии.

Прибрежная строится в прибрежных зонах морей и океанов, что обусловлено суточными морскими бризами.

Плавающая — сравнительно новый вид. Устанавливается на плавающей платформе на некотором удалении от берега.

Парящая, где ветровые турбины размещены высоко над землёй с целью использования более сильных и стойких воздушных потоков.

Преимущества ВЭУ:

  1. Дешевизна установки и обслуживания
  2. Отсутствие потребности в большом персонале
  3. Экологичность (даже при разрушении), отсутствие выбросов в атмосферу, нарушения экосистемы и ландшафта
  4. Восполняемость источника энергии
  5. Отсутствует нужда в специальной выделенной зоны вокруг станции
  6. Высокий уровень чистой прибыли владельцам в связи с высоким отношением современной стоимости электроэнергии к минимальным затратам на получение этой энергии

Недостатки ВЭУ:

  1. Высокий входной барьер в бизнес. Строительство ветряных ферм, точные расчёты определения местности, основывающиеся на многолетних показаниях
  2. Невозможность точного прогноза количества производимой энергии в силу стихийной природы ветра
  3. Малая мощность
  4. Высокий уровень шума, который может негативно влиять на окружающую среду (однако современные технологии позволяют добиться приближения уровня шума к уровню естественной среды уже в 30 метрах от турбины)
  5. Вероятность вреда для птиц и искажения телерадиосигналов

Проекты ветряных установок будущего:

Ветростебли вместо лопастей. Установка в проекте «зелёного» города без машин Масдара близ Абу-Даби. 1203 энергоэффективных стебля высотой 55 м на расстоянии друг от друга в 10-20 м будут «расти» из земли, покачиваться от ветра и генерировать таким образом энергию путём сжатия керамических дисков электродных слоёв.

Сверхмассивный ветряк Aerogenerator X отличается от классических ветряков своими внушительными размерами и выработкой энергии в 3 раза больше, чем обычный ветряк (10 МВт). Размах лопастей 275 м. Конструкция используется в ширину, а не ввысь. Ветряк вращается над морской гладью как карусель.

Норвежский город турбин на побережье Ставангер. Так как Евросоюз поставил цель обеспечения энергией хотя бы на 20% от природных сил, то не исключено что Норвегия станет основным производителем энергии через ветер и воду. Множество связанных ветроустановок будут настоящим городом с двумя млн. рабочих мест. Этой энергии должно хватить на Норвегию и часть Европы. К 2020 г. разработчики рассчитывают обеспечивать 12% энергии от энергии во всём мире. Экологически чистые турбины сберегут более 10700 млн. тонн выбросов двуокиси углерода.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры — от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Еще в Древнем Египте за три с половиной тысячи лет до нашей эры применялись ветровые двигатели для подъема воды и размола зерна. За пятьдесят с лишним веков ветряные мельницы почти не изменили свой облик. Например, в Англии имеется мельница, построенная в середине XVII в. Несмотря на свой преклонный возраст, она исправно трудится и по сей день. В России до революции насчитывалось приблизительно 250 тыс. ветряных мельниц, общая мощность которых составляла около 1,5 млн. кВт. На них размалывалось до 3 млрд. пудов зерна в год.

Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой — получение электроэнергии. В начале века Н. Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

Ветряные мельницы оказались прекрасными источниками даровой энергии. Неудивительно, что со временем их стали использовать не только для размола зерна. Ветряки вращали дисковые пилы на больших лесопилках, поднимали грузы на большие высоты, использовались для подъема воды. Наряду с водяными мельницами они оставались, практически, самыми мощными машинами прошлого. В той же Голландии, например, где ветряков было больше всего, они успешно работали до середины нашего века. Часть их действует и в настоящее время.

Что интересно, мельницы в средневековье вызывали у некоторых суеверный страх — настолько непривычными были даже простейшие механические приспособления. Мельникам приписывали общение с нечистой силой.

В наши дни к созданию конструкций ветроколеса — сердца любой ветроэнергетической установки — привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Типы ветрогенераторов

Разработано большое количество ветрогенераторов. В зависимости от ориентации оси вращения по отношению к направлению потока ветрогенераторы могут быть классифицированы:

С горизонтальной осью вращения, параллельной направлению ветрового потока;
с горизонтальной осью вращения, перпендикулярной направлению ветра (подобные водяному колесу);
с вертикальной осью вращения, перпендикулярной направлению ветрового потока.

Здесь — сайт ветроэнергетики. НПГ «САЙНМЕТ» является отечественным РАЗРАБОТЧИКОМ И ПРОИЗВОДИТЕЛЕМ ветроэнергетических установок (ветрогенераторов), одним из мировых лидеров в области автономной ветроэнергетики – обладателем Гран-при и трех золотых медалей Всемирной Брюссельской выставки инноваций «Eureka-2005». НПГ «САЙНМЕТ» представляет автономные ветроэнергетические установки: ветрогенератор мощностью 5 и ветрогенератор мощностью 40кВт, а также ветросолнечные и ветродизельные установки на их основе.

Ветродизельные энергетические установки могут быть объединены в локальные сети, а также сопряжены с солнечными батареями. Ветродизельные агрегаты, в зависимости от ветрового потенциала местности, позволяют экономить 50-70% топлива, потребляемого дизель-генераторами сравнимой мощности.

Основные конструктивные решения ветрогенераторов защищены патентами на изобретения.

Энергия ветра

Человек использует энергию ветра с незапамятных времен. Но его парусники, тысячелетиями бороздившие просторы океанов, и ветряные мельницы использовали лишь ничтожную долю из тех 2,7 трлн. кВт энергии, которыми обладают ветры, дующие на Земле. Полагают, что технически возможно освоение 40 млрд. кВт, но даже это более чем в 10 раз превышает гидроэнергетический потенциал планеты.

Почему же столь обильный доступный и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Ветровой энергетический потенциал Земли в 1989 году был оценен в 300 млрд. кВт * ч в год. Но для технического освоения из этого количества пригодно только 1,5%. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Непостоянство ветра требует сооружения аккумуляторов энергии, что значительно удорожает себестоимость электроэнергии. Из-за рассеянности при сооружении равных по мощности солнечных и ветровых электростанций для последних требуется в пять раз больше площади (впрочем, эти земли можно одновременно использовать и для сельскохозяйственных нужд).

Но на Земле есть и такие районы, где ветры дуют с достаточным постоянством и силой. (Ветер, дующий со скоростью 5-8 м/сек., называется умеренным, 14-20 м/сек. – сильный, 20-25 м/сек. – штормовым, а свыше 30 м/сек. – ураганным). Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

Основное направление использования энергии ветра – получение электроэнергии для автономных потребителей, а также механической энергии для подъема воды в засушливых районах, на пастбищах, осушения болот и др. В местностях, имеющих подходящие ветровые режимы, ветроустановки в комплекте с аккумуляторами можно применять для питания автоматических метеостанций, сигнальных устройств, аппаратуры радиосвязи, катодной защиты от коррозии магистральных трубопроводов и др.

По оценкам специалистов, энергию ветра можно эффективно использовать там, где без существенного хозяйственного ущерба допустимы кратковременные перерывы в подаче энергии. Использование же ветроустановок с аккумулированием энергии позволяет применять их для снабжения энергией практически любых потребителей.

Мощные ветровые установки стоят обычно в районах с постоянно дующими ветрами (на морских побережьях, в мелководных прибрежных зонах и т.д.) Такие установки уже используют в России, США, Канаде, Франции и других странах.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток её в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород, Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Литература

    Наука и жизнь, №1, 1991 г. М.: Правда.

    Техника молодёжи, №5, 1990 г.

    Феликс Р. Патури Зодчие ХХI века М.: ПРОГРЕСС, 1979.

    Наука и жизнь, No10, 1986 г. М.: Правда.

    Багоцкий В.С., Скундин А.М.

    Химические источники тока М.: Энергоиздат, 1981. 360 с.

    Коровин Н.В. Новые химические источники тока М.: Энергия, 1978. 194 с.

    Д-р Дитрих Берндт Конструкторский уровень и технические границы применения герметичных батарей А/О ВАРТА Беттери Научно-исследовательский центр

    Лаврус В.С. Батарейки и аккумуляторы К.: Наука и техника, 1995. 48 с.

    Наука и жизнь, №5…7, 1981 г. М.: Правда.

    Мурыгин И.В. Электродные процессы в твердых электролитах М.: Наука, 1991. 351 с.

    T he Power Protection Handbook American Power Conversion

    Шульц Ю. Электроизмерительная техника 1000 понятий для практиков М.: Энергоиздат, 1989. 288 с.

    Наука и жизнь, №11, 1991 г. М.: Правда.

    Ю. С. Крючков, И. Е. Перестюк Крылья Океана Л.: Судостроение, 1983. 256 с.

    В. Брюхань. Ветроэнергетический потенциал свободной атмосферы над СССР Метрология и гидрология. №6, 1989 г.

    New scientist №1536, 1986 г.

    Daily Telegraf, 25.09.1986 г.

Каркас одноэтажных зданий состоит из поперечных рам, шарнирно связанных поверху стропильными конструкциями. Поперечная жесткость здания обеспечивается колоннами, жестко защемленными в фундаменте и диском покрытия.

В зданиях с кровлей, устраиваемой по сплошному настилу из крупноразмерных железобетонных плит, условия работы отдельных рам облегчаются за счет частичной передачи нагрузок «жесткой» кровлей на смежные рамы.

Здания с кровлей из плит, укладываемых по прогонам, находятся в менее благоприятных условиях, т.к. независимость деформации отдельных рам при воздействии на них местных нагрузок может привести в ряде случаев к ухудшению эксплуатационных свойств здания.

Поэтому при проектировании зданий с мостовыми кранами значительной грузоподъемности, а также бескрановых, имеющих большую высоту, следует предусматривать продольные связи по верхним поясам стропильных конструкций, до некоторой степени объединяющих работу рам в поперечном направлении.

Обеспечение жесткости здания в продольном направлении только за счет колонн экономически оправдывается лишь для бескрановых зданий: с пролетами L ≤ 24 м и высотами Н ≤ 8,4 м, а также для зданий с L= 30 м и Н ≤7,2 м. Для зданий большой высоты и зданий с мостовыми кранами необходимо предусматривать вертикальные связи жесткости в продольном направлении.

Такие связи устраивают между колоннами и при необходимости в покрытии здания.

Передача ветровых нагрузок с торцовых стен на колонны и вертикальные связи через конструкции кровли целесообразна только для зданий определенных пролетов и высоты. В большепролетных зданиях более или менее значительной высоты такое использование кровли затрудняет крепление стропильных конструкций к колоннам, усложняет конструкции, обеспечивающие устойчивость покрытий, а в ряде случаев и вообще не может быть осуществлено без нарушения целостности кровли, прочности креплений ее к стропильным конструкциям.

Торцовые стены таких зданий должны проектироваться с применением горизонтальных ветровых ферм и с передачей на них подавляющей части ветровой нагрузки.

Кровли из относительно мелких изделий, укладываемых по прогонам, могут воспринимать ветровые нагрузки от торцовых стен и передавать их на колонны лишь при условии развязки их системой поперечных горизонтальных связей по верхним поясам стропильных конструкций.

Условия применения таких, а также других второстепенных конструкций (вертикальные связи между фермами, распорки, растяжки) зависят от параметров здания.

Все одноэтажные промышленные здания делят на конструктивно однородные группы в зависимости от типа транспортного оборудования и габаритных характеристик (пролет и высота), которые приведены в таблице 1 ниже.

К группе I относят здания с пролетами до 24 м, имеющих высоту до 8 м, а также здания с пролетами 30 м и высотой до 7 м.

К группе II относятся здания, имеющие поперечные температурные швы при: L= 18 м и Н = 9 – 15 м; L= 24 м и Н = 9 – 12 м; L ≥ 30 м и Н = 9 – 10 м;

К группе III относятся здания с поперечными температурными швами, но более высокие, чем здания группы II, а также здания без поперечных температурных швов с пролетами L= 18 м, 24 м, 30 м, высотой более 12 м.

Все здания указанной номенклатуры, за исключением зданий группы А – б — I, требуют применения связей.

Таблица 1

Группа зданий по высоте с беспрогонными кровлями с кровлей по прогонам
с мостовыми кранами без мостовых кранов с мостовыми кранами без мостовых кранов
Низкие А – а — I А – б — I Б – а — I Б –б — I
Средние А – а — II А – б — II Б – а — II Б –б — II
Высокие А – а — III А – б — III Б – а — III Б –б — III

Вертикальные связи жесткости между колоннами устанавливают в середине температурного блока каждого продольного ряда. В зданиях с мостовыми кранами вертикальные связи по колоннам устраиваются только на высоту до низа подкрановых балок (рис.1), а в зданиях без мостовых кранов – на полную высоту колонн. Между стальными колоннами крановых зданий связи устанавливают еще и в надкрановых частях колонн, как в середине температурного блока, так и в крайних его шагах (рис. 2 а, б). При высоте подкрановой части стальной колонны превышающей 8,5 м связи сдваивают (рис. 2 в).

По схеме стальные связи между колоннами подразделяются на крестовые и портальные. Крестовые характерны 6-метровым шагам колонн, портальные – 12-метровым.

2. Вертикальные связи по стальным колоннам:

а – крестовые связи; б – портальные связи; в – крестовые сдвоенные связи

Капитальные стены, расположенные в распор между колоннами и прочно связанные с ними, могут быть использованы для обеспечения продольной жесткости здания вместо вертикальных связей лишь при гарантии, что эти стены не будут подлежать разборке при эксплуатации или реконструкции здания.

Во всех зданиях с кровлей по прогонам необходимо предусматривать горизонтальные поперечные связи жесткости, которые устанавливают по верхним поясам стропильных конструкций в крайних панелях каждого температурного блока, независимо от наличия или отсутствия ветровых ферм.

В высоких зданиях требуется устройство горизонтальных ветровых ферм в торцах зданий. В зданиях с мостовыми кранами ветровые фермы устанавливаются на уровне верха подкрановых балок (рис.3).

Рис. 3. Схема расположения ветровой фермы в уровне подкрановых балок

Для передачи давления ветровых ферм по линии подкрановых балок зазоры между торцами балок заполняют бетоном, а крепление подкрановых балок к колоннам связевой панели рассчитывается на восприятие всех горизонтальных сил (включая силы от продольного торможения кранов), действующих по линии подкрановых балок.

В зданиях без мостовых кранов ветровые фермы необходимо располагать в уровне верха вертикальных связей.

Во всех случаях применения ветровых ферм в зданиях без подстропильных конструкций между колоннами на уровне ветровых ферм должны быть поставлены распорки для передачи ветрового давления от ферм на вертикальные связи.

В зданиях с подстропильными конструкциями крепление их к колоннам рассчитывается на горизонтальные нагрузки от ветровых ферм. Зазоры между торцами подстропильных конструкций рекомендуется заполнять бетоном.

Все продольные нагрузки, воспринимаемые отдельными элементами здания, в конечном счете, должны быть переданы вертикальным связям в продольных рядах колонн или распределены между колоннами. Необходимость во второстепенных устройствах для обеспечения прочности узлов и устойчивости элементов покрытия, участвующих в такой передаче, в значительной мере определяется типом кровли.

В зданиях типов А – а – I, II, III и А – б – I с жесткими беспрогонными кровлями ветровые нагрузки распределяются покрытием между всеми колоннами в продольных рядах. Крепление каждой из стропильных конструкций к колоннам в этих случаях должно быть рассчитано на воспринимаемую ею часть общей ветровой нагрузки.

При невозможности обеспечить необходимую прочность крепления стропильных конструкций к колоннам (например, в покрытиях имеющих стропильные конструкции с большой высотой на опорах) устанавливают вертикальные связи между опорными стойками стропильных конструкций в крайних панелях температурного блока. При этом устанавливают и распорки между всеми колоннами ряда по их оголовкам для распределения, воспринимаемого вертикальной связью, ветрового давления между всеми колоннами ряда.

В зданиях типа А – б – II, в которых вертикальные связи между колоннами устраиваются на всю высоту колонн, ветровые усилия передаются покрытием на колонны лишь в узлах крепления стропильных конструкций к колоннам связевой панели. В этом случае необходимо устраивать дополнительные связи в покрытии. Так, при небольшой высоте стропильных конструкций на опоре между колоннами каждого продольного ряда устанавливают распорки, передающие ветровые нагрузки на вертикальные связи. Крепление каждой из стропильных конструкций к колоннам будет при этом работать лишь на приходящуюся на него часть общей ветровой нагрузки. А при значительной высоте стропильных конструкций на опоре (стальные и железобетонные фермы с параллельными поясами, железобетонные безраскосные фермы и т.п.) следует устанавливать вертикальные связи (С1) между опорными стойками ферм в крайних шагах температурного блока, соединяемые непрерывной цепью распорок. Стальные стропильные фермы дополнительно развязываются по нижним поясам раскосами (С2) и крепятся к остальным фермам с помощью растяжек по нижнему поясу (С3) и распорок по верхнему поясу (С4) (рис. 4).

Рис. 4. Схема связей в покрытии по стальным фермам

В зданиях с мостовыми кранами тяжелого или особо тяжелого режимов работы по продольным краям каждого температурного блока в уровне нижнего пояса стропильных ферм устанавливают распорки (С5) и раскосы (С6) (рис.4).

В зданиях с фонарями в пределах фонаря устанавливаются распорки в середине пролета, соединяющие узлы верхних поясов стропильных конструкций, а также вертикальные и горизонтальные связи в крайних шагах температурного блока.

Связи проектируют из прокатных, гнутых, гнутосварных профилей или электросварных труб.

Крепят их с помощью болтов нормальной точности или высокопрочных, а также на сварке.

Дата публикования: 2014-10-17; Прочитано: 8172 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.003 с)…

В поисках альтернативных источников энергии человечество шагнуло далеко вперед. Например, все чаще используется сила солнца, создаются ветряные электростанции. Наверное, именно ветер может рассматриваться как оптимальный способ получения электрической энергии - эффективный, и при этом достаточно экономичный.

Ветер, ветер, ты могуч

Ветряная электростанция - это группа специальных генераторов, которые объединены в систему и используют для создания энергии силу ветра. Особенность таких генераторов в их безопасности для окружающей среды. Сегодня больше всего ветряных станций построено в Германии, Дании, при этом в таких странах не только ниже затраты на энергию, они еще экспортируют установки и технологии в другие государства. Работают ветряные электростанции по следующему принципу: под воздействием ветра вращаются лопасти конструкции, а благодаря редуктору приводится в действие электрогенератор. Энергия, которая в результате получается, транспортируется по кабелю.

Как правило, мачты в установках имеют достаточную высоту, а потому используют силу природы по максимуму. При составлении проекта подобной конструкции сначала тщательно исследуется местность, изучаются и его направление при помощи ряда приборов. Уже на основе данных решается, окупится ли установленная ветряная электростанция.

Главное - правильный выбор

Сегодня покупателям предлагаются разнообразные ветряные электростанции для дома.Выбирать их следует в зависимости от того, каковы потребности заказчика. Например, если нужно обеспечить работу техники в сельском хозяйстве, то мощности нужны небольшие. А вот для решения более серьезных задач, например, электрификации зданий и сооружений или монтажа отопительной системы в доме нужны более мощные ветрогенераторы. Заниматься подготовкой местности и непосредственно работами по установке обязательно должны только специалисты.

Прежде чем купить ветрогенератор, нужно учесть ряд нюансов, включая нагрузку в пиковые моменты, средние показатели потребления энергии, скорость ветра. Также стоит помнить, что чем выше мачта, тем сильнее и мощнее ветер будет крутить лопасти турбины. Правда, монтаж таких конструкций дороговат. Оптимальное расположение - на 10 метров выше здания или дерева, находящегося в радиусе примерно 100 метров.

Плюсы

Ветряные электростанции сегодня довольно востребованы, что связано с рядом причин.

  • Во-первых, это более выгодно, если сравнивать с другими источниками энергии.
  • Во-вторых, запасы силы ветра неисчерпаемы.
  • В-третьих, такие мельницы имеют простое устройство, поэтому их монтаж производится довольно быстро. Главное - провести исследования объекта, на котором они будут располагаться.
  • В-четвертых, производство электроэнергии таким способом намного дешевле, да и позволяет экономить богатства недр.
  • В-пятых, ветряные мельницы обеспечивают электроэнергией стабильно и надежно.
  • В-шестых, такие устройства абсолютно безопасны для окружающей среды, что тоже очень важно.

Минусы

С другой стороны, как и любой другой источник энергии, ветряные электростанции (фото показывают, насколько просты их конструкции) имеют и минусы.

  • Во-первых, ветер не постоянен, то есть дует он по-разному - то сильно, то слабо. Соответственно, не везде возможно их устанавливать.
  • Во-вторых, ветряные конструкции работают довольно шумно, значит, располагать их нужно вдали от жилых объектов.
  • В-третьих, такие мельницы могут стать помехой для радио- и телеприборов. Правда, в той же Европе с этим недостатком смирились, и сегодня здесь уже действуют больше 26 000 ветряных электростанций.
  • Еще один минус - подобные установки могут навредить летящим птицам, поэтому возводить их нужно там, где нет мест их миграции и гнездования.

Что купить?

Современные ветряные электростанции для дома представлены в широком ассортименте. Они отличаются производительностью и рассчитаны на разную силу и скорость ветра. Например, установки мощностью в 400-6400 Вт вполне достаточно для обеспечения энергией небольших хозяйств, магазинов, ресторанов, которые находятся в удалении от основных источников энергии. Если нужно обеспечить электричеством несколько домов или небольшой поселок, то нужны станции большей мощности, в среднем 18000-26 500 Вт. Такие же установки целесообразно монтировать рядом с большими производствами и коммерческими объектами. На самые простые ветряные электростанции для дома цена начинается от 700 000 рублей, более дорогие установки стоят около трех миллионов рублей.

Альтернативные виды

Как мы уже сказали, ветряная мельница - достаточно шумная установка, однако сейчас предлагаются генераторы, которые работают не так мощно. Например, бесшумный ветрогенератор - это идеальное решение для небольших и средних по размерам объектов, ферм, магазинов, если они располагаются в удаленных районах. Сегодня большой популярностью пользуются вертикальные установки ввиду своей эффективности и простоты монтажа. Преимущества такой системы следующие:

  • тихая работа без вибраций;
  • устойчивость к сильному ветру;
  • защита корпуса алюминиевым покрытием от молнии;
  • не имеет значения направление ветра.

Бесшумные домашние ветряные электростанции просты в уходе, монтаже, поскольку здесь нет мелких деталей. Немаловажно, что и вред птицам нанесен не будет, поскольку дизайн установок таков, что ландшафт не будет нарушен. Еще один интересный вариант - парусный генератор. Конечно, он не отличается привлекательным дизайном, зато может выработать энергию даже при слабом ветре. Подобные ветряные электростанции хороши тем, что благодаря парусу они быстро подстраиваются под движение сил природы, значит, и выработка энергии происходит стабильно. Конструкции абсолютно экологичны, имеют низкую стоимость, работают без шума и вибраций, а это говорит о том, что у них есть будущее.

Каковы перспективы?

В целом, экологическая ситуация в мире такова, что природные ресурсы постепенно истощаются, и в скором времени такое решение, как ветряные мельницы, станет самой настоящей реальностью во всем мире. Не случайно жители многих стран постепенно приходят к тому, чтобы установить подобные конструкции и на своем участке. В России, по мнению специалистов, достаточно потенциальных возможностей для того, чтобы активно развивалась ветроэнергетика. Правда, пока этот процесс идет медленными темпами ввиду отсутствия достаточного финансирования. В случае если ситуация изменится, а государство будет уделять достаточно внимания этому способу получения энергии, в скором времени и наша страна перейдет на альтернативные решения. На сегодняшний день ветряные электростанции в России представлены в республиках Калмыкия и Башкортостан, Чувашия, Коми, в Калининградской, Саратовской, Оренбургской, Ростовской, Мурманской, Астраханской областях, а также в Чукотском автономном округе. Однако специалисты утверждают: в скором времени география расположения ветряков станет значительно шире.

Как сделать ветряную электростанцию?

Стремление сэкономить на тратах на энергию и привнести что-то новое приводит к тому, что народные умельцы начинают делать ветряки своими руками. В самом простом виде он представляет собой две половинки цилиндра, которые раздвинуты в сторону от центральной оси. Если увеличить количество лопастей в конструкции до четырех, то мощность и тяговые характеристики прибора станут намного выше. Ветряная электростанция своими руками делается при помощи нижеописанных материалов и составляющих.

  1. Для создания барабана нам потребуются фанера и кровельное железо (или листовой пластик подходящего размера). Ротор должен быть легким, поэтому не стоит брать слишком толстые материалы.
  2. Для «щек» барабана нам потребуются древесина и пластмасса (или легкий металл), при этом места стыков следует обработать масляной краской.
  3. Для изготовления крестовин понадобятся стальные полосы или древесина.
  4. Ось сделаем из стальной трубы, диаметр которой составляет 30 мм, а длина - 2 м.
  5. Для оси нам также нужны шарикоподшипники одинакового размера.

Этапы монтажа

Итак, самодельная ветряная электростанция делается так. Сначала привариваем крестовины ротора к оси (если используется дерево, то его нужно приклеить или монтировать при помощи штифтов). Лопасти соединяются посредством болтов, при этом важно, чтобы до оси от них было одинаковое расстояние. После сборки барабана места стыков нужно обработать при помощи густой масляной краски. Теперь создаем станину: для этого нам нужны металлические или на которые затем мы монтируем шарикоподшипники. Перекосов следует избегать, поскольку ротор будет медленно вращаться. Теперь мы ветряную станцию опять покрываем краской, а на нижнем конце оси крепим шкивы разного диаметра. Перекидываем ремень через шкив и подсоединяем его к генератору тока, например, автомобильному. Подобная ветроэнергетическая установка рассчитана на скорость ветра примерно 9-10 м/с при выработке мощности в 800 Вт.

Ветряная мельница для дома

Чтобы обеспечить бытовые потребности в электрической энергии максимально полноценно, мощность ветряной мельницы для средней семьи из четырех человек должна составлять не меньше 10 кВт. В таких ситуациях целесообразно установить целую систему, в состав которой входят несколько ветряков, вырабатывающих небольшую мощность. Энергия в них аккумулируется на общей батарее, при этом, если необходимо, можно установить еще дополнительные генераторы, а также увеличить количество и емкость батарей.

Чтобы энергоснабжение объекта было стабильным и не зависело от внешних причин, специалисты рекомендуют создать автономный энергетический комплекс. Он будет включать в себя ветряную электростанцию, а также резервные источники энергоснабжения в виде дизельного и бензинового генераторов, а также солнечных батарей. Если сила ветра будет достаточной, а энергия будет вырабатываться в нужном количестве, то дизельную установку можно и отключить. Если вдруг силы, которая будет производиться ветряной мельницей, не будет хватать, то автоматически запустится резервный источник электроснабжения.

Как достичь эффективности?

Чтобы установленная ветряная станция была монтирована правильно и приносила желаемые плоды, нужно соблюсти несколько условий.

  1. Ветер в местности должен быть стабильным практически в течение всего года.
  2. На объекте должно быть достаточно места, чтобы установить ветряк.
  3. Узнать, разрешают ли местные власти подобные установки.

Кроме того, целесообразно использовать подобные системы, если вы тратите на электроэнергию слишком много средств, а возможности подключиться к питающей сети просто нет. Еще нужно готовиться к тому, что придется потратить на ветряную установку немало средств. Зато вы получите экологически чистую неисчерпаемую энергию.

Распространенные ложные суждения о ветровой энергии отпугивают людей от использования этого энергоресурса. Но ветровые турбины - весьма перспективный способ получать энергию из экологически чистых источников. Особенно в условиях удорожания нефти, газа и угля, а также учитывая исчерпываемость полезных ископаемых.

Сегодня использование ветра подразумевает, прежде всего, получение электроэнергии. Попытаемся разобраться, насколько это просто, дешево и удобно. Для тех, кто хочет сразу услышать итог, вывод: ветряная электроэнергия никогда не станет дешевле энергии, полученной из других источников: тепловых, атомных или гидроэлектростанций.

Поэтому заниматься ветряными электростанциями для дома имеет смысл только тем, у кого руки чешутся приспособить доставшийся «по случаю» готовый генератор, или энтузиастам экологически чистой энергии, фанатично желающим спасти планету от экологической катастрофы. Других причин использовать ветряную энергию при подведенном питании от внешних электрических сетей просто не придумаешь.

1. Ветровая энергия дорогая.
Ветровая энергия конкурентоспособна в регионах со скоростью ветра от умеренной до высокой. Учитывая тот факт, что в процессе производства ветровой энергии нет топлива, она не растет в цене вместе с ним. Нет затрат на закупку и доставку сырья, на уменьшение загрязнения окружающей среды. Кроме того, стоимость ветровой энергии с каждым годом уменьшается благодаря новым технологиям, в отличие от энергии, которую вырабатывают электростанции, работающие на угле и уране.

2. Источники энергии ветра ненадежны и должны «перестраховываться» традиционными источниками.
Количество энергии ветра, которую производят ветряные электростанции, меняется в зависимости от погодных условий. Однако это не значит, что ветровые станции ненадежны. В отличие от современных электростанций, ветряная ферма может работать бесперебойно даже в случае поломки на одной из ветряных турбин - ведь остальные турбины будут продолжать работу.

3. Ветровые турбины работают в течение непродолжительного времени.
На полную мощность ветряная ферма может работать лишь 10% своего времени, хотя их и строят в районах, где погода обычно ветреная. Но ветровые турбины производят электрическую энергию большинство времени своей работы (65-80%), хотя количество получаемой энергии может варьироваться. Ни одна из электростанций не вырабатывает энергию на 100% заявленной мощности 100% своего времени. К тому же, электростанции часто закрывают на ремонт и техническое переоснащение.

4. Ветер дает мало энергии.

Одна стандартная двухмегаваттная турбина производит электрическую энергию для 600-800 домов. А с использованием новых технологий эта цифра может возрасти.

5. Ветровые турбины неэффективны.
Ветровые турбины эффективны, и чтобы это доказать, можно подсчитать «энергетическую окупаемость» этой технологии - промежуток времени, за который производится определенное количество энергии. Ветряные станции, согласно исследованиям американских ученых из университета Уилсон-Мэдисон, производят в 17-40 раз больше энергии, чем потребляют за то же время. Обычные атомные электростанции - лишь в 16 раз.

6. Ветровые станции ужасно выглядят.
О вкусах, конечно, не спорят, но многочисленные фотографии ветровых станций доказывают, что турбины могут гармонично вписываться в пейзаж. Благодаря усилиям промышленных дизайнеров современные турбины элегантны и эстетичны.

7. Ветровые турбины очень шумные.
Если верить этому мифу, то человек не может долго находиться вблизи ветровых двигателей. На самом деле двигатели работают достаточно тихо. Шум от ветроэлектростанции на удалении в 250-300 метров не превышает громкость работающего домашнего холодильника. Работающие турбины создают звук, похожий на легкий свист, поэтому звук, производимый самим ветром, слышен сильнее. Только старые агрегаты, работающие уже более 20 лет, в настоящее время являются наиболее шумными. Современные турбины спроектированы таким образом, чтобы их механические компоненты создавали как можно меньше шума.

8. Ветровые электростанции существенно уменьшают стоимость соседствующей с ними недвижимости.
На стоимость недвижимости влияют многие факторы, и наличие ветровой станции поблизости не является решающим в этом вопросе. К тому же в будущем, при дефиците традиционных источников энергии, такое соседство может только повысить цену имущества или земли.

9. Работа турбин генерирует помехи для работы телевизионных станций и других видов связи.

Создавать помехи для средств связи, работающие турбины могут лишь в редких случаях. Обычно это происходит на открытой местности, в случаях, когда ветровые установки расположены в пределах прямой видимости. Для решения этой проблемы необходимо усовершенствовать приемо-передающее устройство или же установить ретранслятор, передающий сигнал, минуя зону расположения ветроэлектростанции.

10. Ветровые турбины опасны для людей и животных.
Энергия ветра не связана с выбросами вредных газов в атмосферу, загрязнением воды или земли отходами. За 25 лет существования не было зафиксировано ни одного несчастного случая, связанного с работой ветровых турбин.Также бытует мнение о возникновении вредного для человеческих ушей инфразвука при работе турбин. Однако ученые уверяют, что уровень инфразвука очень незначителен и не представляет никакой опасности.

11. Мелькание ветровых турбин негативно сказывается на здоровье человека.
Проблему с тенью, которую отбрасывают турбины, и ее миганием можно легко решить, правильно рассчитав положение ветровой станции относительно населенных пунктов.

12. Ветряные электростанции наносят вред туризму.

На самом деле таких свидетельств зафиксировано не было. Нередко ветровые турбины даже способствуют привлечению в эту местность гостей. На подъезде к необычной станции или на близлежащих дорогах устанавливаются специальные указатели и информационные доски. Так, в Калифорнии в Палм Спрингз, работают тысячи турбин. Местные власти организовали сюда специальные автобусные туры для ознакомления с работой ветряной электростанции.

13. С лопастей ветровой турбины может сорваться лед, представляющий опасность для жизни человека.

В действительности иногда падение льда может случиться, но это не представляет никакой опасности. Это связано с удаленностью ветровых станций от мест проживания людей. К тому же образование большого количества льда на лопастях просто невозможно. Образование льда уменьшает скорость вращения лопастей. В этом случае система контроля сама автоматически отключит турбину.

14. Ветровые турбины небезопасны: случается, что с турбин срываются лопасти, а станция разрушается.

На сегодняшний день ветровые турбины не представляют никакой опасности. Они проходят сертификацию в соответствии с международными стандартами. Это позволяет их ставить даже около сельских и городских детских заведений, а также в густонаселенных местах. Тысячи ветровых турбин, установленных по всей Европе и Америке, отвечают самым высоким стандартам безопасности. А это гарантия их надежной работы.