Антенны эллептической поляризации

Демонстрация поляризации волн: шнур от ротора перед щелью колеблется по кругу, а за щелью до точки закрепления - линейно

Поляриза́ция волн - характеристика поперечных волн , описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Виды поляризации

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Волновой вектор показывает направление распространения волны, а вектор амплитуды показывает, в какую сторону происходят колебания. В трёхмерном пространстве имеется ещё одна степень свободы - возможность вращения вектора амплитуды вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например рак-богомол , способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией. Некоторые люди также обладают способностью различать поляризацию света, в частности, эти люди могут наблюдать невооруженным глазом эффекты, связанные с частичной поляризацией света дневного неба. Так описывает этот эффект Лев Николаевич Толстой в своей повести «Юность»: «и, вглядываясь в растворенную дверь балкона … , и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает;»

История открытия поляризации электромагнитных волн

Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Расмус Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO 3), чаще всего имеющими форму правильного ромбоэдра , которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.

Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса . Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).

В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны , то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.

Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.

{ E x = E 1 cos ⁡ (τ + δ 1) E y = E 2 cos ⁡ (τ + δ 2) E z = 0 {\displaystyle {\begin{cases}E_{x}=E_{1}\cos \left(\tau +\delta _{1}\right)\\E_{y}=E_{2}\cos \left(\tau +\delta _{2}\right)\\E_{z}=0\end{cases}}}

Здесь набег фазы τ = k z − ω t {\displaystyle \tau =kz-\omega t} .

Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора E → {\displaystyle {\vec {E}}} :

(E x E 1) 2 + (E y E 2) 2 − 2 E x E 1 E y E 2 cos ⁡ (δ) = sin 2 ⁡ δ {\displaystyle \left({\frac {E_{x}}{E_{1}}}\right)^{2}+\left({\frac {E_{y}}{E_{2}}}\right)^{2}-2{\frac {E_{x}}{E_{1}}}{\frac {E_{y}}{E_{2}}}\cos(\delta)=\sin ^{2}{\delta }} , где разность фаз δ = δ 1 − δ 2 {\displaystyle \delta =\delta _{1}-\delta _{2}} .

Наряду с S 1 {\displaystyle S_{1}} , S 2 {\displaystyle S_{2}} , S 3 {\displaystyle S_{3}} используют также нормированные параметры Стокса s 1 = S 1 / S 0 {\displaystyle s_{1}=S_{1}/S_{0}} , s 2 = S 2 / S 0 {\displaystyle s_{2}=S_{2}/S_{0}} , s 3 = S 3 / S 0 {\displaystyle s_{3}=S_{3}/S_{0}} . Для поляризованного света s 1 2 + s 2 2 + s 3 2 = 1 {\displaystyle s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=1} .

s - и p -поляризации волн

В оптике и электродинамике s -поляризованная волна (сравните нем. senkrecht - перпендикулярный) имеет вектор электрического поля E, перпендикулярный плоскости падения. s σ -поляризованной, сагиттально поляризованной, волной E-типа , TE-волной (Transverse Electric ) . p -поляризованная волна (сравните лат. parallel - параллельный) имеет вектор электрического поля E, параллельный плоскости падения. p -поляризованную волну также называют π -поляризованной, поляризованной в плоскости падения, волной H-типа , TM-волной (Transverse Magnetic ) .

Термины TM-волна и TE-волна в работах ряда авторов меняются местами. Дело в том, что классически плоская граница предполагает однородность структуры в двух направлениях. В этом случае определяют плоскость падения и перпендикулярность напряженностей по отношению к ней. Разделение электромагнитного поля на два несвязанных решения возможно в более общем случае структуры, однородной в одном направлении. В этом случае удобно определять перпендикулярность напряжённостей по отношению к направлению однородности . Распространение последнего определения на частный классический случай приводит к тому, что напряженность, перпендикулярная к направлению однородности, оказывается в плоскости падения. Отмечается, что в случае металлической поверхности существенны только волны с электрической напряженностью, перпендикулярной к границе металла . Такие волны также удобнее называть TE-волнами. Термины TM и TE связаны также с обозначением поперечных мод в лазерном резонаторе или волноводе.

В сейсмологии p -волна (от англ. primary - первичный) - продольная волна, приходящая от эпицентра землетрясения первой. s -волна (от англ. secondary - вторичный) - поперечная волна (shear wave), имеющая меньшую скорость распространения, чем продольная, и поэтому приходящая от эпицентра позднее.

Что такое круговая поляризация?

Круговая поляризация - это вращение черного вектора Е- напряженности электрического поля с частотой 4,000,000,000 оборотов в секунду (для С-диапазона).

Вектор Е круговой поляризации можно представить в виде двух ортогональных векторов, H и V величина которых постоянно меняется в процессе вращения черного вектора. Из рисунка видно, что если принимать вместо вращающегося вектора, один из ортогональных векторов, то величина сигнала будет в два раза меньше. Поэтому если принимать линейным конвертором сигнал с круговой поляризацией, то потери составят 3дБ. Поэтому чтобы принять весь сигнал, надо преобразовать круговую поляризацию в линейную, для этого служит деполяризатор. В качестве деполяризатора можно использовать диэлектрик.

В случае расположения диэлектрического поляризатора под углом 45 град вектора H и V на выходе деполяризатора складываются в одной фазе за счет задержки и ускорения составляющих H и V в диэлектрике. Таким образом, величина вектора Е в два раза больше, чем векторов V и H. В зависимости от угла расположения диэлектрического поляризатора к электроду конвертора, будет приниматься круговая поляризация правого или левого вращения. Т.к. Диэлектрик расположенный перпендикулярно или продольно к векторам Н и V не влияет на них, то с использованием механического или магнитного поляризатора можно создать конвертор, принимающий все виды поляризации. Такой конвертор, будет работать на спутниковой антенне, фиксировано направленной на один спутник, что, как правило, лишено смысла или на антенне с полярной подвеской. Волновод конвертора на антенне с полярной подвеской поворачивается в зависимости от направления антенны, а угол поворота конвертора определяется механической конструкцией антенны. Теперь, если Вам требуется принимать круговую поляризацию, то надо установить электрод поляризатора под углом 45 град. к диэлектрику, а если линейную поляризацию, то параллельно или перпендикулярно диэлектрику.

При таком расположении электрода будет приниматься круговая поляризация.

HellasSat

Angle: 39 East

Band: Ku

Frequency: 11630 MHz

Polarization: Horizontal

Symbol Rate: 20.500 Msps

NSS 6

Angle: 95 East

Band: Ku

Frequency: 11017 MHz

Polarization: Vertical

Symbol Rate: 10.500 Msps

Express AM1 NARROW

Angle: 40 East

Band: Ku

Frequency: 11656.75 MHz

Polarization: Vertical

Symbol Rate: 20.802 Msps

Express AM22

Angle: 53 East

Band: Ku

Frequency: 10974.4 MHz

Polarization: Vertical

Symbol Rate: 32.223 Msps

NSS 6

Angle: 95 East

Band: Ku

Frequency: 11017.4 MHz

Polarization: Vertical

Symbol Rate: 10.500 Msps

ABS1

Angle: 75 East

Band: Ku

Frequency: 12609 MHz

Polarization: Vertical

Symbol Rate: 22.000 Msps

HellasSat2

Angle: 39 East

Band: Ku

Frequency: 11512 MHz

Polarization: Horizontal

Symbol Rate: 30.000 Msps

Eutelsat W6

Angle: 21.5 East

Band: Ku

Frequency: 11435 MHz

Polarization: Horizontal

Symbol Rate: 28.782 Msps

Telstar 12

Angle: 15 W

Band: Ku

Frequency: 11000 MHz

Polarization: Vertical

Symbol Rate: 6.336 Msps

Yamal 200 90E

Если на поляроид падает плоскополяризованный луч и между главной плоскостью поляроида и плоскостью поляризации луча существует некоторый угол, то плоскость поляризации луча, вышедшего из поляроида, будет повернута на этот же угол. Собственно говоря, как мы уже видели выше, неправильно в данном случае говорить о повороте плоскости поляризации. Сквозь поляроид проходит лишь проекция на данное направление исходного колебания. Чем больше угол, тем меньше амплитуда прошедшего колебания (§ 35).

В так называемых активных веществах дело обстоит совсем иначе. В них действительно происходит поворот плоскости поляризации проходящего луча. Поворот пропорционален толщине проходимого вещества. Вышедший луч имеет ту же амплитуду, но другую плоскость поляризации. Схема установки для наблюдения явлений вращения плоскости поляризации аналогична схеме для наблюдения интерференции (рис. 140): между поляроидами помещают или кусок активного вещества, или сосуд, наполненный активной жидкостью. Если мы помещаем активное вещество между скрещенными поляроидами, то поле светлеет, и, чтобы опять получить темноту, надо повернуть анализатор (или поляризатор) на некоторый угол. Очевидно, этот угол равен углу поворота плоскости поляризации. Величина и направление поворота зависят от вещества, толщины слоя вещества, а также от длины волны света.

Из твердых веществ к числу сильно вращающих принадлежат сахар и кварц; из жидкостей - винная кислота, моча и сахарный раствор.

Активные вещества делятся на право- и левовращающие в зависимости от направления вращения. Например, кварц бывает право- и левовращающим, есть право- и левовращающая винная кислота.

Явление вращения плоскости поляризации тесно связано со структурой вещества. В органических веществах вращение объясняется наличием асимметричного атома углерода, т. е. атома углерода, у которого все четыре валентности насыщены различными атомами. Схематически при этом возможны два существенно различных расположения, показанных на рис. 147; здесь зачерненный кружок означает атом углерода, а атомы различных элементов. Если левая схема соответствует одному направлению вращения, то правая - другому, причем обе схемы, очевидно, изображают одно и то же химическое вещество. Кроме структуры самих молекул играет роль также и их расположение. Особенно отчетливо это видно из того факта, что кусок неактивного вещества, например желатина, при закручивании приобретает активность вдоль оси вращения. Плоскость поляризации вращается при этом в направлении, обратном направлению закручивания.

Рис. 147. Асимметрический атом углерода.

Явлением вращения плоскости поляризации пользуются для определения концентрации какого-либо активного вещества в растворе. Поскольку величина угла поворота пропорциональна концентрации активного вещества и толщине слоя, от измеренной величины вращения легко перейти к концентрации. Для этого нужно лишь знать величину удельной вращательной способности, относимой к единице концентрации и единице толщины.

Рис. 148, Бикварц (а), Схема сахариметра (б).

Для обнаружения небольших количеств веществ, например сахара, в растворах необходимо иметь достаточно чувствительный прибор, обнаруживающий весьма небольшой поворот плоскости поляризации. Приведенная выше схема непригодна для этой цели; ввиду этого схема сахариметра (прибора для определения концентрации сахара) несколько усложнена. Добавляется обычно кроме николей еще так называемый бикварц. Бикварц состоит из двух кварцевых пластинок, вырезанных перпендикулярно к оптической оси (рис. 148, а). Одна пластинка правовращающая, другая

Рис. 149. Схема опыта Умова.

левовращающая. Толщина пластинок подобрана так (3,75 мм), что плоскость поляризации желто-зеленых лучей поворачивается на 90°.

Поэтому при помощи пластинок между параллельными николями желто-зеленые лучи гасятся и проходят лишь красные и фиолетовые лучи. Поле имеет тогда синевато-фиолетовую «чувствительную» окраску и разделено на две части. При малейшем повороте поляризатора или анализатора окраска обеих половинок бикварца резко меняется. Если одна из половинок окрашивается в синий цвет, то другая - в красный или наоборот в зависимости от направления вращения. В сахариметре бикварц В помещают между сосудом и анализатором (рис. 148). Установив при пустом сосуде S анализатор на чувствительную окраску обоих полей бикварца, наливают жидкость и поворотом анализатора добиваются восстановления одинаковой окраски обоих полей. Как указывалось, поворот анализатора равен повороту плоскости поляризации. На лимбе анализатора наносятся значения концентрации сахара.

Н. А. Умов использовал явление вращения плоскости поляризации для создания чрезвычайно красивого демонстрационного опыта (опыт Умова). В сборнике, посвященном памяти Умова, А. А. Эйхенвальд следующим образом описывает этот опыт:

«При помощи небольшого зеркала, поставленного на пути горизонтального пучка поляризованного света, мы отклоняем его вертикально вверх так, чтобы он мог пройти по оси этого цилиндрического сосуда (рис. 149).

Рис. 150. Винтообразный ход луча в опыте Умова.

Сперва мы наполним сосуд водой и сделаем ее мутной прибавкой небольшого количества раствора канифоли в спирту. Тотчас же путь луча обрисовывается во всю высоту сосуда в виде белого столба со слегка размытыми контурами. Только благодаря присутствию мути в воде мы и можем видеть этот путь лучей (явление Тиндаля): действительно, ведь луч света идет вертикально вверх, а потому к нам в глаз непосредственно попасть не может; но каждая частичка мути разбрасывает свет во все стороны диффузно и часть этого диффузно отраженного света попадает в наши глаза.

Однако это еще не все: оказывается, что каждая разбрасывающая свет частица поляризует свет (§ 35), и, следовательно, может служить нам анализатором. Положим, что наш горизонтальный луч,

идущий из фонаря, имеет колебания по оси фрнаря; при этих условиях путь света в воде будет виден, если смотреть справа и слева по оси фонаря, но ни спереди, ни сзади по оси фонаря он виден не будет.

Если повернуть поляризатор на какой-либо угол, то на тот же угол повернется и весь столб с его темными и светлыми сторонами.

Заменим теперь воду раствором сахара, тоже слегка мутным; тогда по мере того, как луч света все глубже и глубже входит в раствор сахара, плоскость его колебаний поворачивается, и если внизу сосуда колебания происходили по оси фонаря, то на некоторой высоте колебания эти будут уже в другом направлении, под углом к оси. Этот поворот колебаний увеличивается по высоте с равномерной постепенностью, и мы видим, что путь луча с его светлыми и темными сторонами как бы закручивается в растворе сахар а винтообразно (рис. 150).

Рис. 151. Разложение прямолинейного колебания на два круговых колебания»

Если поместить между поляризатором и раствором сахара кристаллическую пластинку, то все явление расцвечивается: столб света оказывается винтообразно обмотанным разноцветными лентами всевозможных оттенков».

Френель разработал феноменологическую теорию естественного вращения плоскости поляризации, рассматривая его как проявление своеобразного двойного лучепреломления. С этой целью Френель разложил плоскополяризованное колебание, входящее в оптически активную среду, на два круговых противоположно направленных колебания (рис. 151). В каждый момент времени вращающиеся векторы круговых колебаний образуют равные углы с вектором плоскополяризованного колебания. Предположим теперь, что оба круговых колебания распространяются в среде с различными скоростями. Тогда между ними возникнет дополнительная разность фаз и нарушится

указанное равенство углов. Биссектрисой угла между векторами круговых колебаний явится уже новое направление, соответствующее новому результирующему световому вектору. Таким образом, возникнет поворот светового вектора в сторону, соответствующую направлению вращения более быстро распространяющегося в среде кругового колебания.

Теория Френеля не освещает причины различия скоростей двух противоположно направленных круговых колебаний. На этот вопрос дает ответ молекулярная теория вращения плоскости поляризации. В молекулярной теории приходится учитывать конечные размеры молекул, сказывающиеся на интерференции вторичных волн, возникающих в отдельных частях молекулы под действием проходящей световой волны.

В 1846 г. Фарадей опубликовал статью под странным названием «О магнетизации света и освещении магнитных силовых линий». Фарадей понимал необычность такого заголовка и сделал следующее пояснение: «Заголовок этой статьи, я думаю, привел многих в недоумение относительно ее содержания, и потому я считаю долгом прибавить объяснительное примечание... Я думаю, что в опытах, описанных мной в этой статье, свет подвергался действию магнитной силы, т. е. магнетизм в силах материи подвергался действию и в свою очередь действовал на магнетизм в силе света». Речь шла об открытом Фарадеем новом эффекте вращения плоскости поляризации света, проходящего сквозь тело, помещенное в продольное магнитное поле. Это явление получило название эффекта Фарадея.

Приведенное примечание Фарадея показывает, что, несмотря на неудачное название статьи, он понимал, что причиной наблюдающихся эффектов является не непосредственное действие магнитного поля на свет, а изменение оптических свойств вещества в магнитном поле.

До сих пор речь шла лишь о плоскополяризованном свете. Однако понятие поляризации света является гораздо более общим и обнимает гораздо больший круг явлений. Поляризованным, вообще говоря, называют луч, в котором существует какая-либо упорядоченность колебаний. Например, световой луч, в каждой точке которого равномерно вращается его электрический вектор, называется поляризованным по кругу. Световой луч, у которого конец электрического вектор а описывает эллипс, называется эллиптически поляризованным.

В природе эллиптически поляризованный свет получается при отражении естественного света от металла. Накаленные металлы испускают свет, обладающий некоторой долей эллиптической поляризации. Легко также получить эллиптически поляризованный свет из плоскополяризованного. Собственно говоря, мы его уже получали в наших схемах в качестве промежуточного состояния, но не обращали на это внимание. В самом деле, при прохождении света

сквозь кристаллическую пластинку в интерференционных опытах из нее выходил луч, состоявший из двух взаимно-перпендикулярных колебаний, отстававших друг от друга по фазе. При разности фаз, не равной нулю или целому числу , сложение таких колебаний дает, вообще говоря, движение по эллипсу, а в частном случае равенства осей - по окружности (т. 1, § 59, 1959 г. ; в пред. изд. § 69). Таким образом, кристалл кварца, вырезанный параллельно оптической оси и расположенный соответствующим образом, может превратить плоскополяризованный свет в свет, поляризованный по кругу. Кварц же, вырезанный перпендикулярно к плоскости оси, просто поворачивает плоскость поляризации на некоторый угол, как это указывалось выше. Анализ эллиптически поляризованного света заключается в определении осей эллипса, равных соответствующим амплитудам, и разности фаз слагающих колебаний. Для этой цели употребляют кроме анализаторов упомянутые выше компенсаторы, служащие для определения разности фаз. Эллиптически поляризованный свет является самым общим типом поляризованного света; все остальные виды поляризации являются частными случаями эллиптически поляризованного света, как мы это уже указывали.

С эллиптической поляризацией связано наиболее общее определение естественного света. С. И. Вавилов пишет: «Естественный свет теоретически можно осуществить бесчисленными способами, рассматривая его или как результат наложения однотипных эллипсов с хаотически распределенными осями, или как сумму всевозможных, беспорядочно ориентированных эллипсов».

Поляризация электромагнитных волн.

Для ЭМВ, распространяющихся в какой-либо среде, существует понятие поляризации. Поляризация ЭМВ - это упорядоченность в ориентации векторов напряженности электрического и магнитного полей в плоскости перпендикулярной вектору скорости распространения ЭМВ. Различают эллиптическую, круговую и линейную поляризации.

Характер поляризации определяется конструкцией и ориентацией передающей антенны. В случае линейной поляризации вектор Е, периодически изменяясь, в процессе распространения остается перпендикулярным самому себе. Антенна в виде вертикального вибратора излучает вертикальную линейно-поляризованную волну. Для приема без потерь вибратор приемной антенны должен быть ориентирован также вертикально

Для создания горизонтальной линейно-поляризованной волны передающие вибраторы антенны должны располагаться горизонтально. Однако для спутниковой связи радиоволны в процессе распространения пронизывают ионосферу, находящуюся в магнитном поле Земли. В результате происходит вращение плоскости поляризации линейно-поляризованной волны (эффект Фарадея).

Ионосфера оказывается средой с двойным лучепреломлением, и радиоволна, распространяющаяся через нее, расщепляется на две составляющие. Эти составляющие распространяются в ионосфере с различными фазовыми скоростями. Поэтому при прохождении некоторого расстояния между ними появляется фазовый сдвиг, который приводит к повороту плоскости поляризации. В результате рассогласования поляризации волны, пришедшей в точку приема, и поляризации приемной антенны происходит потеря энергии - возникают поляризационные замирания. Для предотвращения замираний необходимо использовать антенны с круговой поляризацией, при которой вектор Е вращается с частотой радиоволны, описывая при распространении винтовую линию. При этом величина вектора Е останется постоянной. На пути равном длине волны вектор Е поворачивается на 360 градусов.

Для создания антенны с круговой поляризацией необходимо иметь два передающих вибратора, смещенных в пространстве на 90 градусов один относительно другого. Они должны питаться токами равной амплитуды со сдвигом фазы на 90 градусов.

Радиоволны с круговой поляризацией излучают, например, турникетная антенна. Прием волн с круговой поляризацией возможен как на однотипные (турникетная, спиральная) антенны, так и на обычные вибраторы

В зависимости от направления вращения вектора Е круговая поляризация может быть:

  • · левовинтовая;
  • · правовинтовая.

Любая антенна, к примеру, "BOF-5xxx + Отражатель" имеет некий сектор излучения. Распространяясь в этом секторе, часть электро-магнитной энергии уходит в космос, не достигая антенны приёмника. Часть энергии, излучённая ниже уровня горизонта, попадает на поверхность земли. При этом энергия частично поглощается поверхностью, а частично отражается от земли. Этот, отражённый сигнал, так же попадает в приёмную антенну. Суммируясь в приёмной антенне с некоторым временным опозданием и со случайной фазой по отношению к основному сигналу, отражённый сигнал является значительной помехой.

Особенностью радиоволн с эллиптической поляризацией является то, что при отражении сигнала, меняется вектор его вращения на противоположный.

Рис.2. Изменение направления вращения при отражении эллиптически поляризованной волны.

Излучённый сигнал с правосторонним вращением после отражения будет вращаться влево. При линейной поляризации сигнал при отражении сохраняет свой вектор поляризации.

Рис.3. Изменение вектора поляризации при отражении радиоволны, имеющей эллиптическую поляризацию.

Антенны круговой поляризации не принимают сигнал противоположного вращения.

И поэтому на приёмной антенне, отражённый сигнал, теперь в противоположной поляризации, Э.Д.С не наведёт. Приёмная антенна просто не "увидит" этот сигнал.

При построении беспроводных каналов связи на антеннах круговой поляризации, следует учитывать особенность отражения сигнала в зеркальных антеннах. Применяя в такой антенне активный элемент, излучающий с правостороннем вращением поляризации (например, облучатель BOF-2xxx RHCP), от антенны Вы получите сигнал с левосторонним вектором вращения (LHCP).

Поэтому, такая антенна (прим.: "Тарелка+BOF-2xxx RHCP") будет работать только с антеннами LHCP-поляризации. И, соответственно, наоборот.

Рис.4. Волна с круговой поляризацией меняет вектор направленности при отражении от параболического рефлектора.

Заметьте, что сменить поляризацию простым поворотом антенн на 90°, как Вы это могли делать с антеннами линейной поляризации, не получится. Вектор поляризации задается в процессе производства антенн и не может быть изменен пользователем.

А потому, продумайте конфигурацию Вашей сети и возможное её дальнейшее развитие (расширение) перед заказом оборудования.

Если сами затрудняетесь определиться какое оборудование Вам нужно - обратитесь к нам. Мы подберем Вам только нужное оборудование, работающее друг с другом. Минимальный набор оптимальных товаров, без "втирания" ненужного хлама.

Другое преимущество использования антенн с круговой поляризацией

В идеальных условиях, когда сигнал распространяется без препятствий, нет никакой разницы в том, как ориентирован в пространстве вектор поляризации сигнала.

В реальной же ситуации, существует масса препятствий, преград на пути распространения радиосигнала. Часть препятствий сигнал свободно проходит, на некоторых частично ослабляется, на третьих - полностью или частично отражается или безвозвратно поглощается.

На рисунке 5 наглядно показано распространение радиоволн с линейной поляризацией, на пути которых встречаются препятствия в виде ряда параллельных металлических стержней, расположенных вертикально и горизонтально.

Рис.5. Прохождение сигнала линейной поляризации через ряд параллельных металлических преград.

Радиоволны, имеющие вертикальную поляризацию полностью отражаются от вертикально ориентированных проводящих препятствий. Но при этом сигнал, имеющий горизонтальную поляризацию, практически без ослабления преодолевает это препятствие.

Напротив радиоволна, имеющая горизонтальную поляризацию, беспрепятственно проникает сквозь ряд вертикальных металлических преград.

Всего лишь одно препятствие, расположенное под углом в 45 градусов, наполовину ослабляет уровень сигнала. Причем это справедливо и для вертикальной, и для горизонтальной поляризации. (См. рис.6)

Рис. 6. Влияние на распространение сигнала помехи, расположенной под углом в 45 градусов.

В реальной практике преодолеть ряд вертикально и горизонтально ориентированных препятствий линейно поляризованная волна не может.

Ситуация хотя и кажется "лабораторной", искусственно созданной, на практике является самой распространенной. Причем эти самые препятствия чаще не бывают строго ортогональными, а наоборот имеют гамму вариаций.

Рисунок 6 наглядно иллюстрирует изменения линейно поляризованного сигнал после прохождения сквозь всего лишь одного дерева:

Рис.6. Прохождение сигнала с линейной поляризацией сквозь крону всего одного дерева.

Обратите внимание на принимающую сторону. Сигнал на антенну приходит ослабленный; одновременно приходит переотраженный сигнал, причем не в фазе основного сигнала

Происходит не только многократные отражения сигнала, причём в разных направлениях, его рассеивание в пространстве, но и искажение вектора поляризации при отражении.

В итоге на приёмную антенну попадает многолучевой сигнал разнородный по уровню сигнала и по поляризации; имеющий случайную фазу и время задержки из-за разного пройденного расстояния.

Все сигналы, попавшие в приёмную антенну с опозданием от основного сигнала, становятся помехой (шумом).

Нередко в таких случаях, при очень высоком уровне принимаемого сигнала, устанавливается низкая канальная скорость. Вызвано это тем, что только простые виды модуляции могут безошибочно детектироваться в условиях многолучевого интерференционного приёма.

Можно ли как-то с этим бороться?

Единственное, что реально работает в подобных условиях - антенны с эллиптической поляризацией.

Их "дальнобойность и пробиваемость" объясняется особенностью прохождения радиоволн с вращающимся вектором поляризации сквозь препятствия.

Рис.7. Прохождение сигнала эллиптической поляризации через ряд преград. Наш "лабораторный" пример.

Мы видим, что при прохождении параллельно ориентированных препятствий, сигнал эллиптической поляризации теряет только половину своей энергии на отражение, причём абсолютно независимо от расположения этих препятствий. На практике сигнал эллиптической поляризации, как штопор сквозь пробку, проникает через "сложные" препятствия там, где линейная поляризация бессильна.

Рассмотрим на примере как будет проходить сигнал с эллиптической поляризацией сквозь то же самое дерево (что и в примере выше). И как этот сигнал будет восприниматься приёмной антенной.

Очевидно, что вне зависимости от вектора поляризации, переотражаться сигнал будет одинаково.

Т.е. на выходе из кроны мы увидим примерно одинаковую картину, как в случае с линейной поляризацией (см. рис.6), так и в случае с эллиптической поляризацией.

В распространении радиоволн эллиптической поляризации наблюдается точно такая же интерференция сигнала, как и в случае с линейно поляризованным сигналом. Однако, отраженные сигналы эллиптической поляризации приходят на антенну в противоположной поляризации, практически не оказывая никакого влияния на уровень основного сигнала, т.к. с ним не суммируются.

А все сигналы, пришедшие в одной поляризации с основным, суммируются, повышая общий уровень принятого сигнала. Они имеют разную временну ю задержку, т.е. фазу (угол вхождения сигнала в антенну). На выходе антенны будет регистрироваться один сигнал с задержкой, определяемой векторным сложением. Причем этот выходной сигнал будет "гулять" только по уровню и по временной задержке.

Этими особенностями и обусловлена такая высокая "проникаемость" эллиптически поляризованного сигнала.

В реальных условиях системы MIMO "УМЕЮТ" ЛУЧШЕ развязывать каналы именно на эллиптической поляризации. А значит, в таких системах при работе на антеннах с круговой поляризацией выше скорость и стабильнее связь.