Сравнение матриц смартфонов. Чем отличаются технологии TN, IPS, AMOLED. Размеры матриц в камере смартфона: какие и где встречаются

В то время как его отсутствие зачастую указывает на MVA\PVA матрицу.

Направьте на экран монитора перпендикулярный взгляд, если вами будет замечено, что при таком угле обзора пропадают цветовые оттенки изображения. Скорее всего, в данном случае вы смотрите на MVA\PVA матрицу.

Посмотрите перпендикулярно на экран монитора. Если вы заметили падение контрастности изображения, искажение цветов и их оттенков (инверсию), возможно, это TN.

Для точного определения типы матрицы того или иного монитора введите в поисковике по названию интересующей вас модели. Прочитайте обзоры и технических характеристики устройства, также посетите сайт и просмотрите информацию еще и там.

Обратите внимание, что информация о матрице экрана монитора может быть заложена в маркировке его модели, которая прописывается либо с лицевой стороны корпуса, либо на одной из сервисных наклеек сзади. Сочетание букв TN, MVA\PVA, TFT и так далее в названии может говорить о том, что при сборке был использован соответствующий тип матрицы. Также не доверяйте информации на ценниках, поскольку продавцы тоже могут ошибаться в указании типа матрицы. Всегда читайте характеристики на официальном сайте или упаковке от устройства.

Полезный совет

При выборе монитора руководствуйтесь особенностями его матрицы.

Источники:

  • как узнать какая у меня матрица

Основным предназначением вебкамер является общение посредством организации видеоконференций через интернет. Модели, относящиеся к разным ценовым категориям, позволяют производить фото- и видеосъемку, видеонаблюдение и даже обозревать звездное небо. Выбрав способ эксплуатации камеры, вы сможете определить главные характеристики, наличие которых будет играть важную роль при покупке этого устройства.

Инструкция

Приобретайте продукцию фирм Logitech и Genius - признанных мировых производителей вебкамер - чтобы быть уверенными в ее высоком качестве. Стоимость камеры будет зависеть от требований, предъявляемых к ней.

Найдите информацию о совместимости камеры с операционной системой, установленной на вашем компьютере. Определите, каким образом камера будет подключаться к нему. Более дорогие модели камер используют Wi-Fi-технологию, а стандартные оснащаются USB-разъемом. Если вы не являетесь обладателем ноутбука со встроенным микрофоном, возможно, вам стоит присмотреться к камерам, оснащенным этой функцией.

Обратите внимание на тип матрицы. CCD матрица, в отличие от CMOS, минимизирует помехи и лучше передает изображение, но и стоит дороже. Качество изображения зависит также от разрешающей способности веб-камеры и количества кадров в секунду. Стандартным считается разрешение 640 х 480 пикселей. Модели камер, относящиеся к высшей ценовой категории, имеют разрешение 1280 х 960 пикселей. Количество кадров в секунду должно превышать 40. В условиях недостаточной освещенности немалую роль играет чувствительность матрицы.

Определите, какой способ крепления камеры будет наиболее удобным для вас. В целях экономии свободного пространства на рабочем месте лучше приобрести вебкамеру с универсальным креплением или портативное устройство, предназначенное для ноутбука. Убедитесь, что шнур камеры имеет достаточную длину.

Решите, готовы ли вы переплачивать за такие дополнительные характеристики вебкамеры, как автофокус, возможность фото- и видеосъемки, коррекции цветовой гаммы, редактирования информации, управления контрастностью и яркостью. Для осуществления видеонаблюдения необходимо подобрать камеру, оснащенную поворотным механизмом и детектором движения.

Видео по теме

Разводы на – обычное явление после неправильного ухода за его внешним видом. Особенно это характерно для глянцевых поверхностей. Чтобы избежать их появления, вам достаточно лишь правильно выбрать средство для мытья поверхностей мониторов.

Инструкция

Определите тип матрицы вашего монитора. Для этого введите название его модели в поисковик и просмотрите спецификацию. Запомните тип матрицы экрана для того, чтобы сориентироваться в выборе средств.

Купите в любом компьютерном магазине салфетки для экрана. Лучше всего приобретайте их соответственно типу вашего экрана, также обратите внимание, чтобы они не были слишком влажными, поскольку они могут оставить некрасивые следы разводов на мониторе.

Приобретите специальную жидкость от разводов, которая также подходит типу матрицы вашего экрана. Это может заменить вам салфетки, если вы их не найдете. Воспользуйтесь безворсовой тканью для удаления пыли и разводов с монитора, предварительно нанесите на нее немного спрея. После этого протрите экран чистой салфеткой. Лучше всего делайте это при выключенном мониторе, отключив его от источника питания.

Также вы можете обойтись без специальных средств, воспользовавшись мягкой тканью, однако результат будет немного хуже, чем при их использовании. Для этого намочите ее теплой водой, удалите с поверхности монитора слой пыли, избавьтесь от разводов при помощи чистой влажной салфетки.

Ни в коем случае не надавливайте на матрицу, поскольку вы можете ее повредить. В лучшем случае, из сетки просто выпадут несколько пикселей. Также производите очистку монитора от разводов, предварительно отключив его от источника подачи электричества.

Используйте специальный комплекс средств для очистки мониторов. Обычно такие наборы включают в себя салфетки и специальную жидкость от разводов на мониторе. Салфетки для поверхности стола и для очистки оптических дисков. Также обратите внимание, что если у вас обычные монитор с электронно-лучевой трубкой, для них также предусмотрен специальный набор средств для удаления пыли и разводов со стеклянных поверхностей, однако здесь вы уже можете использовать любое средство для мытья стекол.

Полезный совет

Не пользуйтесь Мистером Мускулом и похожими средствами, поскольку это может повредить матрицу вашего экрана.

Выбирая настольный компьютер , важно обратить внимание на большой набор параметров. Современные ПК сильно различаются не только внутренними элементами. Они имеют различные габариты и могут включать в себя самые разнообразные устройства.

Инструкция

Сначала уточните тип настольного компьютер а, который подойдет вам лучше всего. Существует несколько основных видов ПК: классические комплекты, моноблоки и неттопы. В первом случае речь идет об обычно сочетании большого системного блока и монитора.

Моноблоки представляют собой гибрид системного блока и монитора. Если вы выбираете настольный компьютер для офиса – приобретите указанный тип. Основные его недостатки: отсутствие дополнительных видеовыходов и сложность замены комплектующих.

Идеальное решение для домашнего компьютер а, который не будет использоваться для игр, - неттоп. Это устройство является уменьшенным аналогом системного блока. Приобретите такой компьютер , если для вас важна экономия рабочего места.

Остановите свой выбор на классическом компьютер е, если вы хотите использовать весь набор функций современных ПК. Естественно, важно не только определить тип устройства, но и как следует отнестись к изучению его характеристик.

Выберите материнскую плату и центральный процессор, подходящий к ней. Для работы с офисными программами можно использовать процессор на сокете FM1 с интегрированным видеочипом.

Еще одно преимущество системных плат со сравнительно новыми портами – возможность в будущем улучшить производительность компьютер а. Учтите это при выборе указанных элементов.

Уточните объем оперативной памяти. Он не должен быть ниже 3 Гбайт. Этого вполне достаточно даже для запуска мощных приложений и игр. Уделите внимание частоте шины ОЗУ. Для плат типа DDR3 она не должна быть ниже 1033 МГц.

Выясните характеристики установленной видеокарты: объем памяти и частоту шины. Для бюджетной модели видеоадаптера эти показатели не должны быть ниже 1 Гб и 128 бит, соответственно. Если вы планируете запускать современные игры, увеличьте оба показателя в два раза.

Не забудьте подобрать подходящий монитор. Он должен соответствовать используемой видеокарте. Лучше всего приобрести широкоформатный дисплей с диагональю 21-25 дюймов. Естественно, разрешение матрицы не должно быть ниже 1366х768 пикселей.

Математическая матрица представляет собой упорядоченную таблицу элементов. Размерность матрицы определяется числом ее строк m и столбцов n. Под решением матриц понимается множество обобщающих операций, производимых над матрицами. Различают несколько типов матриц, к некоторым из них не применим ряд операций. Существует операция сложения для матриц с одинаковой размерностью. Произведение двух матриц находится, только если они согласованны. Для любой матрицы определяется детерминант. Также матрицу можно транспонировать и определить минор ее элементов.

Инструкция

Запишите заданные . Определите их размерность. Для этого посчитайте количество столбцов n и строк m. Если для одной матрицы m = n, матрица считается квадратной. Если все элементы матрицы равны нулю – матрица нулевая. Определите главную диагональ матриц. Ее элементы располагаются с левого верхнего угла матрицы до правого нижнего. Вторая, обратная диагональ матрицы является побочной.

Проведите транспонирование матриц. Для этого замените в каждой элементы строк на элементы столбцов относительно главной диагонали. Элемент а21 станет элементом а12 матрицы и наоборот. В итоге из каждой исходной матрицы получится новая транспонированная матрица.

Сложите заданные матрицы , если они имеют одинаковую размерность m х n. Для этого возьмите первый матрицы а11 и сложите его с аналогичным элементом b11 второй матрицы . Результат сложения запишите в новую на ту же позицию. Затем сложите элементы а12 и b12 обоих матриц. Таким образом заполните все строки и столбцы суммирующей матрицы .

Определите, являются ли заданные матрицы согласованными. Для этого сравните число строк n в первой матрицы и число столбцов m второй матрицы . Если они равны, выполните произведение матриц. Для этого попарно умножьте каждый элемент строки первой матрицы на соответствующий элемент столбца второй матрицы . После чего найдите сумму этих произведений. Таким образом, первый элемент результирующей матрицы g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. Выполните умножение и сложение всех произведений и заполните результирующую матрицу G.

Найдите определитель или детерминант для каждой заданной матрицы . Для матриц второго - размерностью 2 на 2 – определитель находится, как произведений элементов главной и побочной диагоналей матрицы . Для трехмерной матрицы определителя: D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

Источники:

  • матрица как решать

Монитор ноутбука с активной жидкокристаллической матрицей мы привыкли именовать просто «матрицей». У каждой модели ноутбука их своя определенная линейка, которая далеко не всегда взаимозаменяема. А потому, чтобы подобрать этот элемент именно к вашему гаджету, нужно досконально знать, какой она модели и все ее точные характеристики.

В далеком 1988 году фирма Fuji представила первый потребительский, по-настоящему цифровой фотоаппарат DS-1P. Он мог делать снимки в 0,4 мегапикселя и сохранять их на съемную карту памяти типа SRAM. А уже в 2000 году снимать цифровые фото умел и мобильный телефон — Sharp J-SH04, релиз которого состоялся в Японии. Да, на то время он делал не совсем качественные кадры, но он их делал! Далее была легендарная К-серия от Sony Ericsson, N-серия Nokia, первый в мире 8-ми мегапиксельный камерофон от Samsung.

С каждым годом фототехника училась снимать все лучше и лучше, появлялись зеркальные и беззеркальные камеры, ультразумы и ультракомпакты. Но если габариты фотоаппаратов позволяли внедрять ту или иную технологию в полном объеме, то с мобильными телефонами это сделать было проблематично. И все же производители стараются улучшать характеристики камер смартфонов, искать золотую середину между габаритами и качеством. Давайте же рассмотрим основные параметры, которые влияют на получаемый снимок.

В первой части этого выпуска мы рассмотрим самую важную часть любой камеры — матрицу. Светочувствительный сенсор, который преобразует оптический сигнал, получаемый извне, в цифровой снимок.

На качество фотографии влияют несколько параметров:

Размер матрицы. Грубо говоря, чем больше матрица, тем больше света она может принять и тем лучше будет снимок, особенно при плохой освещенности. Размеры принято обозначать в дюймах в дробном виде, например — 1/2,3” (6.17×4.55 мм), 4/3” (17.30×13.00 мм). Максимально большой сенсор имеет размер 36×24 мм, равный кадру 35 мм пленки. Такие матрицы называют «полнокадровыми». Их наличие - это прерогатива профессиональных, дорогих фотоаппаратов. Естественно, что камеры мобильных телефонов не могут оснащаться большими матрицами. Для сравнения приведу следующий рисунок и таблицу:

Nikon D3200

Olympus PEN E-PL1

Nikon Coolpix P300

Samsung Galaxy S4 I9500

Тип камеры

Зеркальная

Зеркальная

Беззеркальная

Компактная

Смартфон

Типоразмер

Micro Four Thirds

Размер сенсора, мм

Размер матрицы у всех современных смартфонов примерно одинаковый. Особняком стоят камерофоны от Нокии 808 PureView, Lumia 1020. Первый имеет размер сенсора 1/1.2” (10.67×8.00 мм), а второй - 2 /3” (8.80×6.60 мм). На следующем рисунке вы сможете увидеть визуальное сравнение размеров матрицы некоторых телефонов:

Тип матрицы. По технологии производства сенсоры современных камер делятся в основном на два типа — ПЗС (CCD) и КМОП (CMOS). Я не буду углубляться в детали, скажу лишь, что CMOS матрица на сегодняшний день является наиболее распространённой, так как обладает следующими преимуществами:

  • низкой стоимостью производства
  • низким энергопотреблением
  • более быстрой работой (влияет на скорость фокусировки)

Хотя и есть недостаток она более шумная, нежели CCD. Поясню: цифровой шум — это дефект изображения, который возникает в основном в условиях недостаточной освещенности. Также существуют модернизированные сенсоры на основе технологии CMOS. Например, BSI-CMOS с технологией задней подсветки, которая облегчает попадания света на сенсор, впоследствие чего увеличивается светочувствительность и, соответственно, уменьшается количество цифрового шума. Такая матрица используется в большинстве современных смартфонов. Единственное, что существуют ее вариации в зависимости от производителя. У Sony это Exmor R, Exmor RS, у OmniVision - OmniBSI.

Разрешение матрицы. Сенсор любой камеры состоит из пикселей, которые формируют цифровое изображение. Каждый такой элемент отвечает за одну точку на снимке. Количество пикселей называют разрешением камеры. Чем их больше размещено на матрице, тем лучше будет детализация фотографии, ее размер. В современных камерах их количество измеряется миллионами. Допустим, есть камера, снимающая с максимальным разрешением 3888 на 2592 точек. Умножив эти два числа, мы получим количество пикселей - примерно 10 миллионов. И в характеристиках такой камеры увидим, что она делает снимки в разрешении 10 мегапикселей (Мп). Производители очень любят злоупотреблять этим параметром, повышая его для большей привлекательности продукта. Но количество мегапикселей играло важную роль только на ранних этапах развития цифровых камер, когда разрешение было очень маленькое (0,3 Мп, например) и его не хватало даже для распечатки фотографии 10х15. Сейчас уже не редкость и 40 Мп, но это все лишь маркетинговый ход, уловка для потребителя, не слишком разбирающегося в технических деталях. Указывая в характеристиках камеры большое количество мегапикселей, производитель, при этом забывает упомянуть о важнейшем параметре — физическом размере матрицы. Ведь чем больше пикселей размещено на единице площади матрицы, тем они меньше, а от их размера напрямую зависит количество «цифрового шума» на снимке. Например, фотокамера с разрешением 12 Мп и матрицей 4/3” будет делать намного качественнее снимки, чем аппарат с 40 Мп и сенсором 2/3”. Мы рассмотрели основные характеристики матрицы, есть еще дополнительные: светочувствительность, соотношение сигнал/шум. Но они напрямую зависят от параметров, рассмотренных выше.

Зачастую производители мобильных телефонов не документируют никаких особенностей матриц своих камер кроме мегапикселей. Но почти всегда мы можем найти в спецификациях модель модуля камеры, а по нему уже можно многое узнать. Например, у смартфона Xiaomi Mi4 сенсор Sony MX214, «загуглив» название, выясняем характеристики:

  • физический размер - 1/3.06"
  • тип - Exmor RS (собственная разработка Sony на основе BSI-CMOS)
  • разрешение - 13Мп

На этом я закончу первую часть статьи. Во второй рассмотрим, что же еще, кроме характеристик матрицы, влияет на качество получаемого снимка. А также отвечу на главный вопрос — какими параметрами должна обладать камера настоящего камерофона.

Архитектура пикселей у производителей разная. Для примера здесь приводится архитектура ПЗС -пикселя.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Обозначения на схеме субпикселя ПЗС-матрицы - матрицы с карманом n-типа:
1 - фотоны света, прошедшие через объектив фотоаппарата;
2 - ;
3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;
4 - прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова;
5 - оксид кремния;
6 - кремниевый канал n-типа: зона генерации носителей - зона внутреннего фотоэффекта ;
7 - зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда ;
8 - кремниевая подложка p-типа .

Микролинза субпикселя

Буферные регистры сдвига на ПЗС-матрице, равно как и обрамление КМОП-пиксела на КМОП-матрице «съедают» значительную часть площади матрицы, в результате, каждому пикселю достаётся лишь 30 % светочувствительной области от его общей поверхности. У матрицы с полнокадровым переносом эта область составляет 70 %. Именно поэтому в большинстве современных ПЗС матриц над пикселем устанавливается микролинза. Такое простейшее оптическое устройство покрывает бо́льшую часть площади ПЗС-элемента и собирает всю падающую на эту часть долю фотонов в концентрированный световой поток, который, в свою очередь, направлен на довольно компактную светочувствительную область пиксела .

Характеристики матриц

Отношение сигнал/шум

Всякая физическая величина совершает некоторые колебания от своего среднего состояния, в науке это называется флуктуациями. Поэтому и каждое свойство всякого тела тоже изменяется, колеблясь в некоторых пределах. Это справедливо и для такого свойства, как светочувствительность фотоприемника, независимо от того, что собой представляет этот фотоприемник. Следствием этого является то, что некоторая величина не может иметь какого-то конкретного значения, а изменяется в зависимости от обстоятельств. Если, например, рассмотреть такой параметр фотоприемника, как «уровень чёрного», то есть то значение сигнала, которое будет показывать фотодатчик при отсутствии света, то и этот параметр будет некоторым образом флуктуировать, в том числе эта величина будет меняться от одного фотодатчика к другому, если они образуют некоторый массив (матрицу).

В качестве примера можно рассмотреть обычную фотопленку, где фотодатчики - зерна бромистого серебра, и их размер и «качество» неконтролируемо меняются от точки к точке (изготовитель фотоматериала может обеспечить только среднее значение параметра и величину его отклонения от среднего значения, но не сами конкретные значения этой величины в конкретных позициях). В силу этого обстоятельства пленка, проявленная без экспозиции, покажет некоторое, очень маленькое, но отличное от нуля почернение, которое называется «вуаль». И у фотоматрицы цифрового фотоаппарата наблюдается то же самое явление. В науке такое явление называется шумом, так как оно мешает правильному восприятию и отображению информации, и для того, чтобы изображение хорошо передавало структуру исходного сигнала, необходимо, чтобы уровень сигнала в некоторой степени превосходил уровень шумов, характерных для данного устройства. Это называется отношением сигнал/шум.

Чувствительность

К матрицам применяется термин эквивалентный «чувствительности», потому что:

  • в зависимости от назначения матрицы формальное значение чувствительности может определяться различными способами по различным критериям;
  • аналоговым усилением сигнала и цифровой постобработкой можно менять значение чувствительности матрицы в широком диапазоне.

У цифровых фотоаппаратов значение эквивалентной чувствительности может меняться в диапазоне ISO 50-12800. Максимальная используемая в массовых фотоаппаратах чувствительность соответствует отношению сигнал/шум 2-5.

Разрешение

Фотоматрица оцифровывает (разделяет на кусочки - «пиксели») то изображение, которое формируется объективом фотоаппарата. Но, если объектив в силу недостаточно высокой разрешающей способности передаёт ДВЕ светящиеся точки объекта, разделённые третьей чёрной, как одну светящуюся точку на ТРИ подряд расположенных пиксела, то говорить о точном разрешении изображения фотоаппаратом не приходится.

В фотографической оптике существует приблизительное соотношение : если разрешающую способность фотоприемника выразить в линиях на миллиметр (или же в пикселях на дюйм), обозначим её как M , и так же выразить разрешающую способность объектива (в его фокальной плоскости), обозначим её как N , то результирующее разрешение системы объектив+фотоприемник, обозначим его как K , можно найти по формуле:

Это соотношение максимально при , когда разрешение равно , поэтому желательно, чтобы разрешающая способность объектива соответствовала разрешающей способности фотоприемника. [уточнить ]

У современных цифровых фотоматриц разрешающая способность определяется размером пикселя, который варьируется у разных фотоматриц в пределах от 0,0025 мм до 0,0080 мм, а у большинства современных фотоматриц он равен 0,006 мм. Поскольку две точки будут различаться если между ними находится третья (незасвеченная) точка, то разрешающая способность соответствует расстоянию в два пикселя, то есть:

Где p - размер пикселя.

У цифровых фотоматриц разрешающая способность составляет от 200 линий на миллиметр (у крупноформатных цифровых фотокамер) до 70 линий на миллиметр(у web-камер и мобильных телефонов).

Физический размер матрицы

Физические размеры фотосенсоров определяются размером отдельных пикселей матрицы, которые в современных фотосенсорах имеют величину 0,005-0,006 мм. Чем крупнее пиксель, тем больше его площадь и количество собираемого им света, поэтому тем выше его светочувствительность и лучше отношение сигнал/шум (в плёночной фотографии шумы называются «зернистостью» или «гранулярностью»). Необходимое разрешение деталей фотографии определяет общее количество пикселей, которое в современных фотоматрицах достигает десятков миллионов пикселей (Мегапикселей), и тем задаёт физические размеры фотоматрицы.

  • Законы оптики определяют зависимость ГРИП от физического размера матрицы. Если сфотографировать тремя фотоаппаратами с разным физическим размером матрицы одну и ту же сцену с одним и тем же углом зрения и одним и тем же значением диафрагмы на объективах, и изучить результат (файл на компьютере, распечатку с принтера) в одинаковых условиях, то ГРИП на снимке, сделанном фотоаппаратом с наименьшей матрицей, будет наибольшей (больше предметов в кадре будет показано резко), а фотоаппарат с наибольшей матрицей покажет наименьшую ГРИП (предметы не в зоне резкости будут сильнее размыты).
  • Размеры фотосенсоров чаще всего обозначают как «тип» в виде дробных частей дюйма (например, 1/1.8" или 2/3"), что фактически больше реального физического размера диагонали сенсора. Эти обозначения происходят от стандартных обозначений размеров трубок телекамер в 1950-х годах. Они выражают не размер диагонали самой матрицы, а внешний размер колбы передающей трубки. Инженеры быстро установили, что по различным причинам диагональ полезной площади изображения составляет около двух третей диаметра трубки. Это определение стало устоявшимся (хотя и должно было быть давно отброшено). Не существует чёткой математической взаимосвязи между «типом» сенсора, выраженном в дюймах, и его фактической диагональю. Однако, в грубом приближении, можно считать, что диагональ составляет две трети типоразмера.

Отношение сторон кадра

Пропорции пикселя

Выпускаются матрицы с тремя различными пропорциями пикселя:

  • Для видеоаппаратуры выпускаются сенсоры с пропорцией пикселя 4:3 (PAL)
  • или 3:4 (NTSC);
  • Фотографическое, рентгенографическое и астрономическое оборудование, а также развивающееся сейчас HDTV видеооборудование обычно имеет квадратный пиксель.

Типы матриц по применяемой технологии

Долгое время ПЗС-матрицы были практически единственным массовым видом фотосенсоров. Реализация технологии Active Pixel Sensors около 1993 года и дальнейшее развитие технологий привели в итоге к тому, что к 2008 году КМОП-матрицы стали практически альтернативой ПЗС.

ПЗС-матрица

Состоит из светочувствительных фотодиодов , выполнена на основе кремния , использует технологию ПЗС - приборов с зарядовой связью.

КМОП-матрица

Live-MOS-матрица

Создана и применяется компанией Panasonic. Выполнена на основе МОП-технологии , однако содержит меньшее число соединений для одного пикселя и питается меньшим напряжением. За счёт этого и за счёт упрощённой передачи регистров и управляющих сигналов имеется возможность получать «живое» изображение при отсутствии традиционного для такого режима работы перегрева и повышения уровня шумов.

Матрицы с пикселами различного размера

Методы получения цветного изображения

Сам по себе пиксель фотоматрицы является «чёрно-белым». Для того, чтобы матрица давала цветное изображение, применяются специальные технические приёмы.

Трёхматричные системы

Пример работы дихроической призмы

Поступающий в камеру свет, попадая на пару дихроидных призм , делится на три основных цвета: красный, зелёный и синий. Каждый из этих пучков направляется на отдельную матрицу (чаще всего используется CCD матрицы , поэтому в наименовании соответствующей аппаратуры употребляется обозначение 3CCD).

Трёхматричные системы применяются в видеокамерах среднего и высокого класса.

Достоинства трёх матриц по сравнению с одноматричными

  • лучше передача цветовых переходов, полное отсутствие цветного муара ;
  • выше разрешение: отсутствует необходимый для устранения муара размывающий (low-pass) фильтр;
  • выше светочувствительность и меньший уровень шумов;
  • возможность введения цветокоррекции постановкой дополнительных фильтров перед отдельными матрицами, а не перед съёмочным объективом, позволяет добиться существенно лучшей цветопередачи при нестандартных источниках света.

Недостатки трёх матриц по сравнению с одноматричными

  • принципиально бо́льшие габаритные размеры;
  • трёхматричная система не может использоваться с объективами с малым рабочим отрезком ;
  • в трёхматричной схеме есть проблема сведе́ния цветов , так как такие системы требуют точной юстировки, причём, чем большего размера матрицы применяются и чем больше их физическое разрешение, тем сложнее добиться необходимого класса точности.

Матрицы с мозаичными фильтрами

Во всех таких матрицах пиксели расположены в одной плоскости, и каждый пиксель накрыт светофильтром некоего цвета. Недостающая цветовая информация восстанавливается путём интерполяции ( ).

Существует несколько способов расположения светофильтров. Эти способы различаются чувствительностью и цветопередачей, при этом чем выше светочувствительность, тем хуже цветопередача:

  • RGGB - фильтр Байера , исторически самый ранний;
  • RGBW имеют более высокую чувствительность и фотографическую широту (типично выигрыш чувствительности в 1,5-2 раза и 1 ступень по фотографической широте), частный случай RGBW-матрицы - CFAK-матрица компании Kodak ;
  • RGEB (красный - зелёный - изумрудный - синий);
  • CGMY (голубой - зелёный - лиловый - жёлтый).

Матрицы с полноцветными пикселами

Существуют две технологии, позволяющие получать с каждого пикселя все три цветовые координаты. Первая применяется в серийно выпускаемых камерах фирмы Sigma , вторая - на середину 2008 года существует только в виде прототипа.

Многослойные матрицы (Foveon X3)

Фотодетекторы матрицы X3 компании Foveon расположены в три слоя - синий, зелёный, красный. Название сенсора «Х3» означает его «трёхслойность» и «трёхмерность».

Матрицы X3 применяются в цифровых фотоаппаратах Sigma .

Полноцветная RGB-матрица Nikon

Несмотря на то, что прототип матрицы уже создан (2008 год), этот патент вряд ли найдёт своё применение в ближайшее время из-за существенных сложностей в технологии.

По сравнению со всеми прочими системами, кроме трёхматричных , данная технология имеет потенциальное преимущество в эффективности использования светового потока по сравнению с технологиями RGBW или фильтром Байера . (Точный выигрыш зависит от характеристик пропускания фильтров).

См. также

Примечания

Айпи телефоны представляют собой высокотехнологичные, функциональные устройства, обладающие широкими возможностями, отличным качеством и надежностью при работе с самой экономичной телефонной связью. У таких аппаратов современного образца имеются сложные детали, выполняемые по инновационным технологиям производства, которые и обеспечивают максимальный комфорт при их использовании. К примеру, ips матрица в телефоне, которая устанавливается в жидкокристаллическом дисплее, является сегодня самой высокотехнологичной из всех имеющихся матриц.
До настоящего времени в устройствах с жидкокристаллическими экранами применялась технология, обеспечивающая поворот кристаллов по отношению друг к другу на девяносто градусов. Это выполняется при отсутствии напряжения в горизонтальной плоскости. В отличие от ips матрицы в телефоне, данная технология при световом прохождении через кристаллы образует пиксели черного цвета, если же напряжение минимальное, то пиксели приобретают белый цвет. Поэтому, TFT экраны не дают полной контрастности цветового изображения, что не позволяет получать предельно четкие цвета.
Идеально черный цвет получается при использовании ips матрицы в телефоне, которая дает возможность кристаллам располагаться параллельно друг к другу вдоль плоскости всего экрана. Даже при отсутствии напряжения жидкие кристаллы остаются неподвижны, что обеспечивает неизменность цветовой гаммы, а значит более четкие и яркие цвета.
Немного устаревшая технология TFT характеризуется искажением цветопередачи, ведь каждый кристалл приобретает собственный оттенок. Другое дело - ips матрица в телефоне; которая обращается с цветовым изображением гораздо аккуратнее и бережнее. Чтобы отметить отличие этих двух технологий друг от друга, достаточно внимательно рассмотреть изображение на экранах TFT и IPS, разница будет видна невооруженным взглядом. Хотя, если не сравнивать отдельные аппараты, то на первый взгляд кажется, что цветопередача TFT экрана – безупречна.
Однако, далеко не всегда ips матрица в телефоне лучше аналогичной технологии. Так как, скорость отклика у TFT гораздо выше, чем у остальных матриц, то такие телефоны обеспечивают быструю скорость прорисовки, что очень важно для конкретных пользователей. Но и здесь следует отметить, что невооруженным взглядом она попросту будет незаметна.

Большинство пользователей в наше время знают, что существует какая-то IPS матрица (например, у них на телефоне), но толком ответить на вопрос о том, что это такое, могут лишь единицы.

На самом деле данная аббревиатура расшифровывается как «In Plane Switching» и означает буквально «Переключение внутри плоскостей».

Раньше она использовалась в телевизорах, причем в профессиональных, а сейчас ее можно видеть в телефонах, планшетах и другой подобной технике.

Причиной такой популярности IPS является невысокая стоимость. Теперь переходим к непосредственному разбору технологии.

Технология отображения

Если вы когда-то изучали строение жидкокристаллической панели своего монитора или телевизора, то легко поймете то, о чем мы будем говорить дальше.

В данном случае панель состоит из следующих элементов:

Передний и задний поляризаторы.

Светофильтры.

Направляющие жидких кристаллов.

Сами жидкие кристаллы.

Электроды.

Управляющие транзисторы.

Подсветка.

Наглядно расположение всех этих элементов можете видеть на рисунке 1.

Кристаллы в таких матрицах поворачиваются при приложении электрического поля, причем делают это одновременно, то есть вместе. Это, кстати, главная особенность IPS. Благодаря такому подходу удалось добиться значительного увеличения угла обзора. Теперь он составляет 178 о, причем как по горизонтали, так и по вертикали.

Для сравнения вот вам две схемы других типов панелей – TN и VA.

Рис. 2 Наглядное отображение панелей TN и VA

Как видите, здесь жидкие кристаллы поворачиваются совсем по-другому, и картинка получается не такой яркой, насыщенной и ее не видно с угла 178 о.

А теперь пробежимся по вышеуказанным элементам. Как известно, поляризатором называется устройство, которое позволяет получать поляризованное оптическое излучение из излучения с произвольной поляризацией.

Другими словами, в этом устройстве выделяется часть естественного света, которая обладает нудным уровнем поляризации при отражении от поверхности. Это нужно для отображения картинки.

Дальше идут светофильтры. Их размещают по два, причем так, чтобы один был повернут перпендикулярно другому. Соответственно, свет не проходит через первый светофильтр. Благодаря этому удается добиться почти идеального отображения черного цвета (разумеется, ничего идеального в мире не существует, но все же). Интересно, что по этой же причине все «битые» пиксели имеют черный цвет, а не белый.

В это время молекулы поворачиваются на 90 о и начинают пропускать свет.

Этому процессу способствуют управляющие транзисторы. Дальше располагается еще один поляризатор и блок подсветки.

Как видите, в приведенных выше других типах матриц все происходит совершенно по-другому. Главное отличие состоит в конфигурации кристаллов. Но такое расположение всех элементов дает ряд существенных преимуществ перед конкурентами, о которых мы еще поговорим. Остановимся на этом более подробно.

Преимущества

Вот список особенностей, за счет которых IPS обгоняет на рынке другие типы матриц:

Цвет практически точно повторяет исходный. По крайней мере, цветовая гамма передается весьма адекватно. Грубо говоря, нет искажения цветов при передаче их от исходника. Причем это актуально для разных углов зрения. Вы можете видеть схему цветов и углов зрения на рисунке 3 трех вышеупомянутых типов матриц – IPS, TN и VA. Возможно это благодаря постоянной цветовой температуре.

Лучший отклик при переходе от серого к серому. Правда, если говорить о других вариациях, то там лучше, безусловно, себя проявляет TN-матрица. Но и это уже очень даже неплохо.

Повышенная устойчивость к давлению. Если говорить о той же VA, то если сильно нажать на экран, произойдет искаженная реакция и некорректное перемещение пикселей. В народе это называется «волнением». Как вы понимаете, такие явления для экранов не являются нормальными.

Самое главное преимущество – яркие и насыщенные цвета. Правда, есть более мощные варианты в этом отношении, например, AMOLED – фирменная разработка Samsung. Но она и стоит на порядок дороже в плане производства.

Также некоторые врачи и эксперты утверждают, что IPS в меньшей степени вредит глазам, чем другие типы экранов. Но это проверить практически невозможно, поэтому мы оставляем это утверждение на ваш суд – хотите верьте, хотите, нет. В любом случае, преимуществ у IPS достаточно.

Разновидности матриц

Разберем типы IPS, которые использовались раньше и которые используются сейчас.

Это позволит нам проследить за эволюцией технологии.

Итак, вот какие разновидности матриц существуют:

Собственно, это самое первое поколение данной технологии и его особенности мы уже разобрали выше.

Super-IPS или S-IPS (сокращенно). В сравнении с первым поколением, это имеет улучшенную контрастность и меньшее время отклика. То есть картинка, грубо говоря, быстрее попадала на экран, чем раньше, и была более качественное.

Advanced Super-IPS или AS-IPS. Увеличена прозрачность матрицы, за счет чего стала выше яркость. Уровень контрастности тоже стал выше.

Horisontal-IPS или H-IPS. Главное улучшение коснулось белого цвета – он стал более оптимизированным. Благодаря этому картинка получилась намного более реалистичной.

Enhanced-IPS или E-IPS. Прозрачность и время отклика стали лучше, а сама технология – дешевле в изготовлении. Интересно, что на порядок лучше стала и цветопередача.

Professional-IPS или P-IPS. В данном случае значительные улучшения претерпел цветовой охват. Если конкретно, то по стандарту Adobe RGB был охват в 98%, а в NTSC – 102%. На момент изобретения технологии (а это 2010 год) она была одной из лучших в мире.

Plane-to-Line Switching или PLS. Фактически, это отдельная технология, но базируется она именно на принципах IPS, поэтому ее тоже можно смело заносить в этот список. Отличие от прародителя состоит в возможности намного более плотно размещать пиксели, а также в более высокой возможности пропуска светы и высокой яркости. Также PLS имеет более низкое энергопотребление, чем IPS. Но они все равно используются намного более активно.

Возможно, в будущем развитие этой технологии приведет к созданию совершенно уникальной матрицы, которая по всем характеристикам будет выигрывать у остальных. О перспективах развития матрицы стоит поговорить более конкретно.

Перспективы развития

На сегодняшний день IPS является одним из самых активно используемых типов матриц для показа изображений.

Основное ее преимущество состоит в низкой стоимости производства при достаточно высоком качестве изображения.

Многие компании сегодня считают развитие техники с такими экранами основным направлением своей деятельности.

Практически все китайские смартфоны, за редким исключением, имеют именно такие дисплеи, и менять ничего производители не собираются.

Если кто-то не изобретет технологию, которая будет выдавать более качественное изображение и при этом меньше стоить, в ближайшем будущем абсолютно ничего не изменится. Сейчас есть технологии, которые выдают более качественную картинку или стоят дешевле, но обе эти характеристики не сочетает ни одна другая матрица. Напоследок рассмотрим, кто может конкурировать с IPS на рынке.

Конкуренты на рынке

Она является чем-то средним между рассматриваемой матрицей и TN.

Кстати, последнюю в качестве конкурента мы не рассматриваем, потому что там картинка совсем плохая в сравнении с IPS.

Также достойную конкуренцию может составить PLS.

У нее, как мы говорили выше, есть ряд преимуществ.

Самым сильным конкурентом модно считать AMOLED. Да, она дороже, но изображение получается настолько качественным, что люди готовы платить больше. На рисунке 5 вы можете видеть наглядное сравнение этих двух типов. Преимущество очевидно. А есть еще и Super-AMOLED, который затыкает рот даже обычному AMOLED.

Но пока IPS – это дешево, оно будет использоваться повсеместно.