Подключение RGB светодиода к Ардуино. Информационный портал по безопасности

Светодиодная RGB лента представляет собой гибкую ленту, с нанесенными на ней проводниками и RGB-светодиодами (полноцветными). В последнее время светодиодные ленты получили широкое распространение в архитектуре, авто и мото тюнинге, костюмах, декорациях и т.п. Также бывают водонепроницаемые ленты, которые можно использовать к примеру в бассейнах.

Светодиодные ленты бывают двух типов: аналоговые и цифровые .
В аналоговых лентах все светодиоды включены в параллель. Следовательно, вы можете задавать цвет всей светодиодной ленты, но не можете установить определенный цвет для конкретного LED. Эти ленты просты в подключении и не дорогие.
Цифровые светодиодные ленты устроены немного сложнее. К каждому светодиоду дополнительно устанавливается микросхема, что делает возможным управлять любым светодиодом. Такие ленты намного дороже обычных.

В данной статье мы рассмотрим работы только с аналоговыми светодиодными лентами.

Аналоговые RGB светодиодные ленты

Техническая спецификация:
- 10.5мм ширина, 3мм толщина, 100мм длина одного сегмента
- водонепроницаемая
- снизу скотч 3М
- макс. потребление тока (12В, белый цвет) - 60мА на сегмент
- цвет свечения (длина волны, нм): 630нм/530нм/475нм

Схема светодиодной RGB ленты

Лента поставляется в рулонах и состоит из секций длиной по 10 см. В каждой секции размещается 3 RGB светодиода, типоразмера 5050. Т.е. в каждой секции получается, что содержится 9 светодиодов: 3 красных, 3 зеленых и 3 синих. Границы секций отмечены и содержат медные площадки. Поэтому, при необходимости, ленту можно обрезать и спокойно припаиваться. Схема светодиодной ленты:

Энергопотребление

В каждой секции ленты, последовательно подключены по 3 светодиода, поэтому питание 5В не подойдет. Питание должно быть 12В, но можно подавать напряжение и 9В, но тогда светодиоды будут гореть не так ярко.

Одна LED-линия сегмента потребляет приблизительно 20мА при питании 12В. Т.о. если зажечь белый цвет (т.е. красный 100%, зеленый 100% и синий 100%), то энергопотребление секции составит около 60мА.

Теперь, можно легко посчитать потребление тока всей ленты. Итак, длина ленты составляет 1 метр. В ленте 10 секций (по 10 см каждая). Потребление ленты при белом цвете составит 60мА*10=600мА или 0.6А. Если использовать ШИМ fade-эффект между цветами, то энергопотребление можно снизить вдвое.

Подключение ленты

Для того, чтобы подключить ленту, необходимо припаять провода к 4 контактным площадкам. Мы использовали белый провод для +12В, а остальные цвета в соответствии с цветами светодиодов.

Срежьте защитную пленку на конце ленты. С какой стороны будет производится подключение - не важно, т.к. лента симметричная.

Зачистите слой изоляции, чтобы оголить контактные площадки.

Залудите их.

Припаяйте четыре провода. Лучше использовать многожильный провод (например ПВ3 или кабель ПВС), он более гибкий.

Для защиты от воды и внешних воздействий можно использовать термоусадочную трубку. Если светодиодная лента будет использоваться во влажной среде, то дополнительно, контакты можно промазать силиконом.

Работа с светодиодной лентой

Ленту легко можно использовать с любым микроконтроллером. Для управления светодиодами рекомендуется использовать широтно-импульсную модуляцию (ШИМ). Не подключайте выводы ленты напрямую к выводам МК, т.к. это большая токовая нагрузка и контроллер может сгореть. Лучше использовать транзисторы.

Вы можете использовать NPN-транзисторы или еще лучше N-канальные мосфеты. При подборе транзистора не забудьте, что максимальный коммутируемый ток транзистора нужно брать с запасом.

Подключение светодиодной ленты к контроллеру Arduino

Рассмотрим пример подключения светодиодной ленты к популярному . Для подключения, можно использовать недорогие и популярные мосфеты . Можно также использовать и обычные биполярные транзисторы, к примеру TIP120. Но по сравнению с мосфетом, у него больше потери напряжения, поэтому все же рекомендуется использовать первые.
На схеме ниже показано подключение RGB светодиодной ленты при использовании N-канальных мосфетах. Затвор мосфета подключается к pin1 контроллера, сток к pin2 и исток к pin3.

Ниже, показана схема подключения при использовании обычных биполярных транзисторов (например TIP120). База транзистора подключается к pin1 контроллера, коллектор к pin2 и эмиттер к pin3. Между базой и выводом контроллера необходимо поставить резистор сопротивлением 100-220 Ом.

К контроллеру Arduino подключите источник питания с напряжением 9-12 Вольт, а +12В от светодиодной ленты необходимо подключить к выводу Vin контроллера. Можно использовать 2 раздельных источника питания, только не забудьте соединить "земли" источника и контроллера.

Пример программы

Для управления лентой будет использовать ШИМ-выход контроллера, для этого можно использовать функцию analogWrite() для выводов 3, 5, 6, 9, 10 или 11. При analogWrite(pin, 0) светодиод не будет гореть, при analogWrite(pin, 127) светодиод будет гореть в полнакала, а при analogWrite(pin, 255) светодиод будет гореть с максимальной яркостью. Ниже приведен пример скетча для Arduino:

#define REDPIN 5 #define GREENPIN 6 #define BLUEPIN 3 #define FADESPEED 5 // чем выше число, тем медленнее будет fade-эффект void setup() { pinMode(REDPIN, OUTPUT); pinMode(GREENPIN, OUTPUT); pinMode(BLUEPIN, OUTPUT); } void loop() { int r, g, b; // fade от голубого к фиолетовому for (r = 0; r 0; b--) { analogWrite(BLUEPIN, b); delay(FADESPEED); } // fade от красного к желтому for (g = 0; g 0; r--) { analogWrite(REDPIN, r); delay(FADESPEED); } // fade от зеленого к зеленовато-голубому for (b = 0; b 0; g--) { analogWrite(GREENPIN, g); delay(FADESPEED); } }

В прошлый раз был рассмотрен способ подключения светодиодной ленты к ардуино через драйвер L298. Управление цветом осуществлялось программно - функция Random. Теперь пришла пора разобраться, как управлять цветом светодиодной ленты на основании показаний датчика температуры и влажности DHT 11.

За основу взят пример подключения светодиодной ленты через драйвер L298. Плюсом ко всему в пример добавлен дисплей LCD 1602, который будет отображать показания датчика DHT 11.

Для проекта понадобятся следующие элементы Ардуино:

  1. Плата Ардуино УНО.
  2. Дисплей LCD 1602 + I2C.
  3. Датчик температуры и влажности DHT
  4. Светодиодная лента.
  5. Драйвер L298.
  6. Блок питания 9-12В.
  7. Корпус для ардуино и дисплея (по желанию).

Первым делом посмотрим на принципиальную схему (рис. 1). На ней можно увидеть, как нужно подключить все вышеперечисленные элементы. В сборке схемы и подключении ничего сложного нет, однако стоит упомянуть об одном нюансе, о котором большинство людей забывают, и в итоге получают неправильные результаты работы LED – ленты с Ардуино.

Рисунок 1. Принципиальная схема подключения Arduino и светодиодной ленты с датчиком DHT 11

Во избежание некорректной работы светодиодной ленты (мерцание, несоответствие цветов, неполное свечение и т.д.), питание всей схемы необходимо сделать общим, т.е. объединить контакты GND (земля) контроллера Ардуино и драйвера L298 (светодиодной ленты). Как это сделать, можно посмотреть на схеме.

Пару слов о подключении датчика влажности. Если покупать голый DHT 11, без обвязки, то между первым и вторым контактами, 5В и Data, соответственно, нужно впаять резистор номиналом 5-10 кОм. Диапазон измерения температуры и влажности написан на обратной стороне корпуса датчика DHT 11. Температура: 0-50 градусов по Цельсию. Влажность: 0-80%.


Рисунок 2. Правильное подключение датчика влажности DHT 11

После сборки всех элементов проекта по схеме, необходимо написать программный код, который заставит все это работать так, как нам нужно. А нужно нам, чтобы светодиодная лента изменяла цвет в зависимости от показаний датчика DHT 11 (влажности).

Для программирования датчика DHT 11 понадобится дополнительная библиотека.

Код программы Arduino и RGB – лента. Изменение цвета ленты в зависимости от влажности.

#include #include //библиотека для работы с дисплеем LCD 1602 #include //библиотека для работы с датчиком влажности и температуры DHT 11 int chk; //переменная будет хранить все данные с датчика DHT11 int hum; //переменная будет хранить показания влажности с датчика DHT11 dht11 DHT; //объект типа DHT #define DHT11_PIN 4 //контакт Data датчика DHT11 подключен на вход 4 #define LED_R 9 // пин для канала R #define LED_G 10 // пин для канала G #define LED_B 11 // пин для канала B //переменные будут хранить значения цветов //при смешивании всех трех цветов будет получаться необходимый цвет int led_r=0, led_g=0, led_b=0; //объявление объекта дисплея с адресом 0х27 //не забываем использовать в проекте дисплей через плату I2C LiquidCrystal_I2C lcd(0x27,16,2); void setup() { //создание дисплея lcd.init(); lcd.backlight(); // объявляем пины выходами pinMode(LED_R, OUTPUT); pinMode(LED_G, OUTPUT); pinMode(LED_B, OUTPUT); } void loop() { chk = DHT.read(DHT11_PIN);//читаем данные с датчика DHT11 //вывод данных на дисплей lcd.print("Temp: "); lcd.print(DHT.temperature, 1); lcd.print(" C"); lcd.setCursor(0,1); lcd.print("Hum: "); lcd.print(DHT.humidity, 1); lcd.print(" %"); delay(1500); //для корректной работы датчика нужна задержка на опрос lcd.clear(); hum = DHT.humidity; //берем показания влажности //в диапозоне от 19 до 30% влажности выдать зеленый цвет if ((hum >= 19) && (hum <= 30)) { led_r = 1; led_g = 255; led_b = 1; } //в диапозоне от 31 до 40% влажности выдать красный цвет if ((hum >= 31) && (hum <= 40)) { led_r = 255; led_g = 1; led_b = 1; } //в диапозоне от 41 до 49% влажности выдать синий цвет if ((hum >= 41) && (hum <= 49)) { led_r = 1; led_g = 1; led_b = 255; } // подача сигналов цвета на выхода analogWrite(LED_R, led_r); analogWrite(LED_G, led_g); analogWrite(LED_B, led_b); }

Метки: Метки

На этом занятии мы будем использовать цифровые и аналоговые выходы с «широтно импульсной модуляцией» на плате Arduino для включения RGB светодиода с различными оттенками. Использование RGB LED ленты позволяет создать освещение интерьера с любым оттенком цвета. Расскажем про устройство и распиновку полноцветного (RGB) светодиода и рассмотрим директиву #define в языке C++.

Устройство и назначение RGB светодиода

Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red - красный, Green - зеленый, Blue - синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении . Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.

RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке .

Фото. Распиновка RGB светодиода и модуль с RGB светодиодом для Ардуино

Распиновка RGB светодиода указана на фото выше. Заметим также, что для многих полноцветных светодиодов необходимы светорассеиватели, иначе будут видны составляющие цвета. Далее подключим RGB светодиод к Ардуино и заставим его светится всеми цветами радуги с помощью «широтно импульсной модуляции».

Управление RGB светодиодом на Ардуино

Аналоговые выходы на Ардуино используют «широтно импульсную модуляцию» для получения различной силы тока. Мы можем подавать на все три цветовых входа на светодиоде различное значение ШИМ-сигнала в диапазоне от 0 до 255, что позволит нам получить на RGB LED Arduino практически любой оттенок света.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • RGB светодиод;
  • 3 резистора 220 Ом;
  • провода «папа-мама».

Фото. Схема подключения RGB LED к Ардуино на макетной плате

Модуль «RGB светодиод» можно подключить напрямую к плате, без проводов и макетной платы. Подключите модуль с полноцветным RGB светодиодом к следующим пинам: Минус — GND, B — Pin13, G — Pin12, R — Pin11 (смотри первое фото). Если вы используете RGB LED (Light Emitting Diode), то подключите его по схеме на фото. После подключения модуля и сборки схемы на Ардуино загрузите скетч.

Скетч для мигания RGB светодиодом

#define RED 11 // Присваиваем имя RED для пина 11 #define GREEN 12 // Присваиваем имя GREEN для пина 12 #define BLUE 13 // Присваиваем имя BLUE для пина 13 void setup () { pinMode(RED, OUTPUT ); pinMode(GREEN, OUTPUT ); // Используем Pin12 для вывода pinMode(BLUE, OUTPUT ); // Используем Pin13 для вывода } void loop () { digitalWrite (RED, HIGH ); // Включаем красный свет digitalWrite (GREEN, LOW ); digitalWrite (BLUE, LOW ); delay (1000); digitalWrite (RED, LOW ); digitalWrite (GREEN, HIGH ); // Включаем зеленый свет digitalWrite (BLUE, LOW ); delay (1000); // Устанавливаем паузу для эффекта digitalWrite (RED, LOW ); digitalWrite (GREEN, LOW ); digitalWrite (BLUE, HIGH ); // Включаем синий свет delay (1000); // Устанавливаем паузу для эффекта }

Пояснения к коду:

  1. с помощью директивы #define мы заменили номер пинов 11, 12 и 13 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
  2. в процедуре void setup() мы назначили пины 11, 12 и 13, как выходы;
  3. в процедуре void loop() мы поочередно включаем все три цвета на RGB LED.
  4. Плавное управление RGB светодиодом

    Управление rgb светодиодом на Arduino можно сделать плавным, используя аналоговые выходы с «широтно импульсной модуляцией». Для этого цветовые входы на светодиоде необходимо подключить к аналоговым выходам, например, к пинам 11, 10 и 9. И подавать на них различные значения ШИМ (PWM) для различных оттенков. После подключения модуля с помощью проводов «папа-мама» загрузите скетч.

    Скетч для плавного мигания RGB светодиода

    #define RED 9 // Присваиваем имя RED для пина 9 #define GREEN 10 // Присваиваем имя GREEN для пина 10 #define BLUE 11 // Присваиваем имя BLUE для пина 11 void setup () { pinMode (RED, OUTPUT ); // Используем Pin9 для вывода pinMode (GREEN, OUTPUT ); // Используем Pin10 для вывода pinMode (BLUE, OUTPUT ); // Используем Pin11 для вывода } void loop () { analogWrite (RED, 50); // Включаем красный свет analogWrite (GREEN, 250); // Включаем зеленый свет analogWrite (BLUE, 150); // Включаем синий свет }

    Пояснения к коду:

    1. с помощью директивы #define мы заменили номер пинов 9, 10 и 11 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
    2. пины 11, 12 и 13 мы использовали, как аналоговые выходы analogWrite .

Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

Принцип управления нагрузкой через Ардуино

Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

Синтаксис команд

Цифровой вывод:

pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

Аналоговый вывод:

analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

Способы управления светодиодами через Ардуино

Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
Способы подключения нагрузки
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() {
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);

pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
}
void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
{
led = led + 5;

analogWrite(4, led);
}
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
{
led = led — 5;

analogWrite(4, led);
}

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Модули управления Ардуино

Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

ИК-управление

Модуль позволяет запрограммировать до 20 команд.

Радиус сигнала около 8м.

Цена комплекта 6 у.е.

По радиоканалу

Четырёхканальный блок с радиусом действия до 100м

Цена комплекта 8 у.е.

Позволяет включать освещение еще при приближении к квартире.

Бесконтактное

Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

Радиус действия до 5м.

Цена модуля 0,3 у.е.

Arduino - компьютерная платформа, используемая при построении простых систем автоматики, небольшая плата со встроенным микропроцессором и оперативной памятью. Управление светодиодной лентой через Arduino - один из способов ее применения.

Процессор ATmega управляет программой-скетчем, контролируя многочисленные дискретные выводы, аналоговые и цифровые входы/выходы, ШИМ-контроллеры.

Принцип действия Arduino

«Сердце» платы Arduino - микроконтроллер, к которому подключаются датчики, управляющие элементы. Заданная программа (называется «скетч») позволяет управлять электродвигателями, светодиодами в лентах и других осветительных приборах, даже используется для контроля над другой платой Arduino через протокол SPI. Контроль осуществляется при помощи пульта ДУ, Bluetooth-модуля или сети Wi-Fi.

Для программирования используется открытый исходный код на ПК. Для загрузки программ управления можно пользоваться USB-коннектором.

Принцип управления нагрузкой через Arduino

На плате Arduino есть порты двух типов - цифровые и аналоговые. Первый имеет два состояния - «0» и «1» (логические ноль и единица). При подключении светодиода к плате в одном состоянии он будет светиться, в другом - нет.

Аналоговый вход, по сути, - ШИМ-контроллер, регистрирующий сигналы частотой около 500 Гц. Такие сигналы подаются на контроллер с настраиваемой скважностью. Аналоговый вход позволяет не просто включать или отключать управляемый элемент, но и изменять значение тока (напряжения).

При прямом подключении через порт используйте слабые светодиоды, добавляя к ним ограничительный резистор. Более мощная нагрузка выведет его из строя. Для организации управления светодиодной лентой и другим осветительным прибором примените электронный ключ (транзистор).

Подключение к Arduino

Прямое подключение светодиодной ленты к Arduino уместно только в случае применения слабых LED-диодов. Для светодиодной ленты между ней и платой необходимо установить дополнительные электротехнические элементы.

Через реле

Подключите реле к плате Arduino через цифровой выход. Управляемая полоса может иметь одно из двух состояний - включения или выключения. Если нужно организовать управление RGB-лентой, понадобятся три реле.

Значение тока, контролируемое данным устройством, ограничивается мощностью катушки. Если мощность слишком мала, элемент не сможет замыкать большие контакты. Для наиболее высоких мощностей примените релейные сборки.

С помощью биполярного транзистора

Если нужно повысить ток или напряжение на выходе, подключите биполярный транзистор. При его выборе ориентируйтесь на ток нагрузки. Ток управления не превышает 20 мА, поэтому добавьте резистор на 1 – 10 кОм для ограничения тока за счет сопротивления.

Обратите внимание! В идеале нужно пользоваться транзистором n-p-n типа на базе общего эмиттера. Если требуется большое усиление, примените транзисторную сборку.

С помощью полевого транзистора

Вместо биполярных транзисторов для управления светодиодными лентами возьмите полевые (сокращенно - МОП). Разница между ними связана с принципом управления: биполярные изменяют ток, полевые - напряжение на затворе. Благодаря этому небольшой ток затвора управляет большой нагрузкой (десятками ампер).

Обязательно добавьте к схеме резистор для ограничения тока. Из-за высокой чувствительности к помехам к выходу контроллера подключается масса резистора на 10 кОм.

С помощью плат расширения

Если нет желания использовать реле и транзисторы, можно купить целые блоки - платы расширения. К ним относятся Wi-Fi, Bluetooth, эквалайзер, драйвер и т. д., которые необходимы для управления нагрузкой разных мощностей и напряжений. Это могут быть как одноканальные элементы, которые подойдут монохромным лентам, так и многоканальные (для управления цветными RGB-лентами).

Различные программы

Библиотеки с программами для платы Arduino можно загрузить с официального сайта или найти в Интернете на других информационных ресурсах. Если есть навыки, можете даже самостоятельно написать скетч-программу (исходный код). Для сбора электрической цепи не требуется каких-то специфичных знаний.

Варианты применения системы под управлением Arduino:

  1. Освещение. Наличие датчика позволит задать программу, в соответствии с которой свет в комнате либо появляется сразу, либо плавно включается параллельно заходу солнца (с увеличением яркости). Для включения можно использовать Wi-Fi, телефон и интеграцию в систему «Умный дом».
  2. Освещение коридора и лестничных площадок. Arduino позволит организовать освещение каждой детали (к примеру, ступени) отдельно. Добавьте в плату датчик движения, чтобы адресные светодиоды загорались последовательно в зависимости от того места, где зафиксировано движение объекта. Если движения нет, диоды будут гаснуть.
  3. Светомузыка. Воспользуйтесь фильтрами и подайте на аналоговый вход звуковые сигналы, чтобы на выходе организовать светомузыку (эквалайзер).
  4. Модернизация компьютера. Некоторые датчики позволят создать зависимость цвета светодиодов от температуры процессора, его загрузки, нагрузки на оперативную память. Используется протокол DMX 512.

Микросхемы Arduino расширяют возможности применения монохромных и многоканальных (RGB) светодиодных лент. Помимо слияния различных цветов, образования сотен тысяч оттенков сможете создать неповторимые эффекты - затухание при заходе солнца, периодическое включение/выключение при фиксации движения и многое другое.