Как работают сокеты в C? Программирование сокетов

Для обеспечения сетевых коммуникаций используются сокеты. Сокет это конечная точка сетевых коммуникаций. Каждый использующийся сокет имеет тип и ассоциированный с ним процесс. Сокеты существуют внутри коммуникационных доменов. Домены это абстракции, которые подразумевают конкретную структуру адресации и множество протоколов, которое определяет различные типы сокетов внутри домена. Примерами коммуникационных доменов могут быть: UNIX домен , Internet домен , и т.д.

В Internet домене сокет - это комбинация IP адреса и номера порта, которая однозначно определяет отдельный сетевой процесс во всей глобальной сети Internet. Два сокета, один для хоста-получателя, другой для хоста-отправителя, определяют соединение для протоколов, ориентированных на установление связи, таких, как TCP.

Создание сокета

Для создания сокета используется системный вызов socket.

s = socket(domain, type, protocol);

Этот вызов основывается на информации о коммуникационном домене и типе сокета. Для использования особенностей Internet, значения параметров должны быть следующими: communication domain - AF_INET (Internet протоколы). type of the socket - SOCK_STREAM; Этот тип обеспечивает последовательный, надежный, ориентированный на установление двусторонней связи поток байтов. Выше был упомянут сокет с типом stream. Краткое описание других типов сокетов приведено ниже: Datagram socket - поддерживает двусторонний поток данных. Не гарантируется, что этот поток будет последовательным, надежным, и что данные не будут дублироваться. Важной характеристикой данного сокета является то, что границы записи данных предопределены. Raw socket - обеспечивает возможность пользовательского доступа к низлежащим коммуникационным протоколам, поддерживающим сокет-абстракции. Такие сокеты обычно являются датаграм- ориентированными. Функция socket создает конечную точку для коммуникаций и возвращает файловый дескриптор, ссылающийся на сокет, или -1 в случае ошибки. Данный дескриптор используется в дальнейшем для установления связи.

Для создания сокета типа stream с протоколом TCP , обеспечивающим коммуникационную поддержку, вызов функции socket должен быть следующим:

s = socket(AF_INET, SOCK_STREAM, 0);

Привязка к локальным именам

Сокет создается без имени. Пока с сокетом не будет связано имя, удаленные процессы не имеют возможности ссылаться на него и, следовательно, на данном сокете не может быть получено никаких сообщений. Коммуникационные процессы используют для данных целей ассоциации. В Internet домене ассоциация складывается из локального и удаленного адреса и из локального и удаленного порта. В большинстве доменов ассоциация должна быть уникальной.

В Internet домене связывание сокета и имени может быть весьма сложным, но, к счастью, обычно нет необходимости специально привязывать адрес и номер порта к сокету, так как функции connect и send автоматически свяжут данный сокет с подходящим адресом, если это не было сделано до их вызова.

Для связывания сокета с адресом и номером порта используют системный вызов bind:

bind(s, name, namelen);

Привязываемое имя (name) это строка байт переменной длины, которая интерпретируется поддерживаемым протоколом. Интерпретация может различаться в различных коммуникационных доменах.

Установление связи

Со стороны клиента связь устанавливается с помощью стандартной функции connect:

error = connect(s, serveraddr, serveraddrlen);

которая инициирует установление связи на сокете, используя дескриптор сокета s и информацию из структуры serveraddr , имеющей тип sockaddr_in , которая содержит адрес сервера и номер порта на который надо установить связь. Если сокет не был связан с адресом, connect автоматически вызовет системную функцию bind.

Connect возвращает 0, если вызов прошел успешно. Возвращенная величина -1 указывает на то, что в процессе установления связи произошла некая ошибка. В случае успешного вызова функции процесс может работать с дескриптором сокета, используя функции read и write, и закрывать канал используя функцию close.

Со стороны сервера процесс установления связи сложнее. Когда сервер желает предложить один из своих сервисов, он связывает сокет с общеизвестным адресом, ассоциирующимся с данным сервисом, и пассивно слушает этот сокет. Для этих целей используется системный вызов listen:

error = listen(s, qlength);

где s это дескриптор сокета, а qlength это максимальное количество запросов на установление связи, которые могут стоять в очереди, ожидая обработки сервером; это количество может быть ограничено особенностями системы.

Когда сервер получает запрос от клиента и принимает решение об установлении связи, он создает новый сокет и связывает его с ассоциацией, эквивалентной "слушающему сокету". Для Internet домена это означает тот же самый номер порта. Для этой цели используется системный вызов accept:

newsock = accept(s, clientaddr, clientaddrlen);

Сокет, ассоциированный клиентом, и сокет, который был возвращен функцией accept, используются для установления связи между сервером и клиентом.

Передача данных

Когда связь установлена, с помощью различных функций может начаться процесс передачи данных. При наличии связи, пользователь может посылать и получать сообщения с помощью функций read и write:

write(s, buf, sizeof(buf)); read(s, buf, sizeof(buf));

Вызовы send и recv практически идентичны read и write, за исключением того, что добавляется аргумент флагов.

send(s, buf, sizeof(buf), flags); recv(s, buf, sizeof(buf), flags);

Могут быть указаны один или более флагов с помощью ненулевых значений, таких, как следующие:

  • MSG_OOB - Посылать/получать данные, характерные для сокетов типа stream.
  • MSG_PEEK - Просматривать данные без чтения. когда указывается в recv, любые присутствующие данные возвращаются пользователю, но сами данные остаются как "непрочитанные". Следующий read или recv вызванный на данном сокете вернет прочитанные в прошлый раз данные.
  • MSG_DONTROUTE - посылать данные без маршрутизации пакетов. (Используется только процессами, управляющими таблицами маршрутизации.)

Закрывание сокетов

Когда взаимодействующие модули решают прекратить передачу данных и закрыть сеанс связи, они обмениваются трехсторонним рукопожатием с сегментами, содержащими установленный бит "От отправителя больше нет данных" (этот бит еще называется FIN бит).

Если сокет больше не используется, процесс может закрыть его с помощью функции close, вызвав ее с соответствующим дескриптором сокета:

close(s);

Если данные были ассоциированы с сокетом, обещающим доставку (сокет типа stream), система будет пытаться осуществить передачу этих данных. Тем не менее, по истечении довольно таки длительного промежутка времени, если данные все еще не доставлены, они будут отброшены. Если пользовательский процесс желает прекратить любую передачу данных, он может сделать это с помощью вызова shutdown на данном сокете для его закрытия. Вызов shutdown вызывает "моментальное" отбрасывание всех стоящих в очереди данных. Формат вызова следующий:

shutdown(s, how);

где how имеет одно из следующих значений:

  • 0 - если пользователь больше не желает читать данные
  • 1 - если данные больше не будут посылаться
  • 2 - если данные не будут ни посылаться ни получаться

Пример функции, для установления WWW коннекции

/* MakeConnection Function allocates a socket and estabishes a connection with remote host. Default port number 80. Input: WWW server name (with port number, if it is not 80) Output: file descriptor on success -1 on error */ int MakeConnection(unsigned char* ServerName){ int s; struct sockaddr_in ssin; struct hostent* hp; int PortNum; unsigned char strHlp, *pch; /* use default port number - 80 or specific number from the server name */ strcpy(strHlp,ServerName); pch = strchr(strHlp,":"); if(pch==NULL){ PortNum = 80; }else{ pch = "\0"; pch++; PortNum = atoi(pch); if(PortNum==0){ PortNum = 80; } } /* get host by name - resolve host name into IP address */ if((hp=gethostbyname(strHlp)) == NULL) { return -1; } bzero(&ssin, sizeof(ssin)); bcopy(hp->h_addr, &ssin.sin_addr, hp->h_length); ssin.sin_family = hp->h_addrtype; ssin.sin_port = htons(PortNum); /* allocate a socket */ if((s=socket(AF_INET, SOCK_STREAM, 0))==-1) { return -1; } /* make a connection */ if(connect(s, &ssin, sizeof(ssin), 0)==-1){ return -1; } return s; /* socket descriptor */ }

Последнее обновление: 31.10.2015

В основе межсетевых взаимодействий по протоколам TCP и UDP лежат сокеты. В.NET сокеты представлены классом System.NET.Sockets.Socket , который предоставляет низкоуровневый интерфейс для приема и отправки сообщений по сети.

Рассмотрим основные свойства данного класса:

    AddressFamily: возвращает все адреса, используемые сокетом. Данное свойство представляет одно из значений, определенных в одноименном перечислении AddressFamily . Перечисление содержит 18 различных значений, наиболее используемые:

    • InterNetwork: адрес по протоколу IPv4

      InterNetworkV6: адрес по протоколу IPv6

      Ipx: адрес IPX или SPX

      NetBios: адрес NetBios

    Available: возвращает объем данных, которые доступны для чтения

    Connected: возвращает true, если сокет подключен к удаленному хосту

    LocalEndPoint: возвращает локальную точку, по которой запущен сокет и по которой он принимает данные

    ProtocolType: возвращает одно из значений перечисления ProtocolType , представляющее используемый сокетом протокол. Есть следующие возможные значения:

    • IPSecAuthenticationHeader (Заголовок IPv6 AH)

      IPSecEncapsulatingSecurityPayload (Заголовок IPv6 ESP)

      IPv6DestinationOptions (Заголовок IPv6 Destination Options)

      IPv6FragmentHeader (Заголовок IPv6 Fragment)

      IPv6HopByHopOptions (Заголовок IPv6 Hop by Hop Options)

      IPv6NoNextHeader (Заголовок IPv6 No next)

      IPv6RoutingHeader (Заголовок IPv6 Routing)

      Unknown (неизвестный протокол)

      Unspecified (неуказанный протокол)

    Каждое значение представляет соответствующий протокол, но наиболее используемыми являются Tcp и Udp.

    RemoteEndPoint: возвращает адрес удаленного хоста, к которому подключен сокет

    SocketType: возвращает тип сокета. Представляет одно из значений из перечисления SocketType :

    • Dgram: сокет будет получать и отправлять дейтаграммы по протоколу Udp. Данный тип сокета работает в связке с типом протокола - Udp и значением AddressFamily.InterNetwork

      Raw: сокет имеет доступ к нижележащему протоколу транспортного уровня и может использовать для передачи сообщений такие протоколы, как ICMP и IGMP

      Rdm: сокет может взаимодействовать с удаленными хостами без установки постоянного подключения. В случае, если отправленные сокетом сообщения невозможно доставить, то сокет получит об этом уведомление

      Seqpacket: обеспечивает надежную двустороннюю передачу данных с установкой постоянного подключения

      Stream: обеспечивает надежную двустороннюю передачу данных с установкой постоянного подключения. Для связи используется протокол TCP, поэтому этот тип сокета используется в паре с типом протокола Tcp и значением AddressFamily.InterNetwork

      Unknown: адрес NetBios

Для создания объекта сокета можно использовать один из его конструкторов. Например, сокет, использующий протокол Tcp:

Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

Или сокет, использующий протокол Udp:

Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

Таким образом, при создании сокета мы можем указывать разные комбинации протоколов, типов сокета, значений из перечисления AddressFamily. Однако в то же время не все комбинации являются корректными. Так, для работы через протокол Tcp, нам надо обязательно указать параметры: AddressFamily.InterNetwork, SocketType.Stream и ProtocolType.Tcp. Для Udp набор параметров будет другим: AddressFamily.InterNetwork, SocketType.Dgram и ProtocolType.Udp. Для других протоколов набор значений будет отличаться. Поэтому использование сокетов может потребовать некоторого знания принципов работы отдельных протоколов. Хотя в отношении Tcp и Udp все относительно просто.

Общий принцип работы сокетов

При работе с сокетами вне зависимости от выбранных протоколов мы будем опираться на методы класса Socket:

    Accept() : создает новый объект Socket для обработки входящего подключения

    Bind() : связывает объект Socket с локальной конечной точкой

    Close() : закрывает сокет

    Connect() : устанавливает соединение с удаленным хостом

    Listen() : начинает прослушивание входящих запросов

    Poll() : определяет состояние сокета

    Receive() : получает данные

    Send() : отправляет данные

    Shutdown() : блокирует на сокете прием и отправку данных

В зависимости от применяемого протокола (TCP, UDP и т.д.) общий принцип работы с сокетами будет немного различаться.

При применении протокола, который требует установление соединения, например, TCP, сервер должен вызвать метод Bind для установки точки для прослушивания входящих подключений и затем запустить прослушивание подключений с помощью метода Listen. Далее с помощью метода Accept можно получить входящие запросы на подключение в виде объекта Socket, который используется для взаимодействия с удаленным узла. У полученного объекта Socket вызываются методы Send и Receive соответственно для отправки и получения данных. Если необходимо подключиться к серверу, то вызывается метод Connect. Для обмена данными с сервером также применяются методы Send или Receive.

Если применяется протокол, для которого не требуется установление соединения, например, UDP, то после вызова метода Bind не надо вызывать метод Listen. И в этом случае для приема данных используется метод ReceiveFrom, а для отправки данных - метод SendTo.

Для обеспечения сетевых коммуникаций используются сокеты. Сокет это конечная точка сетевых коммуникаций. Каждый использующийся сокет имеет тип и ассоциированный с ним процесс. Сокеты существуют внутри коммуникационных доменов. Домены это абстракции, которые подразумевают конкретную структуру адресации и множество протоколов, которое определяет различные типы сокетов внутри домена. Примерами коммуникационных доменов могут быть: UNIX домен, Internet домен, и т.д.

В Internet домене сокет - это комбинация IP адреса и номера порта, которая однозначно определяет отдельный сетевой процесс во всей глобальной сети Internet. Два сокета, один для хоста-получателя, другой для хоста-отправителя, определяют соединение для протоколов, ориентированных на установление связи, таких, как TCP.

  • Создание сокета
  • Привязка к локальным именам
  • Установление связи
  • Передача данных
  • Закрывание сокетов

Создание сокета

Для создания сокета используется системный вызов socket.

S = socket(domain, type, protocol);

Этот вызов основывается на информации о коммуникационном домене и типе сокета. Для использования особенностей Internet, значения параметров должны быть следующими:

  • communication domain - AF_INET (Internet протоколы).
  • type of the socket - SOCK_STREAM; Этот тип обеспечивает последовательный, надежный, ориентированный на установление двусторонней связи поток байтов.

Выше был упомянут сокет с типом stream. Краткое описание других типов сокетов приведено ниже:

  • Datagram socket - поддерживает двусторонний поток данных. Не гарантируется, что этот поток будет последовательным, надежным, и что данные не будут дублироваться. Важной характеристикой данного сокета является то, что границы записи данных предопределены.
  • Raw socket - обеспечивает возможность пользовательского доступа к низлежащим коммуникационным протоколам, поддерживающим сокет-абстракции. Такие сокеты обычно являются датаграм- ориентированными.

Функция socket создает конечную точку для коммуникаций и возвращает файловый дескриптор, ссылающийся на сокет, или -1 в случае ошибки. Данный дескриптор используется в дальнейшем для установления связи.

Для создания сокета типа stream с протоколом TCP, обеспечивающим коммуникационную поддержку, вызов функции socket должен быть следующим:

S = socket(AF_INET, SOCK_STREAM, 0);

Привязка к локальным именам

Сокет создается без имени. Пока с сокетом не будет связано имя, удаленные процессы не имеют возможности ссылаться на него и, следовательно, на данном сокете не может быть получено никаких сообщений. Коммуникационные процессы используют для данных целей ассоциации. В Internet домене ассоциация складывается из локального и удаленного адреса и из локального и удаленного порта. В большинстве доменов ассоциация должна быть уникальной.

В Internet домене связывание сокета и имени может быть весьма сложным, но, к счастью, обычно нет необходимости специально привязывать адрес и номер порта к сокету, так как функции connect и send автоматически свяжут данный сокет с подходящим адресом, если это не было сделано до их вызова.

Для связывания сокета с адресом и номером порта используют системный вызов bind:

Bind(s, name, namelen);

Привязываемое имя (name) это строка байт переменной длины, которая интерпретируется поддерживаемым протоколом. Интерпретация может различаться в различных коммуникационных доменах.

Установление связи

Со стороны клиента связь устанавливается с помощью стандартной функции connect:

Error = connect(s, serveraddr, serveraddrlen);

которая инициирует установление связи на сокете, используя дескриптор сокета s и информацию из структуры serveraddr, имеющей тип sockaddr_in, которая содержит адрес сервера и номер порта на который надо установить связь. Если сокет не был связан с адресом, connect автоматически вызовет системную функцию bind.

Connect возвращает 0, если вызов прошел успешно. Возвращенная величина -1 указывает на то, что в процессе установления связи произошла некая ошибка. В случае успешного вызова функции процесс может работать с дескриптором сокета, используя функции read и write, и закрывать канал используя функцию close.

Со стороны сервера процесс установления связи сложнее. Когда сервер желает предложить один из своих сервисов, он связывает сокет с общеизвестным адресом, ассоциирующимся с данным сервисом, и пассивно слушает этот сокет. Для этих целей используется системный вызов listen:

Error = listen(s, qlength);

где s это дескриптор сокета, а qlength это максимальное количество запросов на установление связи, которые могут стоять в очереди, ожидая обработки сервером; это количество может быть ограничено особенностями системы.

Когда сервер получает запрос от клиента и принимает решение об установлении связи, он создает новый сокет и связывает его с ассоциацией, эквивалентной "слушающему сокету". Для Internet домена это означает тот же самый номер порта. Для этой цели используется системный вызов accept:

Newsock = accept(s, clientaddr, clientaddrlen);

Сокет, ассоциированный клиентом, и сокет, который был возвращен функцией accept, используются для установления связи между сервером и клиентом.

Передача данных

Когда связь установлена, с помощью различных функций может начаться процесс передачи данных. При наличии связи, пользователь может посылать и получать сообщения с помощью функций read и write:

Write(s, buf, sizeof(buf)); read(s, buf, sizeof(buf));

Вызовы send и recv практически идентичны read и write, за исключением того, что добавляется аргумент флагов.

Send(s, buf, sizeof(buf), flags); recv(s, buf, sizeof(buf), flags);

Могут быть указаны один или более флагов с помощью ненулевых значений, таких, как следующие:

  • MSG_OOB - Посылать/получать данные, характерные для сокетов типа stream.
  • MSG_PEEK - Просматривать данные без чтения. когда указывается в recv, любые присутствующие данные возвращаются пользователю, но сами данные остаются как "непрочитанные". Следующий read или recv вызванный на данном сокете вернет прочитанные в прошлый раз данные.
  • MSG_DONTROUTE - посылать данные без маршрутизации пакетов. (Используется только процессами, управляющими таблицами маршрутизации.)

Закрывание сокетов

Когда взаимодействующие модули решают прекратить передачу данных и закрыть сеанс связи, они обмениваются трехсторонним рукопожатием с сегментами, содержащими установленный бит "От отправителя больше нет данных" (этот бит еще называется FIN бит).

Если сокет больше не используется, процесс может закрыть его с помощью функции close, вызвав ее с соответствующим дескриптором сокета:

Close(s);

Если данные были ассоциированы с сокетом, обещающим доставку (сокет типа stream), система будет пытаться осуществить передачу этих данных. Тем не менее, по истечении довольно таки длительного промежутка времени, если данные все еще не доставлены, они будут отброшены. Если пользовательский процесс желает прекратить любую передачу данных, он может сделать это с помощью вызова shutdown на данном сокете для его закрытия. Вызов shutdown вызывает "моментальное" отбрасывание всех стоящих в очереди данных. Формат вызова следующий:

Shutdown(s, how);

где how имеет одно из следующих значений:

  • 0 - если пользователь больше не желает читать данные
  • 1 - если данные больше не будут посылаться
  • 2 - если данные не будут ни посылаться ни получаться

Пример функции, для установления WWW коннекции

/* MakeConnection Function allocates a socket and estabishes a connection with remote host. Default port number 80. Input: WWW server name (with port number, if it is not 80) Output: file descriptor on success -1 on error */ int MakeConnection(unsigned char* ServerName){ int s; struct sockaddr_in ssin; struct hostent* hp; int PortNum; unsigned char strHlp, *pch; /* use default port number - 80 or specific number from the server name */ strcpy(strHlp,ServerName); pch = strchr(strHlp,":"); if(pch==NULL){ PortNum = 80; }else{ pch = "\0"; pch++; PortNum = atoi(pch); if(PortNum==0){ PortNum = 80; } } /* get host by name - resolve host name into IP address */ if((hp=gethostbyname(strHlp)) == NULL) { return -1; } bzero(&ssin, sizeof(ssin)); bcopy(hp->h_addr, &ssin.sin_addr, hp->h_length); ssin.sin_family = hp->h_addrtype; ssin.sin_port = htons(PortNum); /* allocate a socket */ if((s=socket(AF_INET, SOCK_STREAM, 0))==-1) { return -1; } /* make a connection */ if(connect(s, &ssin, sizeof(ssin), 0)==-1){ return -1; } return s; /* socket descriptor */ }

Сокеты

Сокет - это один конец двустороннего канала связи между двумя программами, работающими в сети. Соединяя вместе два сокета, можно передавать данные между разными процессами (локальными или удаленными). Реализация сокетов обеспечивает инкапсуляцию протоколов сетевого и транспортного уровней.

Первоначально сокеты были разработаны для UNIX в Калифорнийском университете в Беркли. В UNIX обеспечивающий связь метод ввода-вывода следует алгоритму open/read/write/close. Прежде чем ресурс использовать, его нужно открыть, задав соответствующие разрешения и другие параметры. Как только ресурс открыт, из него можно считывать или в него записывать данные. После использования ресурса пользователь должен вызывать метод Close(), чтобы подать сигнал операционной системе о завершении его работы с этим ресурсом.

Когда в операционную систему UNIX были добавлены средства межпроцессного взаимодействия (Inter-Process Communication, IPC) и сетевого обмена, был заимствован привычный шаблон ввода-вывода. Все ресурсы, открытые для связи, в UNIX и Windows идентифицируются дескрипторами. Эти дескрипторы, или описатели (handles) , могут указывать на файл, память или какой-либо другой канал связи, а фактически указывают на внутреннюю структуру данных, используемую операционной системой. Сокет, будучи таким же ресурсом, тоже представляется дескриптором. Следовательно, для сокетов жизнь дескриптора можно разделить на три фазы: открыть (создать) сокет, получить из сокета или отправить сокету и в конце концов закрыть сокет.

Интерфейс IPC для взаимодействия между разными процессами построен поверх методов ввода-вывода. Они облегчают для сокетов отправку и получение данных. Каждый целевой объект задается адресом сокета, следовательно, этот адрес можно указать в клиенте, чтобы установить соединение с целью.

Типы сокетов

Существуют два основных типа сокетов - потоковые сокеты и дейтаграммные.

Потоковые сокеты (stream socket)

Потоковый сокет - это сокет с установленным соединением, состоящий из потока байтов, который может быть двунаправленным, т, е. через эту конечную точку приложение может и передавать, и получать данные.

Потоковый сокет гарантирует исправление ошибок, обрабатывает доставку и сохраняет последовательность данных. На него можно положиться в доставке упорядоченных, сдублированных данных. Потоковый сокет также подходит для передачи больших объемов данных, поскольку накладные расходы, связанные с установлением отдельного соединения для каждого отправляемого сообщения, может оказаться неприемлемым для небольших объемов данных. Потоковые сокеты достигают этого уровня качества за счет использования протокола Transmission Control Protocol (TCP) . TCP обеспечивает поступление данных на другую сторону в нужной последовательности и без ошибок.

Для этого типа сокетов путь формируется до начала передачи сообщений. Тем самым гарантируется, что обе участвующие во взаимодействии стороны принимают и отвечают. Если приложение отправляет получателю два сообщения, то гарантируется, что эти сообщения будут получены в той же последовательности.

Однако, отдельные сообщения могут дробиться на пакеты, и способа определить границы записей не существует. При использовании TCP этот протокол берет на себя разбиение передаваемых данных на пакеты соответствующего размера, отправку их в сеть и сборку их на другой стороне. Приложение знает только, что оно отправляет на уровень TCP определенное число байтов и другая сторона получает эти байты. В свою очередь TCP эффективно разбивает эти данные на пакеты подходящего размера, получает эти пакеты на другой стороне, выделяет из них данные и объединяет их вместе.

Потоки базируются на явных соединениях: сокет А запрашивает соединение с сокетом В, а сокет В либо соглашается с запросом на установление соединения, либо отвергает его.

Если данные должны гарантированно доставляться другой стороне или размер их велик, потоковые сокеты предпочтительнее дейтаграммных. Следовательно, если надежность связи между двумя приложениями имеет первостепенное значение, выбирайте потоковые сокеты.

Сервер электронной почты представляет пример приложения, которое должно доставлять содержание в правильном порядке, без дублирования и пропусков. Потоковый сокет рассчитывает, что TCP обеспечит доставку сообщений по их назначениям.

Дейтаграммные сокеты (datagram socket)

Дейтаграммные сокеты иногда называют сокетами без организации соединений, т. е. никакого явного соединения между ними не устанавливается - сообщение отправляется указанному сокету и, соответственно, может получаться от указанного сокета.

Потоковые сокеты по сравнению с дейтаграммными действительно дают более надежный метод, но для некоторых приложений накладные расходы, связанные с установкой явного соединения, неприемлемы (например, сервер времени суток, обеспечивающий синхронизацию времени для своих клиентов). В конце концов на установление надежного соединения с сервером требуется время, которое просто вносит задержки в обслуживание, и задача серверного приложения не выполняется. Для сокращения накладных расходов нужно использовать дейтаграммные сокеты.

Использование дейтаграммных сокетов требует, чтобы передачей данных от клиента к серверу занимался User Datagram Protocol (UDP) . В этом протоколе на размер сообщений налагаются некоторые ограничения, и в отличие от потоковых сокетов, умеющих надежно отправлять сообщения серверу-адресату, дейтаграммные сокеты надежность не обеспечивают. Если данные затерялись где-то в сети, сервер не сообщит об ошибках.

Кроме двух рассмотренных типов существует также обобщенная форма сокетов, которую называют необрабатываемыми или сырыми.

Сырые сокеты (raw socket)

Главная цель использования сырых сокетов состоит в обходе механизма, с помощью которого компьютер обрабатывает TCP/IP. Это достигается обеспечением специальной реализации стека TCP/IP, замещающей механизм, предоставленный стеком TCP/IP в ядре - пакет непосредственно передается приложению и, следовательно, обрабатывается гораздо эффективнее, чем при проходе через главный стек протоколов клиента.

По определению, сырой сокет - это сокет, который принимает пакеты, обходит уровни TCP и UDP в стеке TCP/IP и отправляет их непосредственно приложению.

При использовании таких сокетов пакет не проходит через фильтр TCP/IP, т.е. никак не обрабатывается, и предстает в своей сырой форме. В таком случае обязанность правильно обработать все данные и выполнить такие действия, как удаление заголовков и разбор полей, ложится на получающее приложение - все равно, что включить в приложение небольшой стек TCP/IP.

Однако нечасто может потребоваться программа, работающая с сырыми сокетами. Если вы не пишете системное программное обеспечение или программу, аналогичную анализатору пакетов, вникать в такие детали не придется. Сырые сокеты главным образом используются при разработке специализированных низкоуровневых протокольных приложений. Например, такие разнообразные утилиты TCP/IP, как trace route, ping или arp, используют сырые сокеты.

Работа с сырыми сокетами требует солидного знания базовых протоколов TCP/UDP/IP.

Порты

Порт определен, чтобы разрешить задачу одновременного взаимодействия с несколькими приложениями. По существу с его помощью расширяется понятие IP-адреса. Компьютер, на котором в одно время выполняется несколько приложений, получая пакет из сети, может идентифицировать целевой процесс, пользуясь уникальным номером порта, определенным при установлении соединения.

Сокет состоит из IP-адреса машины и номера порта, используемого приложением TCP. Поскольку IP-адрес уникален в Интернете, а номера портов уникальны на отдельной машине, номера сокетов также уникальны во всем Интернете. Эта характеристика позволяет процессу общаться через сеть с другим процессом исключительно на основании номера сокета.

За определенными службами номера портов зарезервированы - это широко известные номера портов, например порт 21, использующийся в FTP. Ваше приложение может пользоваться любым номером порта, который не был зарезервирован и пока не занят. Агентство Internet Assigned Numbers Authority (IANA) ведет перечень широко известных номеров портов.

Обычно приложение клиент-сервер, использующее сокеты, состоит из двух разных приложений - клиента, инициирующего соединение с целью (сервером), и сервера, ожидающего соединения от клиента.

Например, на стороне клиента, приложение должно знать адрес цели и номер порта. Отправляя запрос на соединение, клиент пытается установить соединение с сервером:

Если события развиваются удачно, при условии что сервер запущен прежде, чем клиент попытался с ним соединиться, сервер соглашается на соединение. Дав согласие, серверное приложение создает новый сокет для взаимодействия именно с установившим соединение клиентом:

Теперь клиент и сервер могут взаимодействовать между собой, считывая сообщения каждый из своего сокета и, соответственно, записывая сообщения.

Работа с сокетами в.NET

Поддержку сокетов в.NET обеспечивают классы в пространстве имен System.Net.Sockets - начнем с их краткого описания.

Классы для работы с сокетами
Класс Описание
MulticastOption Класс MulticastOption устанавливает значение IP-адреса для присоединения к IP-группе или для выхода из нее.
NetworkStream Класс NetworkStream реализует базовый класс потока, из которого данные отправляются и в котором они получаются. Это абстракция высокого уровня, представляющая соединение с каналом связи TCP/IP.
TcpClient Класс TcpClient строится на классе Socket, чтобы обеспечить TCP-обслуживание на более высоком уровне. TcpClient предоставляет несколько методов для отправки и получения данных через сеть.
TcpListener Этот класс также построен на низкоуровневом классе Socket. Его основное назначение - серверные приложения. Он ожидает входящие запросы на соединения от клиентов и уведомляет приложение о любых соединениях.
UdpClient UDP - это протокол, не организующий соединение, следовательно, для реализации UDP-обслуживания в.NET требуется другая функциональность.
SocketException Это исключение порождается, когда в сокете возникает ошибка.
Socket Последний класс в пространстве имен System.Net.Sockets - это сам класс Socket. Он обеспечивает базовую функциональность приложения сокета.

Класс Socket

Класс Socket играет важную роль в сетевом программировании, обеспечивая функционирование как клиента, так и сервера. Главным образом, вызовы методов этого класса выполняют необходимые проверки, связанные с безопасностью, в том числе проверяют разрешения системы безопасности, после чего они переправляются к аналогам этих методов в Windows Sockets API.

Прежде чем обращаться к примеру использования класса Socket, рассмотрим некоторые важные свойства и методы этого класса:

Свойства и методы класса Socket
Свойство или метод Описание
AddressFamily Дает семейство адресов сокета - значение из перечисления Socket.AddressFamily.
Available Возвращает объем доступных для чтения данных.
Blocking Дает или устанавливает значение, показывающее, находится ли сокет в блокирующем режиме.
Connected Возвращает значение, информирующее, соединен ли сокет с удаленным хостом.
LocalEndPoint Дает локальную конечную точку.
ProtocolType Дает тип протокола сокета.
RemoteEndPoint Дает удаленную конечную точку сокета.
SocketType Дает тип сокета.
Accept() Создает новый сокет для обработки входящего запроса на соединение.
Bind() Связывает сокет с локальной конечной точкой для ожидания входящих запросов на соединение.
Close() Заставляет сокет закрыться.
Connect() Устанавливает соединение с удаленным хостом.
GetSocketOption() Возвращает значение SocketOption.
IOControl() Устанавливает для сокета низкоуровневые режимы работы. Этот метод обеспечивает низкоуровневый доступ к лежащему в основе классу Socket.
Listen() Помещает сокет в режим прослушивания (ожидания). Этот метод предназначен только для серверных приложений.
Receive() Получает данные от соединенного сокета.
Poll() Определяет статус сокета.
Select() Проверяет статус одного или нескольких сокетов.
Send() Отправляет данные соединенному сокету.
SetSocketOption() Устанавливает опцию сокета.
Shutdown() Запрещает операции отправки и получения данных на сокете.

4 ответов

Короткий ответ заключается в том, что вы должны сделать все тяжелое поднятие себя. Вы можете получать уведомления о наличии данных для чтения, но вы не знаете, сколько байтов доступно. В большинстве протоколов IP, использующих пакеты с переменной длиной, будет заголовок с известной фиксированной длиной, добавленной к пакету. Этот заголовок будет содержать длину пакета. Вы читаете заголовок, получаете длину пакета, затем читаете пакет. Вы повторяете этот шаблон (прочитайте заголовок, затем прочитайте пакет), пока связь не будет завершена.

При чтении данных из сокета вы запрашиваете определенное количество байтов. Вызов чтения может блокироваться до тех пор, пока запрошенное количество байтов не будет прочитано, но оно может вернуть меньшее количество байтов, чем запрошено. Когда это произойдет, вы просто повторите чтение, запросив оставшиеся байты.

Здесь типичная функция C для чтения заданного количества байтов из сокета:

/* buffer points to memory block that is bigger than the number of bytes to be read */ /* socket is open socket that is connected to a sender */ /* bytesToRead is the number of bytes expected from the sender */ /* bytesRead is a pointer to a integer variable that will hold the number of bytes */ /* actually received from the sender. */ /* The function returns either the number of bytes read, */ /* 0 if the socket was closed by the sender, and */ /* -1 if an error occurred while reading from the socket */ int readBytes(int socket, char *buffer, int bytesToRead, int *bytesRead) { *bytesRead = 0; while(*bytesRead < bytesToRead) { int ret = read(socket, buffer + *bytesRead, bytesToRead - *bytesRead); if(ret <= 0) { /* either connection was closed or an error occurred */ return ret; } else { *bytesRead += ret; } } return *bytesRead; }

Итак, ответ на ваш вопрос зависит от того, используете ли вы UDP или TCP в качестве транспорта.

Для UDP жизнь становится намного проще, поскольку вы можете вызывать recv/recvfrom/recvmsg с требуемым размером пакета (скорее всего, вы отправите пакеты фиксированной длины из источника), и сделайте предположение, что если имеются данные, которые там представлены в нескольких размерах длины пакета. (I.E. Вы вызываете recv * с размером вашего отправляемого бокового пакета, и вы настроены.)

Для TCP жизнь становится немного более интересной - для целей этого объяснения я предполагаю, что вы уже знаете, как использовать функции socket(), bind(), listen() и accept() - последним является то, как вы получите файловый дескриптор (FD) вашего нового соединения.

Существует два способа ввода-вывода для блокировки сокетов, в которых вы вызываете read (fd, buf, N), и чтение находится там, и ждет, пока вы не прочитаете N байтов в buf - -блока, в котором вы должны проверить (используя select() или poll()), является ли FD доступным для чтения, а THEN - для чтения().

При работе с соединениями на основе TCP ОС не обращает внимания на размеры пакетов, поскольку считается непрерывным потоком данных, а не отдельными частями размера пакета.

Если ваше приложение использует "пакеты" (упакованные или распакованные структуры данных, которые вы просматриваете), вы должны иметь возможность вызвать read() с аргументом правильного размера и прочитать всю структуру данных из сокета в время. Единственное предостережение, с которым вам приходится иметь дело, состоит в том, чтобы помнить о том, что вы правильно заказываете данные, которые вы отправляете, в случае, если исходная и целевая системы имеют разные байтовые байты. Это относится как к UDP, так и к TCP.

Что касается программирования сокетов NIX, я настоятельно рекомендую W. Richard Stevens "Unix Network Programming, том 1" (UNPv1) и "Расширенное программирование в среде Unix" (APUE). Первый - это тома, касающийся сетевого программирования, независимо от транспорта, а последний - хорошая универсальная книга программирования, так как она применима к программированию на основе NIX. Также обратите внимание на "TCP/IP Illustrated", тома 1 и 2.

Когда вы читаете в сокете, вы рассказываете, сколько максимальных байтов читается, но если у него их не так много, оно дает вам, как многие из них есть. Вам решать разработать протокол, чтобы вы знали, есть ли у вас частичный пакет или нет. Например, в прошлом, когда вы отправляли двоичные данные переменной длины, я бы поставил int в начале, который сказал, сколько байтов ожидать. Я бы сделал чтение с запросом на количество байтов, большее, чем самый большой возможный пакет в моем протоколе, а затем я бы сравнил первый int с каким-то количеством байтов, которые я получил, и либо обработал его, либо попробовал прочитать больше, d получил полный пакет, в зависимости.